
RC24523 (W0803-123) March 28, 2008
Computer Science

IBM Research Report

A Framework Based on Role Patterns to Design Secure
Business Processes

Akhil Kumar
Smeal College of Business

Penn State University
University Park, PA 16802

Rong Liu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Framework based on Role Patterns to design Secure
Business Processes

Akhil Kumara and Rong Liu b

a Smeal College of Business, Penn State University, University Park, PA 16802,
USA

b IBM Research, 19 Skyline Drive, Hawthorne, NY 10532, USA

 akhil@psu.edu, rliu@us.ibm.com

Abstract. In view of recent business scandals that prompted the Sarbanes-
Oxley legislation, there is a greater need for businesses to develop systematic
approaches to designing secure business processes where the security aspects
can be integrated into the process tightly. In this paper we propose 10 role
patterns, and show how they can be associated with generic task categories and
processes in order to meet standard requirements of internal control principles
in businesses. We also show how the patterns can be implemented using built-
in constraints in a logic based language like Prolog. While the role patterns are
general, this approach is flexible and extendible because user-defined
constraints can also be asserted in order to introduce additional requirements as
dictated by business policy. The paper also discusses control requirements of
business processes, explores the interactions between role based access control
(RBAC) mechanisms and workflows, and gives an architecture for integrating
our framework into an existing workflow system.

1. Introduction

Sarbanes-Oxley legislation in the United States and similar laws in other countries
have highlighted the importance of making business processes secure. It has made it
mandatory for top officers of organizations to certify that suitable controls are in place
to guarantee that processes are secure. Section 302 of Sarbanes Oxley Act [13,14]
requires that CEOs and CFOs must personally sign off on their company’s financial
statements, while Section 404 requires that appropriate processes and control must
exist for all aspects of a company’s operations that affect financial reports.

In this paper we discuss what it means for business processes to be secure and
discuss ways of ensuring such security. The requirements of an accounting
application might state that: (1) an invoice must be approved before it is paid; (2) the
goods must be received before the invoice is approved for payment; and, (3) the
goods must be inspected before the payment is made. Similar needs arise in
applications in patient care, immigrant processing, insurance claims, etc.

We first consider ways in which security can be breached, and describe a
framework that can be used to prevent such breaches. The framework consists of
three parts: task categories, process patterns, role patterns and constraints.

2 A Framework Based Role Patterns

A process pattern or workflow [1] is a generic pattern that specifies the ordering of
tasks and subprocesses required for performing well-known functions in a business.
Process patterns are quite general and apply in a variety of domains. Thus, a generic
'Order' process may be applied in various applications such as:

- Place an order for a laptop computer
- Request a service like a flight booking or hotel reservation
- Obtain a new computer account
- Receive permission or authorization for paid leave
- Submit a new loan application

There are certain basic combinations of task categories that can be combined to
create an Order process. Every order has to be prepared; It has to be approve; it has to
be submitted; it has to be received; it has to be paid for; etc.

The second aspect of the framework is role patterns. Roles are standard
designations or titles on the organization chart of any company. Role patterns are a
way to restrict the roles that can participate in a process instance both in terms of the
sequence in which the role can participate, and the number of times the role can
participate. For instance, an employee may be allowed to fill in the travel budget for
a business trip, but after it is approved, the employee is not allowed to change any
amounts.

The third feature of the framework is constraints, both built-in and user-defined.
There are various types of constraints in any business process, such as separation of
duties constraints, binding of duties, and other types of constraints. Some standard
constraints are captured in the task and rule patterns; however, more specialized and
fine-grained constraints can also be added using this mechanism.

The goal of this paper is to show how processes can be made secure by integrating
the various elements of our framework and to develop a methodology for designing
secure business processes. We present a framework with three dimensions: process
patterns, role patterns and constraints. We argue that taken together these dimensions
can allow us to create secure processes.

This paper progresses as follows. Section 2 provides basic background on the
modeling and design of business processes. Section 3 covers basic principles of
internal control in a business. Next, Section 4 discusses role patterns and gives a
detailed example to illustrate the implementation of our approach. Then, Section 5
provides a discussion along with related research. Finally, Section 6 concludes the
paper.

2. Preliminaries

A business can be viewed as a collection of processes, and the robustness of these
processes to a large extent is a crucial determinant of the success of the business.
Business processes can be described using some simple constructs, and most
workflow application system products provide support for these constructs. Four
basic constructs that are used in designing processes are immediate sequence,
decision structure and loop, as shown in Figure 1.

In general, business processes can be composed by combining these four basic
patterns as building blocks. They can be applied to atomic tasks, e.g. Iseq(A,B) to
indicate that tasks A and B are combines in parallel, or to subprocesses, e.g. Iseq(SP1,

A Framework Based on Role Patterns 3

SP2) to indicate that subprocess SP1 and subprocess SP2 are combined in sequence.
In Figure 1(a), we use ISeq to indicate two tasks or subprocesses are in immediate
sequence. Parallelism is introduced using AND-Split control nodes and parallel
branches can be synchronized by AND-Join nodes at the end as shown in Figure 1(b).
A choice structure is shown in Figure 1(c). In this pattern, this first OR construct,
called OR-split, represents a choice or a decision point, where there is one incoming
branch and it can activate any one of the two outgoing branch. The second OR
construct is called an OR-Join because two incoming branches join here and there is
one outgoing branch. Finally, it is also possible to describe loops in a process diagram
by combining a pair of OR-split and OR-join nodes, such that one outbranch from the
OR-Split node connects to an in branch of an OR-join node, as shown in Figure 1(d).
In this way, the patterns can be applied recursively to create a complete process.

Figure 1: Basic patterns to design processes

As a running example for this paper, Figure 2 shows an example of an “Administer
Account Transfer” process. It starts with a customer representative receiving an
account transfer instruction from a client. A financial clerk then checks if the details
of this transfer instruction are complete, and, if so, gives an affirmative reply. If the
instructions are incomplete, a communication details regarding the invalid payment
instruction are extracted. If the payment instruction is accepted, the transaction limit
is checked by a financial accountant and if it is within the limit, then the funds
availability is tested by a banking specialist. If the transaction limit is exceeded, a
request for authorization is made. If this request is approved by the finance manager,
then the transaction proceeds normally, i.e. appropriate accounting entries are created
and applied to the required accounts, communication details are extracted from the
accounting entries and the customer is notified. Otherwise, the operational risk in the
transaction is evaluated by the risk analyst. If the risk is small a risk manager may
approve the transaction so it can proceed. Otherwise an operational risk report is
prepared. Finally, a report summarizing the transaction and containing
communication details with the client is generated automatically by a system role, the
senior finance manager approves the transaction and the customer representative
notifies the client.

Some observations about this process are as follows. First, this process is
composed of individual tasks and subprocesses. Three key subprocesses are shown
inside dotted-line boxes in Figure 2. These are the accounting entriy, authorization
and risk evaluation subprocesses, and each is composed of atomic tasks. In general
process design can be simplified by breaking down a process into subprocesses so that
each subrpocess can be designed independently. Moreover, an OR-split node
represents a choice or a decision point. Thus, both t3 (validate transfer instructions)
and t4(check transaction limit) are decision points as are t6, t8 and t13. A parallel

(a) Immediate Sequence
 (ISeq)

and and

(b) Parallel structure
 (Par)

or or

(c) Choice structure
 (Choice)

or or

(d) Loop structure (Loop)

4 A Framework Based Role Patterns

structure is introduced in the subprocess “accounting entry”, where when funds
availability test is passed, two entries, one for business accounting (t10a) and the
other for any fee related to this transaction (t10b), are created in parallel and then
merge in an AND-Join node.

In the example of Figure 2 we also show the task category to which a task belongs
in a label at the top right of the task box, and the role that performs that task at the
side. These concepts will be discussed next.

t1. Receive Transfer
Instruction

t3. Validate Transfer
Instruction

or

Acquire

Inspect

t8. Authorize Transaction

Approve

or

t10a. Apply Business
Accounting Entry

Administer

t11. Derive
Communication Details
from Accounting Entry

Administer

t5. Derive Communication
Details from Payment

Instruction

Administer

or

t15. Generate
Communication Details

Report

t12. Evaluate Operational
Risk

Inspect

t14. Generate Operational
Risk Report

Report

Not
Authorized

Authorized

Accepted
Not

Accepted

Customer
Representative

Financial
Clerk

Financial
Clerk

System

Financial
Accountant

Financial
Manager

Financial
Accountant

Financial
Clerk

Risk
Analyst

Risk
Analyst

t4. Check Transaction
Limit

Inspect

t7. Request Transaction
Authorization

Requisition

t6. Test Funds Availability

Inspect

or
Limit Not
Reached

or

Limit
Reached

t9. Derive
Communication

Details from
Account Unit

Administer

Financial
Clerk

Funds Not
Available

Funds
Available

Financial
Accountant

Banking
Specialist

or

or

t13. Approve Risk
Evaluation

Approve

Low Risk

High Risk

t16. Approve Customer
Report

Approve
Financial

Senor
Manager

t17. Notify Customer

Transmit
Customer

Representative

Risk
Manager

or

t2. Record Transfer
Instruction

Record
Customer

Representative

Authorization
Sub-Process

or

Accounting Entry
Sub-Process

and

t10b. Apply Fee
Accounting Entry

Administer

System

and

Authorization
Sub-Process

Figure 2: A formal representation of an account transfer request process

A Framework Based on Role Patterns 5

3 . Basic control requirements and principles
In this section we first introduce the notion of generic task categories and then discuss
how control principles apply to various categories of tasks.

3.1 Task categories

A business process consists of tasks performed in a coordinated manner. In
general, these tasks can be classified into certain categories of generic task categories.
As a starting point for this work, we have developed 10 categories (see Table 1).
These are categories were inspired by the Financial Services Workflow Model of
IBM Information FrameWork, a comprehensive set of banking specific business
models that represent best practice in banking industry [15]. We have modified them
slightly to cover most business processes in other industries, and most business tasks
can be, broadly speaking, classified into one of these categories.

Thus, in a generic sense request, ask, initiate, order are synonymous terms for
requisition. Similarly, authorize is a generic term for approval or grant of permission
for an order to be placed, a business trip to be taken, or a payment to be made.
Similarly, administer is a generic term to cover a variety of tasks such as manipulate,
move, inquire, search, etc. Thus, if, say in an order process, an order has been placed,
but the goods have not been received on time and are overdue, an inquire step may be
added to query the vendor, or escalate the order. It should also be noted that some
tasks are more sensitive than others such as those involving transfer to goods or
money. Thus, approve, inspect, transmit are more sensitive than requisition and
administer. However, our framework treats all of them in the same way.

With respect to the example of Figure 2, each task in the process is labeled at the
top right with the category to which it belongs. Thus, in this example there are tasks
that belong to 8 of the 10 categories in Table 1.

Table 1: Generic task categories

Task category Description
Prepare Make something ready for use
Record Note, enter into system, store in database
Approve Accept, reject, decide, signoff
Requisition Request, ask, initiate, order
Transmit Notify, provide, deliver, send payment, goods etc.

(outside the organization).
Acquire Receive, obtain
Administer Manipulate, move, inquire, search
Inspect Test, evaluate, check
Suspend/Terminate Hold, finish, complete, stop temporarily
Report Prepare a report, or some kind of output

3.2 Security rules

At the outset it should be noted that control requirements are necessary in almost any
business process where exchange of money or goods is involved. Moreover, this

6 A Framework Based Role Patterns

would apply regardless of whether a system is fully automated, partially automated,
or entirely manual. In the automated case, the computer system should have been
tested thoroughly before hand to make sure it operates correctly. In the manual case,
the human worker must have the appropriate qualifications and authority to perform
the task. In all cases, appropriate controls must be in place to prevent fraud or abuse
of authority. Therefore, in this section we introduce basic control principles in a
general manner. Subsequently, we will discuss how these principles can be
operationalized.

The first standard principle of control (see Figure 3) is that a requester and
approver for any task must be different [13]. This is the simplest situation of a
separation of duties. Thus, a manager cannot approve her own expense claim for a
business trip, but can do so for everybody else in the department. A further extension
is the “3-eyes” rule. This requires separation of custody, approval and recording
functions. Thus, for receipt of goods from a vendor, physical custody is kept by one
person, the approval of the receipt is given by another, and the recording of the receipt
is done by a third person. This ensures that the person receiving the shipment does
not record it incorrectly. By separating receipt from recording, chances of fraud at
delivery time are reduced. Moreover, there may be an additional requirement that the
three individuals performing these tasks must be from different roles (say, inventory
clerk, department supervisor and accounting clerk, respectively).

A further extension of this is the “four-eyes” rule which may require that for an
order, the requester, authorizer, preparer of payment and the one of releases it, all be
different individuals. For extra-sensitive transactions, multiple approvals may be
required instead of one at each stage, for example by having two approvers (say, a
manager and a VP) instead of one.

(a) Basic separation of duty (R1 ≠ R2)

(b) Three-eyes rule (R1 ≠ R2 ≠ R3)

(c) Four-eyes rule (R1 ≠ R2 ≠ R3 ≠ R4)

Figure 3: Basic paradigms for process security

Additional controls can also be added as a form of a “belt-and-suspenders”
approach such as:

— additional signatures on large payments
— added approvals for new vendors
— end of day review of all large payments
— strong physical and system access controls.

Transmit
 (R4)

Prepare
 (R3) Requisition (R1)

Acquire (R1) Approve
 (R2)

Record
 (R3)

Requisitio
n (R1)

Approve
 (R2)

Approve
 (R2)

A Framework Based on Role Patterns 7

In addition to separation of role requirements, ordering restrictions on roles may
also be imposed. Thus, it may be necessary that a superior role (such as a manager or
vice-president) may perform a task after a subordinate role (such as engineer).

4. Role Patterns
4.1 Overview

A process description includes the tasks that are performed in a process and the
order in which they are performed. Along with a process description, it is important
to provide information about who will perform a task. In general, this is
accomplished by means of roles. A role is an organizational position that is qualified
to perform certain tasks. Thus, in order to perform a task, a user must belong to a
certain role that is qualified and authorized for it. Examples of roles in any typical
organization are manager, director, VP, secretary, CEO, etc. The permissions or
"power" of a person depends on her role. Thus, a department manager may approve
travel requests for the employees in her department, while the human relations
manager may approve leave requests, and the technology manager may approve
requests for computer purchases. For some requests multiple approvals may be
required. Moreover, some individuals may also hold multiple roles, e.g., a person
may be a department manager and also an electrical engineer. However, in many
situations an individual can play only one role for a particular process instance.
Thus, a manager in the role of department employee while submitting his travel
expenses cannot later assume the role of department manager, and approve her own
expenses. This is akin to the notion of separation of duties discussed earlier, and a
scenario like this is forbidden by the organization policy in most companies.

Table 2: Proposed role patterns

RP# Role Pattern (RP) Description Formal Expression
1 A task t must have an associated role r and belong to a task

category TC. RP1(t, r, TC)

2 No pair of tasks can be done by the same role in a (sub)
process p. RP2(p)

3 No pair of tasks with relationship Rel can be done by the same
role in a (sub) process p. RP3(p, Rel)

4 No task pair from a pair of different sub-processes, say sp1
and sp2, can be done by the same role. RP4(sp1,sp2)

5 No pair of tasks in a (sub) process p within a task category TC
can be done by the same role. RP5(p, TC)

6 There must be a minimum of N tasks from category TC
executed in any instance of (sub) process p. RP6(p, TC, N)

7 If multiple tasks of task category TC are done in a (sub)
process p, the later task must not be done by a lower role than
an earlier task in TC.

RP7(p, TC)

8 If one or more tasks of task category TC are done in a (sub)
process p, then at least one of these tasks must be done by
role_min or higher.

RP8(p,TC,
role_min)

9 A process p must contain at least N unique roles. RP9(p, N)
10 A role r can perform a maximum of N tasks in (sub) process p. RP10(p, r, N)

8 A Framework Based Role Patterns

Consequently, role patterns are a means of enforcing organizational policy on
processes. These patterns can apply to tasks, subprocesses, and also complete
processes. We have identified several common patterns that are relevant in the
context of designing secure business processes and in accordance with business
practice. These patterns are shown in Table 2.

Pattern RP1 requires every task to belong to a task category and to have at least
one associated role. Patterns RP2 through RP5 express separation of duties
requirements in various forms. For instance, RP2 is very stringent, while RP3 is less
stringent. RP4 can apply to a group of subprocesses. Thus, in the context of Figure 2
it is reasonable that a role that is involved in the authorization subprocess should not
be involved in the risk evaluation subprocess. RP5 requires that any pair of tasks
within a subprocess that belong to the same task category must be done by different
roles. Patterns RP6 through RP8 relate to the number of tasks within a category (say
APPROVE) required for a process, and the role requirements when such task are
executed in sequence (i.e. a later approval must be by a higher role than an earlier
approval). Finally, RP9 and RP10 impose minimum and maximum limits on the
number of unique roles in a process, and the number of tasks a role can perform in a
process.

Next we discuss an example to illustrate the use of role-patterns.

4.2 Example of Role Patterns
We illustrate the application of role patterns in the context of the "Administer
Account Transfer Process" of Figure 2 described above. In this example there are 18
tasks that fall in 8 categories, and are performed by 9 roles that must interact in order
to complete it. Let p denote the process of “Administer Account Transfer”. There are
various rules that apply to these roles and are expressed by role patterns as follows:

RP1. Every task has an associated role and belongs to a task category
RP3(p, iseq). A pair of tasks with immediate sequence (denoted as iseq)

relationship between them cannot be done by the same role. Thus, in this process if
two tasks are in immediate sequence then the roles must be different.

RP4("Authorize", "Risk Management"). No task pair from a pair of different sub-
processes, say sp1 and sp2, can be done by the same role. Thus, no task pair from
Authorize and Risk Management subprocesses can be done by the same role.

RP5(p, ‘APPROVE’), RP5(p, ‘INSPECT’). No pair of tasks in a process within a
task category APPROVE and the task category INSPECT can be done by the same
role, i.e. two or more inspections, and two or more approvals must be done by
different roles.

RP6(p, ‘APPROVE’, 1). There must be a minimum of one APPROVE category
tasks executed in any process instance. In our example, there must be one approval no
matter what path is taken through the process.

RP7(p, ‘APPROVE’). If multiple APPROVE tasks are done in a (sub) process, the
later task must not be done by a lower role than any earlier APPROVE task. In our
example, the final approval task is by a senior finance manager. The earlier approvals
are done by a finance manager and a risk manager.

RP7(p, ‘INSPECT’). If multiple INSPECT tasks are done in a (sub) process, the
later task must not be done by a lower role than any earlier INSPECT task. In our

A Framework Based on Role Patterns 9

example, these three INSPECT tasks are done respectively by financial clerk and two
higher roles, financial accountant and banking specialist.

RP8(p, ‘APPROVE’, ‘senior financial manager’). If one or more task of task
category APPROVE are done in a (sub) process, then at least one of these tasks must
be done by the role senior financial manager.

4.3 An implementation of role patterns for the example

There are many possible ways to represent and implement these patterns. Here we
demonstrate one formal way using basic predicates in the Prolog [6] style shown in
Figure 4. These 10 predicates are like templates that can be tailored to any specific
example application. Next we show how the role patterns can be applied to the
account transfer application of Figure 2.

Figure 4: Generic Prolog predicates to represent the 10 role patterns

First we represent all facts related to workflows in a form of relational tables. The

facts are listed in the Appendix 1. The facts consist of task, role, subprocess, task
assignement and process pattern (iseq, choice, parallel and loop) predicates. We also

role_occurs(Proc,R) :- assign(T,R), contain(Proc,T).

rp1(Proc,T) :- task(T,_,_,_),contain(Proc, T),
 role(R,_,_),assign(T,R).

rp2(Proc, T1, T2,R) :- assign(T1, R), assign(T2, R),T1\==T2,
 task(T1,_,_,_),contain(Proc, T1),
 task(T2,_,_,_),contain(Proc, T2).

rp3(Proc, T1, T2,R) :- iseq(T1,T2), assign(T1, R), assign(T2, R),
 task(T1,_,_,_),contain(Proc, T1),
 task(T2,_,_,_),contain(Proc, T2).

rp4(T1,Proc1,T2,Proc2,R):- assign(T1,R), assign(T2,R),T1\==T2,
 task(T1,_,_,_),contain(Proc1, T1),
 task(T2,_,_,_),contain(Proc2, T2),
 subprocess(Proc1,_),subprocess(Proc2,_),
 Proc1\==Proc2.

rp5(Proc,T1,T2,R,TC) :- task(T1,_,TC,_),contain(Proc, T1),
 task(T2,_,TC,_),contain(Proc, T2),
 assign(T1,R), assign(T2,R),T1\==T2.

rp6(Proc,T1,T2,P,TC,M) :- path(Proc,T1,T2,[T1],P),
 tc_occurs(P,TC,N),N<M.

rp7(Proc,T1,T2,TC) :- path(Proc,T1,T2,[T1],_),
 task(T1,_,TC,_), task(T2,_,TC,_),
 assign(T1,R1),assign(T2,R2),
 role(R1,_,N1),role(R2,_,N2), N2<N1.

rp8(Proc,T1,T2,P,TC,X,R):- path(Proc,T1,T2,[T1],P),
 tc_occurs(P,TC,N),N>=1, role(Y,R,_),
 task(X,_,TC,_),assign(X,Y),member(X,P).

rp9(Proc,Roles,N) :- setof(R, role_occurs(Proc,R),Roles),

 length(Roles,M), M>=N.
rp10(Proc,R,Tasks,N) :- setof(T,(assign(T,R),contain(Proc,T),
 process(Proc,_)), Tasks),
 length(Tasks,M), M=<N.

10 A Framework Based Role Patterns

define contain, path, and tc_occurs predicates. For example, iseq(T1,T2) is used to
determine whether two tasks, T1 and T2, are executed in immediate sequence. Note,
in Prolog, a variable is an identifier starting with a capital letter, while a constant is
one starting with lower-case letter. Therefore, for the process of Figure 2,
iseq(T1,t2)returns T1=t1. Appendix 1 also serves as a template for representing
workflows as Prolog facts. For any application, one could use similar tables to
represent the facts related to a process and then build a fact database in Prolog.

With these facts, we can build several predicates. For example, contain (proc, t)
predicate can be used to test if a task t is contained in a (sub) process proc. path
(Proc,A,B,Visited,Path) predicate calculates all possible paths between two
nodes A and B, and represent these paths as lists. tc_occurs(Path,TC,N) gives the
number of tasks (N) occurs within a task category TC in a path.
role_occurs(Proc,R) tests whether role R executes some task in process Proc.
Then, role patterns can be formulated with the help of these predicates.

rp1(proc,T) is the Prolog implementation of role pattern RP1. This rule returns
all tasks which satisfy this pattern. Pattern RP2 may not be applicable to the whole
process, but within the authorization subprocess (denoted as p2), we may require that
each task is executed by a unique role. Therefore, we can use rp2(p2,T1,T2,R) to
find task pairs (T1,T2) which are executed by the same role R. If such a pair is found,
then RP2 is violated in this subprocess. rp3(Proc,T1,T2,R) returns any pair of
sequential task (T1,T2) that are executed by the same role R, indicating the violation
of role pattern RP3. For the example shown in Figure 2, after testing this predicate,
we found three violations as shown below.

?- rp3(p,T1,T2,R).
T1 = t1,
T2 = t2,
R = r1 ;

T1 = t3,
T2 = t5,
R = r2 ;

T1 = t4,
T2 = t7,
R = r3 ;

These violations can be solved by (1) changing roles; (2) merging each pair of task
into one; or, (3) not applying role pattern RP5 to this process. From a managerial
point of view, if two consecutive tasks have to be executed by the same role, merging
these two tasks into one may reduce the handover and improve efficiency.

rp4(T1,Proc1,T2,Proc2,R) tests if two task T1 from subprocess Proc1 and
task T2 from another subprocess Proc2 are executed by the same role. For example,
this predicate can be used to check if any role can participate in both authorization
and risk management subprocesses. rp5(Proc,T1,T2,TC,R)can be used select a
task pair (T1,T2) within category TC is executed by the same role R. Thus,
rp5(p,T1,T2,approve,R) can be issued to check if two APPROVE tasks are done
by the same role. rp6(Proc,T1,T2,P,TC,M) can be used to find out an execution
path between task T1 and T2 which contains fewer than M tasks of category TC. For
example, rp6(p,t1,t17,P,approve,1)returns any execution instance without any
approvals in the process of Figure 2.

rp7(Proc,T1,T2,TC)finds that any pair of sequential tasks (T1,T2) in category
are executed in sequence but the T2 is executed in a lower role than T1. For
example, using rp7(p,T1,T2,approve), we can detect an APPROVE task (T2)
which is done by a lower role than any previous APPROVE task (T1).

A Framework Based on Role Patterns 11

rp8(Proc,T1,T2,P,TC,X,R) selects any task (X) that is executed by role R in a
path (P) between T1 and T2 which contains multiple tasks of category TC. For
example, rp8(p,t1,t17,P, approve, X, ‘Senor Financial Manager’)can
be used to find the task which is executed by a senior finance manager in any
execution path that has at least one approval.

rp9(Proc,Roles,N) is used to test whether a (sub)processes has at least N
unique roles. For example, rp9(Proc,Roles,5) can find (sub)processes that
require at least 5 unique roles. For the example of Figure 2, none of the subprocesses
meets this requirement. rp10(Proc,R,Tasks,N) selects the roles in a (sub) process
which execute at maximum N tasks. Using rp10(p,R,Tasks,1),we can find the
roles that executes only one task in the process of Figure 2. Note that both predicates
use a Prolog built-in predicate “setof”. This predicate yields collections for individual
bindings of the variables in the goal. For example, setof(R,role_occurs(Proc,
R),Roles) gives list of roles returned from predicate role_occurs.

4.4 An Overall Approach

Above we have developed a methodology to systematically manage controls in
business processes. The main features of our approach are:

1) Tasks are organized into generic task categories
2) Basic process patterns are used to describe processes
3) Basic Role patterns are used to describe control requirements.
4) The role patterns are associated with a process as per the business policies.
5) The patterns are implemented in a logic-based software application (such as

Prolog).
6) Before making any task assignment to a role, the software performs checks

and disallows certain tasks if they violate the control requirements.
5. Discussion and Related Work
5.1 Importance of Controls

The Sarbanes-Oxley Act of 2002 applies to all companies traded on U.S. stock
exchanges. It was enacted into law in response to the major financial scandals such as
Enron, MCI, and others in recent years. The law imposes tough requirements and
penalties to ensure that financial statements accurately represent the actual business
position of a company. The two sections that are most relevant to our work are
Sections 302 and 404 [13,14]:

• Section 302 states that CEOs and CFOs must personally sign off on their
companies' financial statements. Few specific controls are required by Section
302. The main point of this section is to establish CEO/CFO accountability for the
rest of the Act's sections, with the possibility of prison for noncompliance.

• Section 404 mandates that well-defined and documented processes and controls be
in place for all aspects of a company’s operations that affect financial reports.
Furthermore, executive management and a company's auditors must each state in
writing that these processes and controls have been examined and are effective.
Any findings of ineffectiveness must be publicly disclosed. For companies whose

12 A Framework Based Role Patterns

net worth exceeds $75 million, this rule went into effect beginning with fiscal
years ending June 2004.

Clearly, internal controls are indispensable for enforcing the requirements of the
new legislation. Moreover, they can help a company achieve its profit goals and
performance targets. In recent years, numerous companies have invested thousands of
additional staff hours in complying with the requirements of Sarbanes-Oxley. During
this activity they have realized that poor documentation of financial controls is a
common problem. As a byproduct, one side benefit of this new law has been a
fervent effort by various companies to automate and standardize their financial
processes [3]. Such streamlining of processes has resulted in considerably reduced
risks of misstatements on financial reports.

Naturally, there is a need for formal frameworks for ensuring that appropriate
controls are in place, and the pattern-based reasoning approach proposed in this paper
fits well in this context. It offers considerable appeal for both its simplicity and
practical value. Business process modeling allows business analysts to formally
define a process to reflect the inner workings of a business. This exercise is
formalized by using a standard methodology and a tool for business process
modeling. There are several tools such as IBM Websphere Business Modeler [11] that
allow a visual model of a business process to be built. However, most tools do not
provide adequate support for security and this is often added in a piecemeal and rather
adhoc manner. If companies have to incorporate security in their business processes
in order to achieve Sarbanes Oxley compliance, then it will have to be done in a more
systematic manner, not as an afterthought.
5.2 Architecture for adopting role patterns

Figure 5 gives an architecture for integrating role patterns into an existing
workflow system. We propose the addition of a new module called the security
requirement modeling, which would allow a user to describe their security needs.
These needs are easily converted into role patterns which are stored in the database.
Moreover, the process description schema in the existing process modeling system is
also translated into process facts including task definition, role assignment and
process patterns and stored in the database. This requires a translation program that
can examine the current process schema and convert it into the new format of the
process patterns. When a task assignment is made by the business process modeling
system, it would call a query engine, which would run a query against the database to
ensure that none of the constraints is violated. If there is a violation of any role
pattern, then the query engine will prevent the assignment from being made and
explain the violation to the user. Moreover, during the process execution, the process
execution engine can also query the database to ensure that any changes to the role
assignment made dynamically during the runtime (e.g. delegation or reassignment)
still comply to the role patterns. Finally, security control at the user level (e.g., any
user cannot play roles as both requester and approver) can also be added to the
database and directly constrain the process execution.

Moreover, the translation from the process description in an existing workflow
system to the process patterns does not have to be very precise. Workflow systems
offer a variety of constructs or patterns to capture complex coordination requirements
[1]. For purposes of enforcing the role patterns such precise translation of each
construct is not required. Since the role patterns refer only to two process patterns,

A Framework Based on Role Patterns 13

sequence and parallel, the translation at a minimum only needs to capture the tasks in
processes (and their subprocesses) with respect to just these two patterns. Therefore,
the translation can be done efficiently in an approximate manner and the role patterns
can still be verified.

Security
Requirement

Modeling

USER

Business
Process
Modeling Process

Execution
Engine

Role Patterns

Business process model

Role Patterns
Process Facts
(Task, Roles,

Process
Patterns)

Process Facts

Security Violation

Role Patterns

Figure 5: An architecture for adding security in existing workflow engine

5.3 Related Research
Prior research has looked at the issue of security from various perspectives.

However, the stream of security related research that is most relevant here relates to
role based access control (RBAC) and was pioneered by Sandhu [19]. The basic
RBAC framework consists of three entities: roles, permissions and users. Roles (such
as manager, director, etc.) are assigned permissions or rights (to hire an employee,
approve a purchase, etc.) and users (Sue, Joe, Lin) are associated with roles. Thus,
users acquire certain permissions to perform organizational tasks by virtue of their
membership in roles. The notion of separation of duties [16,20], although it
preexisted in accounting and control systems, also reemerged in the context of
RBAC as the idea that if task 1 is performed by role A, then task 2 must be performed
by role B, and membership of these roles must not intersect. There are two types of
separation of duties: static and dynamic. In recent years, RBAC has become the
preferred access control model for most business enterprises. This framework allows
association of roles with tasks, and only users that belong to a certain role can
perform certain tasks. This is a useful framework that has now been widely adopted in
popular database management systems from IBM and Oracle.

Some related work on specification and enforcement of role-based authorizations
in workflow systems is discussed in [4]. The main focus of this work is on
enforcement of constraints at run-time. The authors develop algorithms to check
whether, given a combination of tasks and users, it is possible to find a task
assignment that will satisfy the collection of constraints and available users. A formal
model called W-RBAC for extending RBAC in the context of workflows using the
notions of case and organizational unit is described in [21]. A system architecture for
enforcing RBAC in a Web-based workflow system is given in [2]. The approach in
[5] is based on the notions of conflicting roles, conflicting permissions, conflicting
users and conflicting tasks. More sophisticated algorithms for enforcing separation of
duties in workflows are developed in [17]. Our work differs from and also
complements previous works in that our focus is on role patterns, and our goal is to
give end users the ability to associate one or more patterns with processes. Moreover,
we have a more sophisticated process model than the ones used in previous works,

14 A Framework Based Role Patterns

resulting in a tighter integration between the process model and the security model.
Furthermore, our process model is not hardcoded into the constraints, unlike in
previous models, and thus offers greater flexibility for associating tasks in a process
with role patterns.

Another stream of prior work that informs our research is the literature on basic
financial control principles, particularly as it relates to the recent Sarbanes-Oxley
legislation [3,7,13,14]. Businesses have enforced financial controls for more than 100
years with the objective of preventing fraudulent activities and abuse of privilege to
the detriment of the organization. In the past these financial controls were manual in
nature, but in recent years the emphasis on automation of controls has increased
considerably. While the Sarbanes-Oxley legislation does require businesses to certify
that proper controls and processes are in place to prevent incidence of fraud by its
managers, yet it does not specify the precise nature of such controls and processes.
Many businesses have adopted ad hoc kinds of approaches to respond to this new law.
6. Conclusions

The focus of enterprise business process management lies in automating,
monitoring and optimizing the information flow in an organization [9]. The recent
Sarbanes-Oxley legislation in the aftermath of some high profile business scandals
has created an even greater awareness of the importance of internal controls and the
important role that streamlined processes play in implementing effective control
systems. Internal controls are most effective when they are built into the enterprise
infrastructure [7]. Therefore, internal controls must be tightly linked to business
processes and companies are starting to realize the strategic value of making
automated processes a part of daily business practice [3]. The focus of this paper is
on creating a framework to embed controls into the processes of an organization. The
main elements of this framework are process patterns, task categories, role patterns
and constraints. We showed how a user can describe a process in a hierarchical
manner using simple process patterns such as sequence, parallel, choice and loop, and
then associate one or more of 10 standard role patterns with it to create a secure
business process. We also showed that the role patterns can be implemented through
built-in constraints. Although we did not discuss this at length, additional user-
defined constraints can also be added for special requirements.

The key advantages of this approach are that it is generic, easy to use and flexible.
The role patterns that capture common control requirements can be associated with
process patterns in an easy and user-friendly manner. Finally, the role patterns are not
hardcoded and can also be extended. In future work, we expect to implement this
framework and test it in a real environment. We would also like to add temporal
extensions. For instance, consider a policy like, "A manager cannot approve any
requests until he has been in the manager role for 6 months." Here an individual may
be in the manager role, but she may still not perform certain tasks. To handle such
situations, one possibility is to create a special role called ‘New Manager’ and not
associate it with certain tasks. However, more flexible ways of dealing with such
situations are required. Finally, it would also be useful to consider issues of
delegation [21], i.e. can a role delegate its tasks to other roles, and explore how
organization policy on delegation could be incorporated into the process securely.

A Framework Based on Role Patterns 15

References
1. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barro, A.P.

“Workflow patterns,” Distributed and Parallel Databases, 14(3):5-51, July 2003.
2. G.-J. Ahn, R. Sandhu, M.H. Kang, J.S. Park, Injecting RBAC to secure a web-based

workflow system, in: Fifth ACM Workshop on Role-Based Access Control, Berlin,
Germany, July 2000. http://citeseer.nj.nec.com/ahn00injecting.html.

3. D. Berg, “Turning Sarbanes-Oxley Projects into Strategic Business Processes,” Sarbanes-
Oxley Compliance Journal, November 2004.

4. E. Bertino, E. Ferrari, V. Atluri, The specification and enforcement of authorization
constraints in workflow management Systems, ACM Trans. Inf. Syst. Secur. 2 (1) (1999)
65–104.

5. Botha, R. A. and J. H. P. Eloff: 2001, ‘Separation of duties for access control enforcement
in workflow environments’. IBM Systems Journal 40(3).

6. W. F. Clocksin , C. S. Mellish, Programming in Prolog, Springer-Verlag New York, Inc.,
New York, NY, 1987.

7. Committee of Sponsoring Organizations, Internal Control – Integrated Framework,
http://www.coso.org/publications/executive_summary_integrated_framework.htm.

8. R. Eshuis, R. Wieringa: Verification Support for Workflow Design with UML Activity
Graphs, in the Proceedings of the 24th International Conference on Software Engineering,
Orlando, Florida, May 19-25, 2002, pp. 166-176.

9. D. Ferguson and M. Stockton, “Enterprise Business Process Management - Architecture,
Technology and Standards,” Business Process Management 2006, Vienna, Austria, 1-15.

10. Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995).
http://www.awprofessional.com/title/0201633612Design Patterns: Elements of Reusable
Object-Oriented Software, hardcover, Addison-Wesley.

11. IBM Websphere Business Modeler (WBM), Version 6, http://www-
306.ibm.com/software/integration/wbimodeler/.

12. Information FrameWork (IFW), IBM Industry Models for Financial Services, http://www-
03.ibm.com/industries/financialservices/doc/content/bin/ fss_ifw_gim_2006.pdf

13. Scott Green, Manager's Guide to the Sarbanes-Oxley Act: Improving Internal Controls to
Prevent Fraud, Wiley, 2004.

14. D. Haworth and L. Pietron, Sarbanes-Oxley: Achieving Compliance by Starting with ISO
17799, Information Systems Management, Winter 2006.

15. W-K. Huang, V. Atluri, Secureflow: a secure web-enabled workflow management system,
in: Proceedings of the Fourth ACM Workshop on Role-Based Access Control, 1999, pp.
83–94.

16. D. R. Kuhn, “Mutual Exclusion of Roles as a Means of Implementing Separation of Duty
in Role-Based Access Control Systems,” Proceedings of the 2nd ACM Workshop on Role-
Based Access Control, Fairfax, VA (October 1997), pp. 23–30.

17. Liu, D., Wu, M., and Lee, S. 2004. Role-based authorizations for workflow systems in
support of task-based separation of duty. J. Syst. Softw. 73, 3 (Nov. 2004), 375-387.

18. N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and P. Austel, Business-driven
application security: From modeling to managing secure applications, IBM Systems
Journal, Volume 44, Number 4, 2005.

19. R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based access control models, IEEE
Computer 29 (2) (1996) 38–47.

20. R. Simon and M. E. Zurko, “Separation of Duty in Role-Based Environments,”
Proceedings of the 10th Computer Security Foundation Workshop, Rockport, MA (June
10–12, 1997), pp. 183–194.

21. J. Wainer, A. Kumar and P. Barthelmess, “DW-RBAC: A Formal Security Model of
Delegation and Revocation in Workflow Systems," Information Systems, Volume 32,
Issue 3, May 2007, Pages 365-384.

16 A Framework Based Role Patterns

Appendix 1 – Facts and basic predicates for describing the Account Transfer process
%% process table (id, name)
process(p1,'administer account transfer').
process(p2,'authorization sub-process').
process(p3,'accounting entry sub-process').

%% subprocess table (id, parent (sub) process id)
subprocess(p2,p1).
subprocess(p3,p1).

%% task table (id, name, task category, (sub) process)
task(t1, 'receive transfer instruction',acquire,p1).
task(t2, 'receive transfer instruction',record,p1).
task(t3, ‘validate transfer instruction',inspect,p1).
……
%% iseq table (task id, task id) – a pair of task in immediate
sequence
iseq(t1, t2).
iseq(t2, t3).
……
%% choice table (task id, taskid)
choice(t4,t5).
……
%% define parallel tasks or blocks
parallel(t10a, t10b)

%% defin tasks or blocks in a loop. There is no loop in this example
%% loop(x, y)

%% role table (id, name, authority level)
role(r1, 'customer representative',0).
role(r2, 'financial clerk',0).
role(r3, 'financial accountant',1).

%% assignment table (task id, role id)
assign(t1, r1).
assign(t2, r1).

contain(Proc,Proc).
contain(Proc,T) :- task(T,_,_,Proc).
contain(Proc,Subproc) :- subprocess(Subproc,Proc).
contain(Proc,Subproc) :- subprocess(Subproc,X),X\==Proc,
 contain(Proc,X).
contain(Proc,T) :- task(T,_,_,Subproc),Subproc\==Proc,
 contain(Proc,Subproc).

path(Proc,A,B,Visited,Path) :- iseq(A,B),append(Visited,[B],Path),
 contain(Proc,A), contain(Proc,B).
path(Proc,A,B,Visited,Path) :- iseq(A,C),C \== B,\+member(C,Visited),
 append(Visited,[C],Q),
 path(Proc,C,B,Q,Path),
 contain(Proc,A),contain(Proc,B),
 contain(Proc,C).

tc_occurs([], _, N) :- N is 0.
tc_occurs([H|T], TC, N):- tc_occurs(T, TC, M),task(H,_,TC,_),N is M+1.
tc_occurs([H|T], TC, N) :- tc_occurs(T, TC, N),\+task(H,_,TC,_).
role_occurs(Proc,R) :- assign(T,R), contain(Proc,T).

