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Abstract
In recent years, scaling of single-core superscalar processor perfor-
mance has slowed due to complexity and power considerations. To
improve program performance, designs are increasingly adopting
chip multiprocessing with homogeneous or heterogeneous CMPs.
By trading off features from a modern aggressive superscalar core,
CMPs often offer better scaling characteristics in terms of aggregate
performance, complexity and power, but often require additional
software investment to rewrite, retune or recompile programs to take
advantage of the new designs. The Cell Broadband Engine is a mod-
ern example of a heterogeneous CMP with coprocessors (acceler-
ators) which can be found in supercomputers (Roadrunner), blade
servers (IBM QS20/21), and video game consoles (SCEI PS3). A
Cell BE processor has a host Power RISC processor (PPE) and eight
Synergistic Processor Elements (SPE), each consisting of a Syner-
gistic Processor Unit (SPU) and Memory Flow Controller (MFC).

In this work, we explore the idea of offloading Automatic Dy-
namic Garbage Collection (GC) from the host processor onto accel-
erator processors using the coprocessor paradigm. Offloading part
or all of GC to a coprocessor offers potential performance benefits,
because while the coprocessor is running GC, the host processor can
continue running other independent, more general computations.

We implement BDW garbage collection on a Cell system and of-
fload the mark phase to the SPE co-processor. We show mark phase
execution on the SPE accelerator to be competitive with execution
on a full fledged PPE processor. We also explore object-based and
block-based caching strategies for explicitly managed memory hier-
archies, and explore to effectiveness of several prefetching schemes
in the context of garbage collection. Finally, we implement Capitula-
tive Loads using the DMA by extending software caches and quan-
tify its performance impact on the coprocessor.

Categories and Subject Descriptors C.3 [Computer Systems Or-
ganization]: SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS; D.2.11 [Software]: SOFTWARE ENGINEERING—
Software Architectures; D.3.3 [Software]: PROGRAMMING LAN-
GUAGES—Language Constructs and Features

General Terms Algorithms, Performance

Keywords Cell, SPU, SPE, BDW, garbage collection, mark-sweep,
coprocessor, accelerator, local store, explicitly managed memory
hierarchies

1. Introduction
Traditional computer systems use caches to reduce average memory
latency by providing non-architected temporary high-speed storage
close to microprocessors. Alas, while this design choice reduces
average latency and presents the programmer with a “flat” memory
hierarchy model, the cost of maintaining this illusion is significant.
This cost includes area to store cache directories, perform tag match,
and implement cache miss recovery; impact of cache miss logic
on cycle time or complex speculative logic; and runtime costs like
coherence traffic which is increasing as the number of processors are
scaled up in multiprocessor systems.

To counter this trend and offer low latency storage with guaran-
teed access time, an increasing number of designs are offering fast,
architected on-chip storage. Among these designs is the Cell Broad-
band Engine [16, 11, 5, 12], which offers eight high-performance
RISC-based processor cores with dedicated architected low latency
storage in the form of the SPE local store.

Architected local memories are most commonly used to store a
set of processor-local data, or contain working copies of large data
sets. While local storage offers significant potential for processing
with data-intensive applications [12, 20, 9], little exploration has
been performed into the use of local memories for managed runtime-
environments, and automatic memory management with garbage
collection, which are increasingly adopted to simplify program de-
velopment and maintenance.

Noll et al. [18] explore the use of Cell SPE cores for executing
Java applications. Alas, many system functions, such as type resolu-
tion, and garbage collection are performed on the central PPE which
may threaten to become a bottleneck if significant speedups are ac-
complished with SPE-based execution.

In this work, we explore the idea of a Garbage Collector Copro-
cessor by running Java applications with the Boehm-Demers-Weiser
(BDW) mark-sweep garbage collector on a live Cell Processor. In
this work, we concentrate on optimizing GC performance for a pro-
cessor with an explicitly managed local store by managing the local
store using caching and prefetching techniques with the DMA copy
engine.

In porting the garbage collector to the Cell BE, our emphasis was
the exploitation of local stores with copy-in/copy-out semantics. Ex-
ploiting local memories with explicit copy semantics and block copy
facilities is applicable to a growing class of embedded processor de-
signs.

To explore the techniques and performance attributes of the ex-
plicitly managed memory hierarchy, we focus on this attribute of
the Cell BE architecture exclusively. The Cell BE architecture of-
fers additional capabilities such as multicore thread level parallelism
and integrated SIMD capabilities which are not explored within the
scope of this work.

Results presented here were measured on an experimental Cell
BE blade with 2 Cell BE chips for a Cell BE system configuration
with 2 PPEs and 16 SPEs executing Cell BE Linux 2.6.20-CBE. The
operating frequency of the system was 3.2GHz, and the system was



populated with 1GB of main memory. The host processor runs the
Java application and offloads its marking work to an SPU as needed.
Choosing the Cell SPE to explore the use of garbage collection on
a core with a local memory based memory hierarchy offered the
advantage of using the open Linux-based Cell ecosystem [10].

Our contributions are as follows: 1) we identify the use of the
local store and necessary synchronizations for offloading the mark-
phase of the BDW collector to the coprocessor 2) we identify the
necessary steps for managing coherency of reference liveness infor-
mation between the host processor and the SPU, 3) we quantify the
effects of using an MFC-based software cache to improve GC per-
formance on the coprocessor giving a speedup of an average of 200%
over accelerator baseline code without the software cache, 4) we
demonstrate hybrid caching schemes adapted to the behavior of dif-
ferent data types and their reference behavior and demonstrate them
to deliver a speedup of an average of 400% over the baseline, 5) we
quantify the effects of previously known GC Prefetching strategies
on the coprocessor that uses DMA for memory accesses 6) by ex-
tending the software cache, we implement Capitulative Loads using
the MFC’s DMA controller and quantify its performance impact on
the coprocessor.

This paper is structured as follows: we describe workload char-
acteristics of mark-and-sweep garbage collectors in section 2, and
we describe the Cell SPE’s local store and memory flow controller-
based architecture in section 3. Section 4 gives an overview of the
challenges involved in porting a garbage collector to a processor us-
ing a local memory as its primary operand storage, and we describe
the use of software caches in section 5. We compare GC marking
performance between a SPE and a PPE in section 6. We explore
the use of prefetching techniques for garbage collectors executing in
a local memory in section 7. We analyze coherence and data con-
sistency issues in a local store-based co-processor in section 8. We
discuss related work in section 9 and draw our conclusions in sec-
tion 10.

2. Workload Characteristics
Garbage collection is in many aspects the antithesis of the applica-
tion spaces for which local stores are developed and are intuitively
useful. As such, this application is not the right application space to
explore the performance of local-store based systems. Rather, port-
ing such an application shows how well an application can run in an
environment that makes no concessions to it, and analysis of port-
ing challenges and solutions may allows us to better understand this
architecture class.

Local stores are typically architected as data repositories for
processor local data or as a staging ground for partitioned large dense
data sets. Storing local data in a local store is attractive, because
the local store guarantees access with guaranteed low latency, and
without the overhead of coherence protocols when executed in a
multiprocessor. For data-intensive applications, local stores offer an
ideal repository for partitioned dense data sets, such as found in
linear algebra computations used in many numerical applications.
Eichenberger et al. [7] summarize the use of local stores with tiling
and data set partitioning for these algorithms, and with a large
computation to data transfer ratio. Similarly, Hwu et al. [15] describe
the use of local stores for GPU computing.

Garbage collection represents the very opposite end of the appli-
cation space, chasing pointers across a large memory space, with an
infinitesimally small compute to data transfer ratio, and non-existing
locality.

The Boehm-Demers-Weiser (BDW) mark-(lazy)sweep collector
is popular due to its portability and language-independence. It epit-
omizes a class of collectors known as ambiguous roots collectors.
Such collectors are able to forego precise information about roots
and knowledge of the layout of objects, by assuming that any word-
sized value is a potential heap reference. Any value that ambiguously
appears to refer to the heap (while perhaps simply having a value that

looks like a heap reference) is treated as a reference and the object
to which it refers is considered to be live. The upshot of ambigu-
ity is that ambiguously-referenced objects cannot move, since their
ambiguous roots cannot be overwritten with the new address of the
object; if the ambiguous value is not really a reference then it should
not be modified. The BDW collector treats registers, static areas, and
thread activation stacks ambiguously. If object layout information is
available (from the application programmer or compiler), then the
BDW collector can make use of it, but otherwise values contained in
objects are also treated ambiguously.

The advantage of ambiguous roots collectors is their indepen-
dence of the application programming language and compiler. The
BDW collector supports garbage collection for applications coded in
C and C++, which preclude accurate garbage collection because they
are not type-safe. BDW is also often used with type-safe languages
whose compilers do not provide the precise information necessary
to support accurate GC. The minimal requirement is that source pro-
grams not hide references from GC, and that compilers not perform
transformations that hide references from GC. Thus, BDW is used in
more diverse settings than perhaps any other collector. As a result,
the BDW collector has been heavily tuned, both for basic perfor-
mance, and to minimize the negative impact of ambiguous roots [2].

The basic structure of mark-and-sweep garbage collection is
depth-first search of all reachable pointers on the heap. For this pur-
pose, an initial set of root pointers (from the application’s register
file, application stack, and known roots in the data segment) are used
to find references into the application’s heap. This is accomplished
by initializing a mark stack with these known roots.

The mark phase removes heap addresses from the mark stack,
and uses the reference in conjunction with information about the
object pointed to by the discovered pointer to find any pointers stored
in this object. The minimum amount of information necessary about
an object is its starting address and length, which can be obtained
from the memory allocator. For such an object, any properly aligned
data words could be legal pointers.

Any newly discovered legal heap addresses found in this way are
then pushed on the mark stack and the reachable objects are marked
in a mark array. The algorithm iterates until the heap is empty.

The following code fragment describes the algorithm in more
detail (assuming just a single type of records identified by the record
length):

while (ptr = pop_mark_stack())

length = alloc_size(ptr);

for (i=0...length)
if (legal_ptr(ptr[i]) && ! marked(ptr[i]))
mark (ptr[i]);
push_mark_stack(ptr[i]);

Once the algorithm has traversed all reachable heap objects, the
mark bits represent a bitmap of all reachable objects. All unmarked
objects can be de-allocated using a linear sweep over the heap. The
sweep can be performed eagerly, or lazily at allocation request. Lazy
sweep has preferable cache behavior because it avoids touching large
amounts of cold data for the sole purpose of de-allocation [2].

Tracing GC schemes can be classified into stop-the-world and
incremental. Stop-the-world GC suspends the mutator until a full
pass of the GC is done, thus disallowing any change to the heap
space during collection. Incremental GC allows interleaving mutator
and GC, either in a sequential or parallel fashion. thus providing the
benefit of concurrency, but at the cost of tracking liveness coherency
between the mutator and the GC.

Our implementation is based on a stop-the-world approach where
the mutator executes on the PPE, and when GC invokes the marking
code, control is transferred to the mark code executing on the SPE.
During this time, the mutator is suspended on the PPE and the PPE
becomes available for other processes in the system and increase
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Figure 1. The Memory Flow Controller (MFC) implements the
SPE’s interface to the system memory. It consists of a DMA engine,
memory management unit, and an atomic access facility.

overall system throughput. In this environment, the single-SPE GC
can take advantage of all eight SPEs, when the host processor is
running multi-programmed Java workloads and each program uses a
dedicated single SPE for its garbage collection.

As a future addition, the same dirty-blocks tracking support used
for maintaining mutator/GC coherency for incremental GC can be
applied to SPE-based GC, and the PPE could continue to execute
the mutator during the time freed up by SPE-based marking. In this
scenario, because the mutator is rarely suspended to perform GC,
concurrency already exists and no incrementality is needed in the
GC.

3. Cell SPE Local Store Usage
In the Cell Broadband Engine, data is transferred to and from the
local store using the synergistic memory flow controller. The mem-
ory flow controller (MFC) operates in parallel to the SPU execution
unit of the SPE, offering independent computation and data transfer
threads within each SPE thread context [9].

The MFC includes a DMA controller, a memory management
unit (MMU), a bus interface unit, and an atomic unit for synchro-
nization with other SPUs and the PPE. The SPU is a RISC-style
processor with an instruction set and a microarchitecture designed
for high-performance data streaming and data-intensive computa-
tion. The SPU includes a 256-Kbyte local-store memory to hold an
SPU program’s instructions and data. The SPU cannot access main
memory directly, but it can issue DMA commands to the MFC to
bring data into local store or write computation results back to main
memory. The SPU can continue program execution while the MFC
independently performs these DMA transactions. No hardware data-
load prediction structures exist for local store management, and each
local store must be managed by software.

The MFC performs DMA operations to transfer data between lo-
cal store and system memory. DMA operations specify system mem-
ory locations using fully compliant PowerPC effective addresses.
DMA operations can transfer data between local store and any re-
sources connected via the on-chip interconnect (main memory, an-
other SPEs local store, or an I/O device).

In the PPE, effective addresses are used to specify memory ad-
dresses for load and store instructions of the Power Architecture
ISA. On the SPE, these same effective addresses are used by the
SPE to initiate the transfer of data between system memory and the
local store by programming the MFC. The MFC translates the ef-
fective address, using segment tables and page tables, to an absolute
address when initiating a DMA transfer between an SPE’s local store
and system memory.

In addition to providing efficient data sharing between PPE and
SPE threads, the MFC also provides support for data protection and
demand paging. Since each thread can reference memory only in its
own process’s memory space, memory address translation of DMA
request addresses provides protection between multiple concurrent
processes. In addition, indirection through the page translation hier-
archy allows pages to be paged out. Like all exceptions generated
within an SPE, page translation-related exceptions are forwarded to
a PPE while the memory access is suspended. This allows the oper-
ating system executing on the PPE to page in data as necessary and
restart the MFC data transfer when the data has been paged in.

MFC data transfers provide coherent data operations to ensure
seamless data sharing between PPEs and SPEs. Thus, while perform-
ing a system memory to local store transfer, if the most recent data
is contained in a PPE’s cache hierarchy, the MFC data transfer will
snoop the data from the cache. Likewise, during local store to system
memory transfers, cache lines corresponding to the transferred data
region are invalidated to ensure the next data access by the PPE will
retrieve the correct data. Finally, the MFC’s memory management
unit maintains coherent TLBs with respect to the system-wide page
tables [1].

While the MFC provides coherent transfers and memory map-
ping, a data transfer from system memory to local store creates a
data copy. If synchronization between multiple data copies is re-
quired, this must be provided by an application-level mechanism.

MFC transfers between system memory and an SPE’s local store
can be initiated either by the local SPE using SPU channels com-
mands, or by remote processor elements (either a PPE or an SPE)
by programming the MFC via its memory mapped I/O interface.
Using self-paced SPU accesses to transfer data is preferable to re-
mote programming because transfers are easier to synchronize with
processing from the SPE by querying the status channel, and be-
cause SPU channel commands offer better performance. In addition
to the shorter latency involved in issuing a channel instruction from
the SPU compared to a memory mapped I/O access to an uncached
memory region, the DMA request queue accepting requests from the
local SPU contains 16 entries compared to the eight entries available
for buffering requests from remote nodes. Some features, such as the
DMA list command, are only available from the local SPE via the
channel interface.

Performing an actual transfer requires two communications
events, first to indicate the SPE is ready to receive data because it has
completed the previous work assignment, and as second synchro-
nization to indicate the completion of a PPE-side transfer. From a
programming point of view, SPE-initiated DMA requests are prefer-
able because they reduce the need for double handshake commu-
nication, channel accesses to the MFC are cheaper, and because in
parallel programs, they prevent the PPE from becoming a bottleneck.

This decision is reflected in the sizing of request queues, where
each MFC has 16 transfer request entries in its queue reserved for the
local SPE, and another 8 entries accessible by the PPE and remote
SPEs via memory-mapped I/O registers.

The MFC also implements inbound and outbound mailbox
queues. These mailbox queues are accessible with channel instruc-
tions from the local SPE, and using memory-mapped I/O registers
from the PPE and remote SPEs.

Because each SPE comes with a limited local store size of 256KB
for both instructions and data, we cautiously optimize our data struc-
tures with this limit in mind. In the final version, the use of the lo-
cal store includes less than 20KB instruction image (including the



garbage collection code, management code for data caching and syn-
chronization, and libraries), a 128KB software cache for caching
heap and miscellaneous references, 40KB of header cache, 32KB
of local mark stack, and a small activation record stack.

4. Porting GC to Processors with Local Store
Hierarchies

In order to select a realistic optimized starting point which might
serve as reference on a traditional processor, we chose the publicly
available Boehm-Demers-Weiser garbage collector. We chose Java
as the environment for our applications using the open-source GNU
Compiler for Java (gcj).1 To report garbage collection results, we
use the SPECjvm98 benchmark suite as the primary drivers for the
garbage collection. We use the jolden programs to show differences
between different application types where appropriate.

The application executes on the Cell PPE. We retain applications
unmodified from the original PPE executable to present a compara-
ble memory map, as we concentrate on GC execution in this work.
We rebuild the GCJ run-time environment to include calls to a thin
communication layer with the SPE.

The communication layer contains GC-specific code for commu-
nication between the PPE and the SPE, whereby the SPE obtains
work descriptors from the PPE. The communication layer also con-
tains code to load the SPE with the GC functions, initiate execution
on the SPE, and perform synchronization between PPE and SPE.

During development of the SPE garbage collector, we keep the
PPE collector fully functional. After each SPE mark activity, we
compare the mark bitmap and the statistics on visited nodes to ensure
full compatibility and correct operation with PPE marking during
porting.

In porting the BDW collector to the Cell SPE, we concentrate
on the application heap traversal of the mark phase where the bulk
of the execution time is spent. The sweep phase has linear behav-
ior operating on dense mark bits, and the use of a local memory to
store portions of an allocation’s freelist and mark bits is straightfor-
ward. We retain the management of the global mark stack, includ-
ing the discovery of initial root objects, the handling of mark stack
overflow and other special events (like blacklist management) on the
Cell PPE. These functions interact heavily with the Java managed
runtime environment for the application, and are best executed on
the core executing the application. Local store mark stack overflow
is handled by copying the mark stack back to the global mark stack.

Synchronization between PPE and SPE occurs via the mailbox
interface which allows efficient transfer between PPE and SPE of
small data quantities. We pass a descriptor address, which is used
by the SPE to copy in a descriptor and the mark stack. Because the
SPE uses stalling mail-box accesses, this model provides implicit
synchronization.

Three of the key data structures for the BDW mark-and-sweep
algorithm are:

• Mark stack (MS) that contains system addresses to heap blocks
that are to be scanned.

• Heap blocks (HBLK) that need to be scanned.

• Header blocks (HDR) that contain information about elements in
a specific allocation bucket, and a mark bit map for the memory
block with word granularity (1b per word).

Of these data structures, references to the HBLKs, i.e., the al-
located heap blocks that are scanned for legal pointers are by far
the most frequent references. Because these three structures are fre-
quently accessed in the system memory, their accesses dominate the
communication between SPE and PPE. Therefore these structures
become primary targets for optimizing GC performance in the SPE.

1 This choice limits the applications which can be executed in our environ-
ment. For example, the DaCapo benchmarks cannot be compiled with GCJ.

while (ptr = pop_mark_stack()) <- read MS

length = alloc_size(ptr);

for (i=0...length)
p = ptr[i]; <- read HBLK
if (legal_ptr(p))
get_hdr(p); <- read HDR
if (not_marked(p)) <- read HDR

mark (p); <- write HDR
push_mark_stack(p); <- write MS

Figure 2. Annotated usage of system memory data in mark-and-
sweep garbage collection in the basic mark code of section 2.

Figure 2 shows when these structures are referenced in the BDW
collector. The size of mark stack can grow as the marking proceeds.
Because of the depth-first-traversal nature of BDW, the size of the
mark stack is roughly characterized by the depth of the application
data structure and therefore is reasonably small.

Heap blocks basically contain data and pointers in the system
memory that is accessible to the application for its computations.
In a traditional processor, BDW marking aggressively optimizes for
locality of references. For example, BDW only traverses live ref-
erences as opposed to the entire application heap and accesses heap
blocks in chunks of 128B which corresponds to the typical size of an
L2 cache block. Because of the pointer-chasing nature of accessing
heap blocks, the access patterns exhibit poor locality that can hardly
be captured by hardware caches or hardware stream prefetcher. Most
GC prefetching research including Boehm Prefetching [2] and CHV
Prefetching [4] targets optimizing accesses to heap blocks for im-
proving GC performance.

The header block is referenced in the marking loop for reading
and writing the mark bitmap of a heap reference. An index structure
is used to locate HDR blocks for each heap address. To enable
fast lookup of frequently used elements, the BDW comes with an
optional lookup table. Each header contains a bitmap that represents
liveness for a continuous 4KB region. To avoid repeating marking
work when chasing pointer chains in the heap, the mark bit of a
reference is first read to determine if the chain has previously been
chased.

A naive implementation of the mark phase might replace every
system memory reference to access these data structures with a
DMA transfer to access system memory and transfer the referenced
data to the local store before each access. We use the performance
of this naive configuration as the baseline to determine performance
improvement obtained with different local store caching strategies.

SPE-side data structure traversal is possible because the SPE
DMA shares a common view of an application’s virtual memory
map, and any valid pointer reference on the PPE will be equally
valid and refer to the same memory location on the SPE to initi-
ate a data transfer from the associated address. A common system
memory view in the SPE accelerators is a significant enabler of pro-
gramming flexibility – in a system where data cannot be “pulled”
by the accelerator, and input working sets need to be “pushed” by
the host CPU, this sort of acceleration that involves traversal of data
structures is not possible. A “push” data model also puts more load
on the central processor, and threatens to cause a bottleneck based
on Amdahl’s observations of program parallelization.

While DMA requests for each system memory access can be used
for isolated references without locality, references to data structures
that exhibit locality must ultimately exploit the fast local store mem-
ory hierarchy level to cache data references and exploit this reference
locality, or suffer unacceptable performance.

The SPE maintains a local mark stack which contains 4K entries,
with 32KB being comparatively small relative to the SPU local
store. This local mark stack captures all mark-stack push and pop



operations in SPE local store. Data transfers between the local mark
stack and the global stack occur when the local mark stack is empty,
or when it overflows, to receive additional global-mark stack entries,
or to return a portion of the overflow.

To capture locality for other references, caching strategies must
be employed by the SPU program. The simplest caching structure
to be maintained is a memory region containing homogeneous data,
as used by numeric applications to tile matrices in local store. Thus,
during garbage collection, instead of individually loading each word
with an MFC request when scanning a block of pointers ptr[i],
the entire block can be retrieved by a single DMA request. We some-
times refer to this approach as operand buffering (much like one
or more memory operands are cached in microprocessor registers),
or caching of memory chunks. These operand buffers are explic-
itly maintained and each buffer is a distinguished individual copy of
a certain memory block. Operand buffers are good for discernable
operands which are individually handled, fetched and maintained in-
dependently, e.g., in distinct buffers allocated for this purpose. Like-
wise, updates to such a structure can be gathered in local store and
commit with a single copy back operation.

The correspondence of data in the operand buffer to actual system
memory is usually implicit, i.e., there may not be any dedicated
address information maintained for the operand buffer. (In numeric
code, the address may be derivable from an array base address and a
loop index, and in garbage collection, it may correspond to a pointer
popped from the mark stack which may no longer be maintained in
a register once scanning of a memory block commences.)

A second structure may cache objects which are of like type,
e.g., by collecting records in a temporary store as they are used,
and making them available for subsequent references. These objects
maintain a home location in main memory, so this use of local store
is distinct from allocating private objects in the local store. We refer
to this type of cache as “object cache”.

Access to object cache structures can occur by lookup with a sys-
tem memory address (i.e., where the system memory home location
serves as index), or by a content-based lookup (e.g., to find a data
type layout descriptor by finding a record associated with a specific
type). Our implementation uses an object cache for HDR blocks, and
access it with a hashed system-memory effective address.

Linear scan of memory blocks for pointers can be made more
efficient by requesting a memory range corresponding to an object
to be scanned for valid heap pointers with a single DMA request
into an operand buffer. The block is only maintained long enough
to scan for pointers. Figure 3 and Figure 4 show the performance
impact of using an operand buffer for memory blocks being scanned
by the garbage collectors as it traverses the the heap on the execution
time for the sum of all mark phases in the workload. Using operand
buffering for heap blocks results in a mean speedup of 150% and
300% for Jolden and SPECjvm98, respectively.

5. Software Caches
Operand buffers and object caches can handle contiguous data and
homogeneous collections of important data structures, respectively,
in a local store environment, but for many other references the
locality may not be pronounced enough to support a scheme of
storing a single data region for processing and then move to the next
region.

To exploit locality in such circumstances, we use a “software
cache”. The software cache is a software abstraction to capture tem-
poral and spatial locality in memory modeled on hardware caches,
and a standard component of the Cell SDK distributed by IBM [7, 6].
Like hardware caches, there are a number of equivalence sets, in-
dexed by a set of address bits, and blocks from the equivalence set
being selected based on tag match checks.

Like hardware caches, equivalence sets are selected by a cache
index formed from low order address bits. Using the 4-way SIMD
capability, it is possible to efficiently implement a 4-way associative
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Figure 4. Speedup obtained with garbage collection caching strat-
egy behavior for the Jolden benchmarks.

lookup. Software caches offer a catch-all fallback strategy for deal-
ing with data sets – they offer retention between accesses based on
address-based lookup, with data persisting in the local store beyond
the use of region-copies used for dense references.

Software caches involve significant overheads in terms of in-
structions which must be executed by the SPU processor access la-
tency to compute and compare tags, to determine a possible soft-
ware cache miss, and to locate the data buffer serving as backing
storage. Thus, for data with regular and predictable access behav-
ior, software caches are a poor match. In porting applications, such
data uses are best converted to employ operand buffers, or object
caches. Using references to these objects which are known to reside
in local store reduces the overhead of the software-based tag match.
Software caches are most useful for large data sets with statistical
locality, and where the benefits of a large cache can often outweigh
the penalties of the long “hit latency” of a software cache.

Because software caches do not implement hardware coherence
mechanisms we implement software application-level coherency
support, which will be described in section 8.



Unlike hardware caches, software caches are not fixed in geom-
etry, size, and replacement strategy at microprocessor design time.
Instead, they can be adjusted to data sets and their behavior.

In porting our garbage collector, we have used the software cache
provided with the IBM Cell SDK distributions.

Figure 3 quantifies the performance improvement in SPE mark
time of a 128KB software cache with a 512B line size compared to
the baseline design, and a pure operand buffering approach. While
the application heap traversal only references each heap location
only once (because marked blocks are not traversed again), the cache
lines allow to exploit limited spatial locality with the prefetch effect
of cache lines.

For large blocks, which may span one or multiple cache lines,
no prefetch effect can be gained because they will not be co-located
with other blocks, or not a sufficient number of blocks will share
a line size for this effect to be effective. Thus, operand buffers are
more beneficial for these accesses. To match and exploit the differ-
ent behavior patterns, we design a hybrid caching strategy which
partitions blocks into those using an operand buffer and those using
the software cache. The “SW$ + Operand” of figure 3 this hybrid
garbage collector using a software cache for small data references,
and operand buffers for large heap blocks to be scanned. Using an
operand buffer for large heap blocks to be scanned offers two ben-
efits: (1) it reduces the hit latency by removing the access to the
software cache tag store and the associated tag check code, and (2) it
removes references with good, dense spatial locality, but little tem-
poral locality, from the software cache to an optimized cache storing
a region to be scanned.

Because each data reference’s behavior is matched to an appro-
priate storage class in the local store, this hybrid implementation is
the basis for the best performing SPE garbage collector. We use this
hybrid configuration for all further experiments.

We refer to Figure 4 to demonstrate the dependence of the rel-
ative advantages of the different data caching schemes depending
on the mix of allocated heap objects. Compared to the SPECjvm98
workloads, the jolden programs offers a higher fraction of small data
blocks and show a significant advantage for the software cache over
the operand buffer scheme. Like for the SPECjvm98 suite, the hybrid
scheme performs best for the jolden benchmarks as well.

Figure 5 shows the impact of cache line size on software cache
miss ratios during garbage collection for the SPECjvm98 bench-
marks, using a hybrid caching scheme with operand buffer and soft-
ware cache. As cache line size increases, the prefetching effect of
cache lines reduces the miss ratio until cache lines of 512B. As the
cache lines size is further increased, the small number of available
lines at the constant cache size of 128KB leads to thrashing and a
jump in cache miss ratios.

Figure 6 shows the impact of cache line size on performance of
the software cache as speedup relative to the baseline. Because the
software cache does not return the data to the application until the
DMA concludes, the effect of transfer latency of larger blocks is
more pronounced than in traditional caches (where critical word first
deliver often allows applications to proceed while the trailing edge
of a cache line is fetched, but subject to trailing edge bandwidth
saturation). Thus, the miss ratio improvement of the 512B line over
the 256B cache is compensated by the associated longer transfer
latency, and resulting in a virtual performance tie.

6. Mark Performance Comparison between SPE
and PPE

To understand the trade-off of offloading GC to the SPE, it is im-
portant to compare the GC performance of an SPE to that of a con-
ventional microprocessor core. To that end, we perform quantitative
comparison for GC performance of SPE to the PPE on the same chip.
Because both SPE and PPE operate at the same 3.2 GHz frequency,
the comparison highlights the architectural differences as well as the
area efficiency of the two architectures.
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Figure 6. Software cache performance for different cache configu-
rations (as speedup relative to the baseline).

Figure 7 shows GC’s mark performance (a higher value repre-
sents better performance) of a PPE and an SPE using a 128KB soft-
ware cache and an operand buffer, normalized to PPE’s performance.
We calculate SPE’s mark performance using the formula ‘PPE Mark
Time / SPE Mark Time’. The SPE Mark Time includes the additional
communication overhead of initiating and finalizing the offloading
of GC from PPE to SPE including transferring of mark stack entries
and writebacks of marks bits to the main memory also add to the SPE
mark time. These results where obtained without SPE-specific code
tuning, which can often deliver significant additional speedup. How-
ever, in this work our focus is on data management and optimization
of data transfers, not SPE-specific code generation opportunities.

From Figure 7, we observe that SPE achieves reasonable GC
mark performance compared to a PPE’s performance for our work-
loads with a mean of 74.8% for the SPECjvm98 benchmarks and
in Compress’s case the SPE actually outperforms PPE mark perfor-
mance by 4.7%. For Compress, achieving faster mark performance
on SPE than PPE is possible because most of the accesses in Com-
press use the operand buffer which has shorter, fixed access latency
than the average access latency of a PPE. For Db, Javac and Jess,
SPE achieves 80.7%, 95.5% and 70.8% of PPE’s mark performance,
respectively. In Javac, SPE achieves 40.1% of PPE’s mark perfor-
mance. We attribute this lower performance to the larger live mem-
ory footprint and higher miss rate in the operand buffer.
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the mark phase of the SPECjvm98 benchmark suite.

To understand better the performance difference between PPE
and SPE, we examine their architectural differences in the following
sections, as well as discuss some tradeoffs in the exploitation of
explicitly managed memory hierarchies. The PPE uses split 32KB
instruction and 32KB data level-1 caches while the SPE uses a local-
store of 256KB for storing both instruction and data.

Because an SPE core is substantially smaller than a PPE core,
it is also important to understand the mark efficiency by taking core
area into consideration when comparing PPE and SPE. Core area is a
proxy for silicon, power and cooling cost, as a larger logic area usu-
ally dissipates proportionally more power and heat. The area of an
SPE core is 14.5 mm2, whereas the area of a PPE core is 24mm2. In
addition, the Cell BE contains an L2 cache whose primary purpose
is to service the PPE. When measuring GC mark performance / core
area, SPE achieves 23% improvement in efficiency for SPECjvm98.
If we consider the size of the L2 cache as well, the improvement in
area efficiency is 132%. This comparison shows that although SPE
was not designed for an application space such as garbage collec-
tion, we can achieve efficiency and performance that are comparable
to a PPE through intelligent tuning of the application, thus greatly
extending the possible use of Cell processors. By tuning code gener-
ation to take advantage of specific Cell SPE ISA features, the relative
performance of SPE code can probably increased further beyond the

SPE/PPE head to head comparison, but again, ILP/DLP optimiza-
tions are not the main focus of this work.

7. Application-Based Prefetching
Prefetching of data can be an effective strategy to handle large
working sets with poor locality. Many advanced microprocessors
include hardware prefetching engines.

Boehm [2] and Cher et al. [4] demonstrate the performance po-
tential of application-directed prefetching for GC using prefetch-
ing instruction. Because of GC’s non-strided, pointer-chasing nature,
hardware-based stream prefetcher and out-of-order execution is in-
effective for hiding GC memory latencies. In contrast, the garbage
collector sends out prefetches for each request, and then buffers the
requests to allow time for their prefetches to come back. While wait-
ing for the prefetches, the garbage collector processes prior requests
in the order the prefetches were sent out. Because CHV prefetcher
exploits parallel branches in the data traversal, it does not traverse
the mark stack in the same depth-first order as the original BDW.

In the interest of more aggressive application-directed long mem-
ory latency hiding techniques, Horowitz et al. [14] propose inform-
ing memory instructions in which the application can obtain the run-
time hit/miss status of a cache access. Cher et al. [4] also show a
special form of informing memory instructions (using simulators),
known as capitulative loads, that becomes a demand-load on a cache
hit and a prefetch on a cache miss, and returns the status to the ap-
plication register. Simulated results from Cher et al. [4] show that
capitulative load performs similarly to CHV prefetching for garbage
collection in a traditional processor. CHV prefetching can be imple-
mented as a special case of Capitulative Load where all dynamic
instances of Capitulative loads always return cache miss; therefore,
using capitulative load also lead to changes in access ordering.

Without the presence of hardware caches, traditional hardware
memory-latency-hiding techniques such as out-of-order execution
and prefetching are impossible. Hardware prefetching benefits from
the presence of unarchitected and fast state storage. Prefetch instruc-
tions in this environment preload the target data into the cache to be
quickly accessible in response to a memory access to the original
load.

No binding of the data to a new address takes place in response to
hardware prefetching. If the prefetch reference is illegal, no excep-
tion needs to be raised and the fetch can be suppressed. If the data
is later accessed, and the reference is illegal, an exception will be
raised at that point.

In comparison, prefetching data into the local store requires a
copy operation which binds a local store address to the new data
copy. Because the local store does not contain any validity indicator,
the data must be assumed to be resident at the conclusion of the copy
operation.2

Thus, prefetching data to the local store by explicit copy requires
these copies to refer to correct addresses, and avoid speculation
across writes that do not ensure single copy consistency.

One of the advantages of Cell is the ability to exploit applica-
tion behavior to initiate prefetching of application data sets under
application control by the DMA engine [20, 9]. Alas, the garbage
collection with its irregular data patterns and unpredictable locality
is the antithesis of this approach which is most efficient for regular
dense data sets, e.g., with tiling of matrices.

However, we wanted to establish the potential of prefetching
even in these challenging circumstances. In garbage collection, the
prefetch of application heap blocks for use in future scan for point-

2 Indicators of unsuccessful binding can be added to architected state, as
used for speculative memory accesses in the IA64 architecture. Alas, this
requires additional recovery code which is hard to test, and increases code
size. If checking is implemented using explicit instructions, it also increases
pathlength for the correct speculation case. If checking occurs implicitly, this
may again introduce some of the critical timings that complicate traditional
cache design.
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Figure 9. Miss Rates as a function of Prefetch strategy

ers is the most promising approach. We can ensure the legality of
prefetch by ensuring that addresses to be prefetched are within the
heap bounds. In fact, the same condition is also the guarding condi-
tion for identifying a legal heap pointer to be traversed by the mark
phase, and hence the prefetch aligns naturally with the garage col-
lector application.

As mentioned before, because transfer time is a key concern for
GC performance on SPE, we also experiment with three latency-
hiding techniques for GC code running on conventional processors,
namely Boehm Prefetching [2], CHV Prefetching [4] and Capitu-
lative Loads [4]. All three schemes were shown to be effective for
BDW GC on conventional processor but their effectiveness on pro-
cessors with local stores have not been studied.

As mentioned before, the differences between prefetching on
conventional versus on processor with local store are: 1) Addresses
are binding, 2) Granularity of prefetching, 3) cost of misspeculation,
and 4) cost of DMA.

We take these four differences into considerations when imple-
menting prefetching for SPE. For example, each prefetcher checks if
an address is within the legal heap boundaries before sending the cor-
responding prefetches. Similar to prefetching on hardware caches,
the prefetcher sends out DMA requests for blocks that have the same
alignment and cache line granularity as the software cache, but do
not wait for its completion. When the actual demand arrives, the
cache read code checks if the DMA has actually completed before
consuming the corresponding data to avoid any data inconsistency.

Because Boehm Prefetching uses the mark stack for prefetching,
it does not require a separate data structure for buffering prefetch
addresses. For both CHV Prefetching and Capitulative Load, we use
eight- and sixteen-entry buffers. Addresses are put into the tail of
FIFO buffer when popped from the mark stack and consumed from
the head of the buffer. As observed in [4], we observe reordering
of marking accesses with both CHV Prefetching and Capitulative
Load. For Capitulative Load, because the hit/miss status of the soft-
ware cache are accessible by the GC code on SPE at run time, we
experimented with reordering mark accesses according to hit/miss
status in the software cache as suggested in [4].

Figure 9 shows the impact on miss ratio when GC is running
on an SPE with various prefetching schemes on a 128KB software
cache with a 512B line size. We fix the associativity at four-way
across experiments in order to maintain a fixed, fast cache-lookup
time for the software cache.

For the 128KB cache, Boehm Prefetching improves the miss
ratio for Jack and Javac, but degrades the miss ratio for DB and
Jess. Overall, the Boehm Prefetcher reduces Miss Rates by 0.2%.
CHV Prefetching and Capitulative Load reduce the miss ratio more
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Figure 10. Prefetching Performance as speedup relative to baseline
for no-prefetching (512B) and various prefetching strategies.

significantly for all benchmarks, overall reducing the miss ratio from
3.0% to 1.7%.

Figure 10 shows the impact on performance for these prefetching
schemes. The graph is normalized against the base case that uses a
16B DMA transfer on each individual access. Surprisingly, the re-
duction in miss ratio does not seem to translate into performance
gain. For the Boehm Prefetcher, because the miss ratios are not re-
duced as much, we conclude that the performance effect is minimal
because the prefetches arrive early and are replaced in the software
caches before they are used. For the CHV Prefetcher, the miss ra-
tios are reduced but it does not improve performance. We conclude
that the prefetches arrive so late that there is not enough independent
work between a prefetch and its actual use to overlap for the miss la-
tency. All schemes suffer minor performance degradation compared
to not using any prefetcher because of pollution effects and instruc-
tions overhead for the prefetching.

8. Application-Level Coherence and Data
Consistency Management

For uni-processors using the local store model exclusively, data con-
sistency preservation is key when read/write data are referenced in
different ways, e.g., using an object cache, and using explicit DMA
to write, to avoid accessing stale data, or between heap references by
the application and the collector.

For systems with multiple processors, e.g., a program employing
a single PPE for general programs, and a single SPE, synchroniza-
tion must be observed when handing off data between the proces-
sors.3

In our porting of the BDW garbage collector to the Cell BE, we
have partitioned the application across a heterogeneous multiproces-
sor consisting of a PPE with a traditional cache-based memory hi-
erarchy and an SPE with an explicitly managed local store. In par-
titioning the applications, we have retained the application program
on the PPE to present a challenging application environment, and
use the SPE for the bulk of the mark phase.

As a result of this partitioning in a multi-processor system with
a local-store based accelerators, where application code and control
code for the garbage collector operate on the PPE, synchronization
of data accesses on PPE and SPE is necessary. In comparison, for ap-
plications running exclusively in a local store-based microprocessor,
many of the synchronization operations discussed here would not be

3 Fully parallelized programs across multiple local-store based processors
require additional considerations which are beyond the scope of this work.



necessary because all memory accesses are performed by the same
processor.

In the Cell Broadband Engine, all DMA transactions are coherent
with respect to both PPE caches and TLBs and DMA operations
and page translation hardware in the MFC participate in coherence
traffic. However, data transferred into the local store are copied, and
hence have the semantics of a copy. Consistent with copy semantics,
when the original data source is modified, copies are not updated.
When applications copy data, they must ensure that application
code maintains copies consistent with respect to each other, and
synchronize data when one copy is being updated.

For the BDW garbage collector, there are several types of data
copied to the local store:

hdr blocks contain information about allocation buckets, and con-
tain mark bits. Mark bits are modified by both the PPE-side and
SPE-side mark algorithm. Synchronization must occur to prevent
the use of stale HDR blocks. All modified HDR blocks must be
flushed back to system memory after the end of the mark phase
to be available during sweep.

bottom index is an index structure to locate the HDR blocks asso-
ciated with each memory allocation area. The data is used read-
only on the SPE to find HDR blocks. The structure is quasi-
static structure and only changes when new allocation buckets
are made available. Bottom index data copies only have to be
changed at this time.

application’s heap only changes during application execution. Data
can be cached between multiple sub-invocations during the
mark phase, this data is read-only for both SPE and PPE dur-
ing garbage collection. Cached data copies must be invalidated
when the application executes and can change contents.

To do an initial port of the garbage collection mark phase to the
SPE, we used a simple consistency model – every time we handed
off control from the SPE to the PPE, we invalidated all copies of data
held in the SPE’s local store.

This model guaranteed data consistency, because execution was
not parallel between SPE and PPE, but sequential with SPE and PPE
phases, and hence forcing data synchronization between SPE and
PPE at transitions will cause all data references to be correct.

This implementation choice has a significant penalty, due to the
large amount of data having to be repeatedly transferred. To address
this, we added an application-managed data consistency scheme
to reduce data copy synchronization cost. Alas, this scheme could
not be a simple software implementation of hardware-based cache
coherence which would require software messages to be generated
on every PPE memory reference.

Instead, we turned to a scheme based on the data usage. Most
hand-offs between SPE and PPE are due to the SPE having com-
pleted work on a portion of the mark stack, and the PPE assigning
more work the SPE. Thus, in most instances of control hand-off be-
tween accelerator and core no data synchronization is necessary, ex-
cept for the mark stack itself.

In our implementation with a PPE application incorporating lazy
sweep, all HDR blocks must be flushed to their system home loca-
tions when the mark phase concludes for use by the lazy sweep. In
implementations with an SPE-resident application, this synchroniza-
tion is not necessary.

When the application changes its heap, cached heap objects may
become stale. Because it is prohibitive to burden each heap reference
by the application with a software coherence action, we invalidate
the cached heap objects. As the heap objects are read only for the
mark phase, this does not impose any additional traffic during in-
validation, but will force an increased number of compulsory misses
when a new mark phase commences.

On certain occasions the PPE performs PPE-local collection
(such as when collecting objects with a private collector function
identifying addresses referenced by an object), when the HDR ob-

jects must be synchronized. During these phases, the cached heap
objects do not have to be invalidated because the application will not
be active. Instead, only HDR objects need by synchronized.

Synchronization and coherence requests are handled via the Cell
MFC mailbox function which allocates an incoming and outgoing
mailbox queue to each SPE. To schedule a mark operation, the PPE
sends the address of a work descriptor containing a portion of the
local mark stack, as well as other parameters to the SPE. The mark
stack and parameters are then transfered via DMA by the SPE, and
a mark phase starts.

To support application-based coherence, the PPE can also send
dedicated commands to write back or invalidate different caches,
such as when the mark bits have been modified by the PPE-resident
components of the collector, or when the heap has been modified by
the application.

Finally, the SPE can return the contents of its mark stack when
the SPE-local mark stack is too full.

9. Related Work
Boehm [3] was the first to apply prefetching techniques within GC,
implemented within the Boehm-Demers-Weiser (BDW) collector.
We begin with an overview of BDW before discussing how it in-
corporates prefetching.

The BDW collector supports a rudimentary form of prefetching
during tracing. The basic approach is to prefetch the target of a
reference at the point that the target object is discovered to be grey.

Having observed via profiling that a significant fraction of the
time for this algorithm is spent retrieving the first pointer p from
each grey object, Boehm [3] introduced a prefetch operation at the
point where p is greyed and pushed on the mark stack. Boehm also
permutes the code in the marker slightly, so that the last pointer
contained in g to be pushed on the mark stack is prefetched first, so
as to increase the distance between the prefetch and the load through
that pointer. Thus, for every pointer p inside an object g, the prefetch
operation on p is separated from any dereference of p by most of
the pointer validity (necessary because of ambiguity) and mark bit
checking code for the pointers contained in g. Boehm notes that this
allows the prefetch to be helpful even for the first pointer followed,
unlike the cases studied by Luk and Mowry using greedy prefetching
on pointer-based data structures [17].

In addition, Boehm linearly prefetches a few cache lines ahead
when scanning an object. These scan-prefetches help with large
objects, as well as prefetching other relevant objects in the data
structure being traced. Boehm reported prefetch speedups between
1% and 17% for a small set of C-based synthetic benchmarks and
real applications.

Cher et al. [4] observe that because of the LIFO ordering in mark-
ing, PG sends out prefetch in different ordering than the respective
use, thus causing prefetches to be either too early or too late. Cher
et al. [4] improve upon PG by introducing Buffer Prefetching (BP).
By using a software buffer to ensure both prefetch and use are in the
same FIFO order, BP enables effective hiding of prefetching laten-
cies with mark work and achieves better timeliness for prefetching.
With a small four-entry buffer, BP shows 4% improvement in mark
time on a real POWERPC 970.

Garner et al. [8] develop a methodology that performs thorough
analysis on tracing using hardware performance counters on four
different architectures. From the analysis, Garner et al. conclude
that poor locality remains the principal bottleneck for tracing despite
using prefetching techniques in [3, 4]. In addition, Garner et al.
introduce Edge Order Traversal which improves 20-30% in garbage
collection time for a large set of applications when combined with
BP.

As described in section 2, GC represents the very opposite end
of the application space for Cell’s SPE processor. While our work
attempts to optimize GC on existing Cell processors through soft-
ware techniques, there is other work in the literature that proposes



GC-specific coprocessors to perform concurrent GC. [19] shows
in simulations that threads that have very-low-cost communication
(sometimes known as slices) can be used to offload reference count-
ing using special hardware FIFOs between mutator and GC threads.
Such hardware and fast communication do not exist in real proces-
sors today. Similar to our work, [13] proposes concurrent GC using
special-purpose, smaller cores for GC. The main difference between
our work and [13] is that their cores supports cache coherency and
hardware support for profiling with the host processor, while our
work is based on the existing Cell SPE that does not support cache
coherency with the host processor. Therefore, we could not benefit
from techniques described in [13]. The proposed hardware in [13]
also does not exist today.

Gschwind [9] describes software pipelining of main memory re-
quests with the DMA engine to exploit compute-transfer parallelism
by overlapping computation and data transfer in an SPE thread.
Williams et al. [20] describe the efficiency of explicitly managed
memory hierarchies for high-performance computing workloads.
Hwu et al. [15] explore explicitly managed memory hierarchies for
GPUs.

10. Conclusions
We have shown the feasibility of mark-and-sweep garbage collection
on processors with a local memory-based memory hierarchy. We
have ported the BDW garbage collector to the Cell Broadband En-
gine with the mark phase executing on the Cell SPE. Executing ser-
vice functions like garbage collection on a coprocessor allows better
utilization of the main processor for executing application code.

We have explored caching of application data structures in local
stores using garbage collection as a challenging application involv-
ing a variety of data access methods. We have shown that to opti-
mize performance, different caching and buffering strategies should
be employed to optimize overall performance.

Explicitly managed local stores give application programmers
unprecedented flexibility and freedom to design caching structures
for different data types in the application, to optimize each structure
for the specific data reference behavior for a given data class. A
single application can combine multiple of these structure-dependent
buffering and caching schemes to exploit data-specific behavior and
thereby maximize performance. We have demonstrated how to use a
data reference-optimized strategy to achieve a performance gain of
400% up to 600% in managing data in a local store.

We have also analyzed local-stored based data prefetch and ex-
plored data prefetch in a local store environment with software-
controlled cache for garbage collectors. We also experimented with
an additional GC scheme which cannot be implemented on con-
ventional processors but on processors with local store, namely
software-controlled capitulative load. Finally, we have also explored
application-based coherence management.

Based on our results, garbage collection with a local store hierar-
chy is a viable and competitive solution. Based on our results, we can
exploit a lower complexity/power/area local-store based coproces-
sor to offload a critical runtime environment function and increase
utilization of the main processor for higher value user application
code. Based on our results, local stores give programmers unprece-
dented control over data placement in the memory hierarchy, and to
optimize replacement and prefetching while ensuring efficient data
migration with block-transfer-based DMA engines.
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