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ABSTRACT
This paper considers structural and algorithmic problems in stochas-
tic loss networks. The very popular Erlang approximation can be
shown to provide relatively poor performance estimates, especially
for loss networks in the critically loaded regime. This paper pro-
poses a novel algorithm for estimating the stationary loss proba-
bilities in stochastic loss networks based on structural properties
of the exact stationary distribution, which is shown to always con-
verge, exponentially fast, to the asymptotically exact results. Us-
ing a variational characterization of the stationary distribution, an
alternative proof is provided for an important result due to Kelly,
which is simpler and may be of interest in its own right. This paper
also determines structural properties of the inverse Erlang function
characterizing the region of capacities that ensures offered traffic
is served within a set of loss probabilities. Numerical experiments
investigate various issues of both theoretical and practical interest.

Categories and Subject Descriptors
G.3 [Probability & Statistics]: Stochastic processes, Markov pro-
cesses, Queueing theory; F.2.2 [Nonnumerical Algorithms & Prob-
lems]: Computations on discrete structures, Geometrical problems
and computations; G.1.6 [Optimization]: Nonlinear programming
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∗This work is partially carried out while the author was visiting the
IBM T.J. Watson Research Center.†Work of Shah was supported in parts by NSF CCF 0728554 and
NSF CNS 0546590.

Keywords
Loss networks, multidimensional stochastic processes, stochastic
approximations, Erlang loss formula and fixed-point approximation

1. INTRODUCTION
As the complexities of computer and communication systems

continue to grow at a rapid pace, performance modeling, analysis
and optimization are playing an increasingly important role in the
design and implementation of such complex systems. Central to
these research studies are the models of the various applications of
interest. For almost a century, starting with the seminal work of
Erlang [5], stochastic loss networks have been widely studied as
models of many diverse computer and communication systems in
which different types of resources are used to serve various classes
of customers involving simultaneous resource possession and non-
backlogging workloads. Examples include telephone networks,
mobile cellular systems, ATM networks, broadband telecommu-
nication networks, optical wavelength-division multiplexing net-
works, wireless networks, distributed computing, database systems,
data centers, and multi-item inventory systems; see, e.g., [7,10–13,
19–22, 25, 26]. Loss networks have even been used recently for
resource planning within the context of workforce management in
the information technology (IT) services industry, where a collec-
tion of IT service products are offered each requiring a set of re-
sources with certain capabilities [2,17]. In each case, the stochastic
loss network is used to capture the dynamics and uncertainty of the
computer/communication application being modeled.

One of the most important objectives in analyzing such loss net-
works is to determine performance measures of interest, most no-
tably the stationary loss probability for each customer class. The
classical Erlang formula, which has been thoroughly studied and
widely applied in many fields of research, provides the probabilis-
tic characterization of these loss probabilities. More specifically,
given a stochastic network and a multiclass customer workload,
the formula renders the stationary probability that a customer will
be lost due to insufficient capacity for at least one resource type.
While the initial results of Erlang [5] were for the particular case
of Poisson arrivals and exponential service times, Sevastyanov [23]
demonstrates that the Erlang formula holds under general finite-
mean distributions for the customer service times. The results are
also known to hold in the presence of dependencies among service



times for a specific class [4]. Recent results [3] suggest that relax-
ations can be made to the customer arrival process, merely requir-
ing that customers generate sessions according to a Poisson process
and, within each session, blocked customers may retry with a fixed
probability after an idle period of random length. A multi-period
version of the Erlang loss model has also been recently studied [2].

Unfortunately, the computational complexity of the exact Erlang
formula and related measures is known to be �P -complete in the
size of the network [16], thus rendering the exact formula of limited
use for many networks in practice. (Refer to [24] for details on �P -
complete complexity.) The well-known Erlang fixed-point approx-
imation has been developed to address this problem of complexity
through a set of product-form expressions for the blocking proba-
bilities of the individual resources that map the blocking probability
of each resource to the blocking probabilities of other resources. In
other words, it is as if customer losses are caused by independent
blocking events on each of the resources used by the customer class
based on the one-dimensional Erlang function. The Erlang fixed-
point approximation has been frequently used and extensively stud-
ied as a tractable approach for calculating performance measures
associated with the stochastic loss network, including estimates for
stationary loss probabilities. Moreover, the Erlang fixed-point ap-
proximation has been shown to be asymptotically exact in two lim-
iting regimes, one based on increasing the traffic intensities and
resource capacities in a proportional manner [11,12], and the other
based on increasing the number of resource types and number of
customer classes [25, 27].

Despite being asymptotically exact in certain limiting regimes,
it is equally well known that the Erlang fixed-point approxima-
tion can provide relatively poor performance estimates in various
cases. The stochastic loss networks that model many computer
and communication systems often operate naturally in a so-called
“critically loaded” regime [6]. Somewhat surprisingly, we find
that, even though the Erlang fixed-point approximation can perform
quite well in underloaded and overloaded conditions, the fixed-
point approximation can provide relatively poor loss probability
estimates when the network is critically loaded. We establish such
qualitative results by means of estimating the convergence rate of
the Erlang fixed-point approximation toward the exact solution un-
der large network scalings. This motivates the need to design better
algorithms for estimating loss probabilities.

In this paper we propose a novel algorithm for computing the
stationary loss probabilities in stochastic loss networks, which we
call the “slice method” because the algorithm exploits structural
properties of the exact stationary distribution along “slices” of the
polytope over which it is defined. Our algorithm is shown to always
converge and to do so exponentially fast. Through a variational
characterization of the stationary distribution, we establish that the
results from our algorithm are asymptotically exact. We further es-
timate the convergence rate of our algorithm, where comparisons
between the convergence rates of the Erlang fixed-point approxi-
mation and the slice method favors our approach. Using this varia-
tional characterization, we also provide an alternative proof of the
main theorem in [11], which is much simpler and may be of inter-
est in its own right. A collection of numerical experiments further
investigates the effectiveness of our algorithm where it convinc-
ingly outperforms the Erlang fixed-point approximation for loss
networks in the critically loaded regime.

Another important objective in analyzing stochastic loss networks
concerns characterizing the fundamental relationships among the
capacities for every resource type and the loss probabilities for ev-
ery customer class. In particular, the exact Erlang formula pro-
vides the loss probabilities for all customer classes given the ca-

pacity of each resource and the workload of each class. Berezner et
al. [1] consider the inverse of this function in the one-dimensional,
single-resource case and provide bounds for the capacity required
to satisfy the given workload and loss probability constraint. The
corresponding bounds for the multidimensional version of this in-
verse function is a much more difficult problem. The main reason
is that, depending upon the structure of the problem and in partic-
ular the resource requirements of each customer class, there can be
infinitely many possible capacities that satisfy the given vector of
loss probabilities for the customer classes. Furthermore, the set that
contains all of these possible capacities can be unbounded.

In this paper, by exploiting large network scalings, our results
for various approximation algorithms, and previous results for the
one-dimensional problem, we establish structural properties for the
multidimensional region of capacities that ensures offered traffic
will be served within a given set of loss probabilities. This region
of capacities is defined in terms of a system of polynomial equa-
tions and inequalities, such that the capacities which correspond to
the given loss probability vector lie with this region. These results
provide a probabilistic characterization of the theoretical relation-
ships between the link capacity and loss probability vectors. Our
results also can be exploited to efficiently search the feasible region
of various optimization problems involving loss networks, includ-
ing many resource allocation and capacity planning applications.

We make several important contributions in this paper. A new
slice method for estimating the stationary loss probabilities in stochas-
tic loss networks is proposed and shown to provide asymptotically
exact results. The convergence rates of different approximation
algorithms are obtained under large network scalings. A simpler
proof is provided for a classical result of Kelly which should be
of independent interest. The structural properties of the capacity
vector region that achieves a given loss probability vector are ob-
tained under large network scalings. While the problems we con-
sider are of fundamental importance from the theoretical perspec-
tives of stochastic loss networks in general and Erlang loss model
approximations in particular, our analysis and results can support a
wide range of practical applications involving loss networks.

This paper is organized as follows. The next section contains
some technical preliminaries. Section 3 describes three approxi-
mation algorithms for computing stationary loss probabilities. Our
main results are presented in Section 4, with most of their proofs
considered in Section 5. Some numerical experiments are provided
in Section 6, and concluding remarks can be found in Section 7.
Additional technical details can be found in [8].

2. PRELIMINARIES

2.1 Model
We investigate general stochastic loss networks with fixed rout-

ing, using the standard terminology in the literature based on routes
(customer classes) and links (resource types); see, e.g., [13]. Con-
sider a network with J links, labeled 1, 2, . . . , J . Each link j has
Cj units of capacity. There is a set of K distinct (pre-determined)
routes, denoted by R = {1, . . . , K}. A call on route r requires
Ajr units of capacity on link j, Ajr ≥ 0. Calls on route r ar-
rive according to an independent Poisson process of rate νr, with
ν = (ν1, . . . , νK) denoting the vector of these rates. The dynamics
of the network are such that an arriving call on route r is admitted
to the network if sufficient capacity is available on all links used
by route r; else, the call is dropped. To simplify the exposition,
we will assume that the call service times are i.i.d. exponential ran-
dom variables with unit mean. It is important to note, however, that
our results are not limited to these service time assumptions since



the quantities of interest remain unchanged in the stationary regime
under general service time distributions due to the well-known in-
sensitivity property of this class of stationary loss networks.

Let n(t) = (n1(t), . . . , nK(t)) ∈ N
K be the vector of the num-

ber of active calls in the network at time t. By definition, we have
that n(t) ∈ S(C) where

S(C) =
n

n ∈ Z
K : n ≥ 0, An ≤ C

o
,

and C = (C1, . . . , CJ) denotes the vector of link capacities. Within
this framework, the network is Markov with respect to state n(t).
It has been well established that the network is a reversible multi-
dimensional Markov process with a product-form stationary distri-
bution [9]. Namely, there is a unique stationary distribution π on
the state space S(C) such that for n ∈ S(C)

π(n) = G(C)−1
Y
r∈R

νnr
r

nr!
,

where G(C) is the normalizing constant (or partition function)

G(C) =
X

n∈S(C)

Y
r∈R

ν
nr
r

nr!
.

2.2 Problems
A primary performance measure in loss networks is the per-route

stationary loss probability, the fraction of calls on route r in equi-
librium that are dropped or lost, denoted by Lr. It can be easily
verified that Lr is well-defined in the above model. This model can
be thought of as a stable system where admitted calls experience
an average delay of 1 (their service requirement) and lost calls ex-
perience a delay of 0 (their immediate departure). Therefore, the
average delay experienced by calls on route r is given by

Dr = (1 − Lr) × 1 + Lr × 0 = (1 − Lr).

Upon applying Little’s law [15] to this stable system (with respect
to route r), we obtain

νrDr = E[nr]

which yields

1 − Lr =
E[nr]

νr
. (1)

Thus, computing Lr is equivalent to computing the expected value
of the number of active calls on route r with respect to the station-
ary distribution of the network. Even though we have an explicit
formula, the computational complexity of the exact stationary dis-
tribution, known to be �P -complete in general [16], renders its di-
rect use of limited value in practice. We therefore need simple,
efficient and (possibly) approximate algorithms for computing the
stationary loss probabilities. One of our goals in this paper is to
design a family of such iterative algorithms that also have provably
good accuracy properties.

In the one-dimensional version of the foregoing stochastic loss
network, it is known that the capacity C for the single resource
must satisfy the inequalities

ν(1 − L) < C < ν(1 − L) + 1/L (2)

in order to ensure that the arrivals at rate ν are served with a loss
probability of at most L [1]. The corresponding problem in the
multidimensional stochastic loss network of interest is much more
difficult, however, and very limited results are known. On the other
hand, understanding the fundamental relationships among the link

capacities and the loss probabilities is critical to solving resource
allocation problems in stochastic loss networks. We therefore need
an effective characterization of these relationships, which can be
exploited to improve the efficiency and quality of solutions to a
wide variety of optimization problems [2,12,17,25]. Another of our
goals in this paper is to determine the capacity region that ensures
a given vector of loss probabilities will be satisfied.

2.3 Scaling
We consider a scaling of the stochastic loss network to model the

type of large networks that arise in various applications. Although
it has been well studied (see, e.g., [11]), we will use this scaling
both to evaluate analytically the performance of different approx-
imation algorithms for computing loss probabilities and to obtain
the capacity region for satisfying a set of loss probabilities.

Given a stochastic loss network with parameters C, A and ν, a
scaled version of the system is defined by the scaled capacities

CN = NC = (NC1, . . . , NCK)

and the scaled arrival rates

νN = Nν = (Nν1, . . . , NνK),

where N ∈ N is the system scaling parameter. The correspond-
ing feasible region of calls is given by S(NC). Now consider a
normalized version of this region defined as

SN(C) =

j
1

N
n : n ∈ S(NC)

ff
.

Then the following continuous approximation of SN(C) emerges
in the large N limit:

S̄(C) = {x : Ax ≤ C, x ∈ R
K
+ }.

3. ALGORITHMS
We now describe three algorithms for computing the stationary

loss probabilities L = (Lr) ∈ [0, 1]K . The well-known Erlang
fixed-point approximation is presented first, followed by a “1-point
approximation” based on the concentration of the stationary dis-
tribution around its mode in large networks. The third algorithm
is our new family of “slice methods” that attempts to compute the
average number of active calls on different routes via an efficient
exploration through “slices” of the admissible polytope S(C).

3.1 Erlang fixed-point approximation
The well-known Erlang formula [5] for a single-link, single-

route network with capacity C and arrival rate ν states that the loss
probability, denoted by E(ν,C), is given by

E(ν,C) =
νC

C!

"
CX

i=0

νi

i!

#−1

.

Based on this simple formula, the Erlang fixed-point approximation
for multi-link, multi-route networks arose from the hypothesis that
calls are lost due to independent blocking events on each link in the
route. More formally, this hypothesis implies that the loss proba-
bilities of routes L = (L1, . . . , LK) and blocking probabilities of
links E = (E1, . . . , EJ) satisfy the set of fixed-point equations

Ej = E(ρj , Cj),

ρj =
1

1 − Ej

"X
r

νrAjr

Y
i

(1 − Ei)
Air

#
,

1 − Lr =
Y

j

(1 − Ej)
Ajr , (3)



for j = 1, . . . , J and r ∈ R.
A natural iterative algorithm that attempts to obtain a solution to

the above fixed-point equations is as follows:

ERLANG FIXED-POINT APPROXIMATION.

1. Denote by t the iteration of the algorithm, with t = 0 ini-
tially. Start with E

(0)
j = 0.5 for all 1 ≤ j ≤ J .

2. In iteration t + 1, update E
(t+1)
j according to

E
(t+1)
j = E(ρ

(t)
j , Cj),

where

ρ
(t)
j = (1 − E

(t)
j )−1

X
r:j∈r

νrAjr

Y
i:i∈r

(1 − E
(t)
i )Air .

3. Upon convergence per appropriate stopping conditions, de-
note the resulting values by EE

j for 1 ≤ j ≤ J . Compute the
loss probabilities from the Erlang fixed-point approximation,
LE

r , r ∈ R, as

1 − LE
r =

Y
j

(1 − EE
j )Ajr .

3.2 1-point approximation
Kelly [11] established the asymptotic exactness of the Erlang

fixed-point approximation in a large network limiting regime by
showing that the stationary distribution concentrates around its mode
n∗ given by

n∗ ∈ arg max
n∈S(C)

π(n).

Such concentration suggests the following approach which is the
premise of the 1-point approximation: Compute the mode n∗ =
(n∗

r) of the distribution and use n∗
r as a surrogate for E[nr] in the

computation of Lr via equation (1). Before presenting our specific
iterative algorithm, we consider some related optimization prob-
lems upon which it is based.

The definition of the stationary distribution π(·) suggests that the
mode n∗ corresponds to a solution of the optimization problem

maximize
X

r

nr log νr − log nr!

over n ∈ S(C).

By Stirling’s approximation, log nr! = nr log nr−nr+O(log nr).
Using this and ignoring the O(log nr) term, the above optimization
problem reduces to

maximize
X

r

nr log νr + nr − nr log nr

over n ∈ S(C).

A natural continuous relaxation of n ∈ S(C) is

S̄(C) =
n

x ∈ R
K
+ : Ax ≤ C

o
,

which yields the following primal problem (P):

maximize
X

r

xr log νr + xr − xr log xr

over x ∈ S̄(C).

The above relaxation becomes a good approximation of the orig-
inal problem when all components of C are large. In order to design
a simple iterative algorithm, we consider the Lagrangian dual (D)
to the primal problem P where standard calculations yield

minimize
X

r

νr exp

"
−
X

j

yjAjr

#
+
X

j

yjCj

over y ≥ 0.

Define the dual cost function g(y) as

g(y) =
X

r

νr exp

"
−
X

j

yjAjr

#
+
X

j

yjCj .

By Slater’s condition, the strong duality holds and hence the opti-
mal cost of P and D are the same. Standard Karush-Kuhn-Tucker
conditions imply the following: Letting (x∗, y∗) be a pair of opti-
mal solutions to P and D, then

(a) For each link j,

∂g(y∗)

∂yj
= 0 or y∗

j = 0 &
∂g(y∗)

∂yj
≤ 0.

Equivalently,

X
r

Ajrνr exp

"
−
X

j

y∗
j Ajr

#
= Cj & y∗

j > 0,

or,
X

r

Ajrνr exp

"
−
X

j

y∗
j Ajr

#
≤ Cj & y∗

j = 0.

(b) For each route r,

x∗
r = νr exp

"
−
X

j

y∗
j Ajr

#
.

The above conditions suggest the following approach: Obtain a
dual optimal solution, say y∗, use it to obtain x∗, and then com-
pute the loss probability as 1 − Lr = x∗

r/νr . Next, we describe
an iterative, coordinate descent algorithm for obtaining y∗. In what
follows, we will use the transformation zj = exp(−yj) given its
similarity with the Erlang fixed-point approximation. Note that zj

is 1 minus the blocking probability for link j, Ej .

1-POINT APPROXIMATION.

1. Denote by t the iteration of the algorithm, with t = 0 ini-
tially. Start with z

(0)
j = 0.5 for all 1 ≤ j ≤ J .

2. In iteration t + 1, determine z(t+1) as follows:

(a) Choose coordinates from 1, . . . , J in a round-robin man-
ner.

(b) Update z
(t+1)
j by solving the equation

g
(t)
j (x) = min

n
Cj , g

(t)
j (1)

o
,

where g
(t)
j (x) =

P
r Ajrνr

Q
i zAir

i with

zi =

8><
>:

z
(t+1)
i for i < j,

x for i = j,

z
(t)
i for i > j.



Thus, g
(t)
j (x) is the evaluation of part of the function

g(·) corresponding to the jth coordinate with values
of components < j being from iteration t + 1, values
of components > j from iteration t, and component j
being the variable itself.

3. Upon convergence per appropriate stopping conditions, de-
note the resulting values by z∗j for 1 ≤ j ≤ J . Compute
the loss probabilities from the 1-point approximation, L∗

r ,
r ∈ R, as

1 − L∗
r =

Y
j

(z∗
j )Ajr .

3.3 Slice method
The Erlang fixed-point approximation and the 1-point approxi-

mation essentially attempt to use the mode of the stationary distri-
bution as a surrogate for the mean, which works quite well when
the distribution is concentrated (near its mode). While this concen-
tration holds for asymptotically large networks, it otherwise can be
an important source of error and therefore we seek to obtain a new
family of methods that provide better approximations.

The main premise of our slice methods follows from the fact that
computing the loss probability Lr is equivalent to computing the
expected number of calls E[nr] via equation (1). By definition,

E[nr] =

∞X
k=0

kP[nr = k]

and thus E[nr] can be obtained through approximations of P[nr =
k] rather than by the mode value n∗

r . Note that P[nr = k] cor-
responds to the probability mass along the “slice” of the polytope
defined by nr = k. An exact solution for E[nr] can be obtained
with our slice method by using the exact values of P[nr = k], but
obtaining the probability mass along a “slice” can be as computa-
tionally hard as the original problem. Hence, our family of slice
methods is based on approximations for P[nr = k]. To do so, we
will exploit similar insights from previous approaches: Most of the
mass along each slice is concentrated around the mode of the distri-
bution restricted to the slice. This approximation is better than the
“1-point approximation” since it uses the “1-point approximation”
many times (once for each slice) in order to obtain a more accurate
solution. Next, we formally describe the algorithm, where the cost
function of the primal problem P is denoted by

q(x) =
X

r

xr log νr + xr − xr log xr.

SLICE METHOD.

Compute Lr for route r ∈ R as follows:

1. For each value of k ∈ {nr : n ∈ S(C)}, use the “1-point
approximation” to compute x∗(k, r) as the solution of the
optimization problem

maximize q(x) over x ∈ S̄(C) & xr = k.

2. Estimate E[nr] as

E[nr] =

P
k k exp(q(x∗(k, r)))P
k exp(q(x∗(k, r)))

.

3. Generate Lr = 1 − E[nr]
νr

.

3.4 3-point slice method
In the general slice method, for each route r, we apply the 1-

point approximation to each slice defined by nr = k, k ∈ {nr :
n ∈ S(C)}. In the scaled system, this requires O(N) applications
of the “1-point approximation” for each route. Recall that, in con-
trast, the Erlang approximation (or 1-point approximation) requires
only O(1) applications of the iterative algorithm. To obtain a vari-
ation of the general slice method with similar computational com-
plexity, we introduce another slice method “approximation” whose
basic premise is as follows: Instead of computing x∗(k, r) for all
k ∈ {nr : n ∈ S(C)}, we approximate x∗(k, r) by linear interpo-
lation between pairs of 3 points.

For a given route r, first apply the 1-point approximation for the
entire polytope S̄(C) to obtain the mode of distribution x∗. Define

nmax(r) � max{nr : n ∈ S(C)}.
Next, obtain x∗(nmax(r), r), the mode of distribution in the slice
nr = nmax(r), using the 1-point approximation as in the general
slice method. Finally, obtain x∗(0, r), the mode of distribution
in the slice nr = 0, using the 1-point approximation. Now for
k ∈ {nr : n ∈ S(C)}, unlike in the general slice method, we will
use an interpolation scheme to compute x∗(k, r) as follows:

(a) If k ≤ x∗
r , then

x∗(k, r) = x∗ · k

x∗
r

+ x∗(0, r) · x∗
r − k

x∗
r

.

That is, x∗(k, r) is the point of intersection (in the space R
K )

of the slice xr = k with the line passing through the two
points x∗ and x∗(0, r).

(b) For x∗
r < k ≤ nmax

r , let

x∗(k, r) = x∗(nmax(r), r)· k − x∗
r

nmax(r) − x∗
r

+x∗· nmax(r) − k

nmax(r) − x∗
r

.

Note that due to the convexity of the polytope S̄(C), the interpo-
lated x∗(k, r) are inside the polytope. Now, as in the general slice
method, we use these x∗(k, r) to compute the approximation of
E[nr] and subsequently Lr . A pseudo-code for the 3-point slice
method can be found in [8].

4. OUR RESULTS
In this section we present our main results, most of the proofs of

which are postponed until the next section.

4.1 Recovering an old result
Consider a stochastic loss network with parameters A, C and ν

that is scaled by N as defined in Section 2. Kelly [11] obtained
a fundamental result which shows that, in the scaled system, the
stationary probability distribution concentrates around its mode.
Therefore, the results of the 1-point approximation are asymptot-
ically exact. We reprove this result using a variational characteri-
zation of the stationary distribution, which yields a much simpler
(and possibly more insightful) set of arguments.

THEOREM 1. Consider a loss network scaled by parameter N .
Let LN

r be the exact loss probability of route r ∈ R. Then˛̨̨
˛(1 − LN

r ) − x∗
r

νr

˛̨̨
˛ = O

 r
log N

N

!
. (4)



Kelly established the asymptotic exactness of the Erlang fixed-point
approximation by using the above result together with the fact that
the Erlang fixed-point approximation for a scaled system essen-
tially solves the dual D as N increases.

4.2 Error in Erlang fixed-point approximation
The Erlang fixed-point approximation is quite popular due to

its natural iterative solution algorithm and its asymptotic exact-
ness in the limiting regime. However, it is also well known that
the Erlang fixed-point approximation can perform poorly in vari-
ous cases. This is especially true when the load vector ν is such
that it falls on the boundary of S̄(C), i.e., the stochastic loss net-
work is in the critically loaded regime. More precisely, this means
ν is such that at least one of the constraints in Aν ≤ C is tight. It
can be readily verified (at least for simple examples) that, when ν
is strictly inside or strictly outside S(C), then the error in the Er-
lang fixed-point approximation for the scaled network is O(1/N).
However, for the boundary, the qualitative error behavior changes,
and in particular we prove the following result.

THEOREM 2. When the vector ν lies on the boundary of S̄(C),

‖LE,N − LN‖2 = Ω

 r
1

N

!
, (5)

where LE,N = (LE,N
r ) is the vector of loss probabilities from the

Erlang fixed-point approximation and LN = (LN
r ) is the vector of

exact loss probabilities, both for a loss network scaled by N .

4.3 Accuracy of the slice method
The drastically poorer accuracy of the Erlang fixed-point approx-

imation at the boundary (i.e., in the critical regime) from Theo-
rem 2 strongly motivates the need for new and better loss proba-
bility approximations. This led to our development of the general
“slice method” described in Section 3.3, for which we establish its
asymptotic exactness using the variational characterization of the
stationary distribution.

THEOREM 3. For each route r ∈ R, let LS,N
r be the loss prob-

ability estimate obtained from the general slice method for the sys-
tem scaled with parameter N . Let LN

r be the corresponding exact
loss probability. Then, for any system parameter values, we have

˛̨̨
LS,N

r − LN
r

˛̨̨
= O

 r
log N

N

!
. (6)

This result establishes the asymptotic exactness of the slice method
over all ranges of parameters. The proven error bound, which es-
sentially scales as O(1/

√
N), does not imply that it is strictly better

than the Erlang fixed-point approximation. We are unable to estab-
lish strict dominance of the slice method, but numerical results in
Section 6 illustrate that the slice method can convincingly outper-
form the Erlang fixed-point approximation under critical loading.

4.4 Convergence of algorithms
So far, certain accuracy properties have been established for the

iterative algorithms. We now establish the exponential convergence
of the iterative algorithm for the general slice method. It is suffi-
cient to state the convergence of the 1-point approximation, since
this is used as a subroutine in our slice methods.

THEOREM 4. Given a loss network with parameter A, C and
ν, let z(t) be the vector produced by the 1-point approximation at

the end of iteration t. Then, there exists an optimal solution y∗ of
the dual problem D such that‚‚‚z(t) − z∗

‚‚‚ ≤ α exp (−βt) ,

where z∗ = (z∗
j ) with z∗

j = exp(−y∗
j ) and α, β positive constants

which depend on the problem parameters.

The proof of Theorem 4 is provided in [8].

4.5 Capacity region of inverse function
Suppose a desired vector of loss probabilities L = (Lr) is given,

either directly or through constraints. We seek to identify the re-
gion of capacities C that ensures the arrival rate vector ν will be
served with loss probabilities of at most L. This region is of theo-
retical importance because it characterizes fundamental properties
between the link capacity and loss probability vectors. It also can
be exploited to efficiently search the feasible region in various opti-
mization problems involving stochastic loss networks. Obviously,
the exact Erlang loss formula can not serve this purpose. In fact,
even the Erlang fixed-point equations, which still have the basic
structure of the Poisson distribution function, turn out to be too
complicated for this purpose. We instead determine the region of
interest through the following result.

THEOREM 5. For a loss system scaled by parameter N , there
exists a δ(N) such that for any given feasible loss probabilities LN

r

and any small positive number ε � 1, the capacity vectors CN that
achieve these loss probabilities fall within the region defined by the
system of polynomial equations and inequalities

log(1 − LN
r − δ(N)N−1/2+ε) ≤ −

X
j

AjrEj ,

ρj =
X

r

νrAjr

Y
i�=j

(1 − Ei)
Air ,

ρj(1 − Ej) < CN
j < ρj(1 − Ej) + 1/Ej .

The problem of linear optimization over a region defined by poly-
nomial equations and inequalities is known to be NP-hard; note that
this is in comparison with the �P complexity for calculating loss
probabilities (refer to [24]). Moreover, there exist standard nonlin-
ear optimization methods for studying the geometry of such regions
(see, e.g., [14]), as well as polynomial approximations for solv-
ing various optimization problems whose feasible region is defined
as above. Theorem 5 therefore can be instrumental in improving
the efficiency for solving a wide variety of optimization problems
involving stochastic loss networks. For example, the above poly-
nomial equations and inequalities can be easily incorporated into
the optimization problems considered in [2] by adding the corre-
sponding constraints on Lr and using the methodologies developed
in [14] to obtain a near-optimal solution.

5. PROOFS
We now consider the proofs of most of our main results above.

5.1 Proof: Theorem 1

5.1.1 Variational characterization of π

Recall that the stationary distribution π is represented as

π(n) :=
1

G(C)
exp(Q(n)), exp(Q(n)) =

Y
r∈R

νnr
r

nr !



for n ∈ S(C). Define M(C) as the space of distributions on
S(C). Clearly, π ∈ M(C). For μ ∈ M(C), define

F (μ) �
X

n∈S(C)

μ(n)Q(n) −
X

n∈S(C)

μ(n) log μ(n)

= Eμ(Q) + H(μ).

Next, we state a variational characterization of π, which will be ex-
tremely useful throughout. This characterization essentially states
that π is characterized uniquely as the maximizer of F (·) over
M(C). See [8] for the proof of Lemma 6.

LEMMA 6. For all μ ∈ M(C),

F (π) ≥ F (μ).

The equality holds iff μ = π. Further, F (π) = log G(C).

5.1.2 Scaled system: A useful approximation
Now, consider the scaled system with parameter N . For any

n ∈ S(NC), this is equivalent to considering 1
N

n ∈ SN(C).
Then, π for a scaled system is equivalent to the distribution πN on
SN (C) defined, for x ∈ SN(C), as

πN (x) = π(Nx) =
1

G(NC)
exp(Q(Nx)).

Upon considering Q(Nx), we have

exp(Q(Nx)) =
Y

r

(Nνr)
Nxr

(Nxr)!

= exp

 X
r

Nxr log Nνr −
X

r

log(Nxr)!

!

= exp

 
N log N

X
r

xr + N
X

r

xr log νr −
X

r

log(Nxr)!

!

= exp

 
N log N

X
r

xr + N
X

r

xr log νr

− N
X

r

xr log Nxr +
X

r

Nxr +
X

r

O(log Nxr)

!

= exp

 
N
X

r

xr log νr − N
X

r

xr log xr

+N
X

r

xr +
X

r

O(log Nxr)

!
,

where the above calculations make use of Stirling’s approximation:

log M ! = M log M − M + O(log M).

It then follows from these calculations that

1

N
Q(Nx) =

X
r

xr log
νre

xr
+

1

N

"X
r

log(Nxr)

#

= q(x) + O

„
log N

N

«
,

where

q(x) =
X

r

xr log
νre

xr
. (7)

5.1.3 Concentration of πN

Given the above calculations, we further obtain the following
concentration for the distribution πN , which will be crucial in prov-
ing Theorem 1.

LEMMA 7. Given any ε > 0, define the set

Aε =
˘
y ∈ SN(C) : ‖y − x∗‖ > ε

¯
where x∗ = arg maxx∈S̄(C) q(x). Then

πN (Aε) = O

„
ε−2 log N

N

«
.

PROOF. From the definition of q(·), it can be verified that this
is a strongly concave function on the set S̄(C). Moreover, the con-
straint set S̄(C) is closed and convex. Hence, there exists a unique
optimal solution x∗ of the optimization problem

maximize q(x) over x ∈ S̄(C).

By the optimality and uniqueness of x∗, we have for any y ∈ S̄(C)

∇q(x∗)T (y − x∗) ≤ 0.

Consider Taylor’s expansion of q(·) at some y ∈ S̄(C) near x∗:

q(y) = q(x∗) +∇q(x∗)T (y − x∗) + (y − x∗)T∇2q(z)(y − x∗),

where z = αx∗ + (1 − α)y, α ∈ [0, 1]. Using the optimality
condition, we have

q(y) ≤ q(x∗) + (y − x∗)T∇2q(z)(y − x∗). (8)

Next, in order to evaluate the bound of (8), we will compute the
Hessian ∇2q(z). For this, recall that

q(x) =
X

r

xr(1 + log νr) − xr log xr.

Then the first partial derivative is given by

∂q(x)

∂xr
= 1 + log νr − 1 − log xr = log νr − log xr,

and the second order partial derivatives are given by

∂2q(x)

∂xr∂xs
=

(
0, if r 
= s,

− 1
xr

, if r = s.

Therefore, the Hessian ∇2q(·) is a diagonal matrix of the form

∇2q(x) =

»
∂2q

∂xr∂xs

–
= diag

»
− 1

x1
, . . . ,− 1

xK

–
. (9)

Now, for any z ∈ S̄(C), by definition for any r ∈ R

0 ≤ zr ≤ C∗ ⇔ 1

zr
≥ 1

C∗
,

where we recall that C∗ = maxj Cj . Using this bound, the defini-
tion of the Hessian and (8), we obtain the following lemma.

LEMMA 8. For any y ∈ S̄(C),

q(y) ≤ q(x∗) − 1

C∗

‚‚y − x∗‚‚2
.



PROOF.

q(y) ≤ q(x∗) −
X

r

(yr − x∗
r)

2

zr

≤ q(x∗) − 1

C∗

 X
r

(yr − x∗
r)

2

!

= q(x∗) − 1

C∗

‚‚y − x∗‚‚2
. (10)

Next, given x∗ ∈ S̄(C), there exists x̄∗ ∈ SN(C) such that

‖x̄∗ − x∗‖ = O

„
1

N

«
and q(x̄∗) ≥ q(x∗) − O

„
1

N

«
.

Consider a special distribution μ̄ over SN(C) as

μ̄(x) = 1x=x̄∗ , for x ∈ SN(C).

Namely, μ̄ places all of its mass on element x̄∗. Note that the en-
tropy of the single-point distribution is zero, i.e., H(μ̄) = 0. By
Lemma 6 and the definition of πN , we obtain that πN optimizes
F (·). Therefore,

1

N
F (πN) ≥ 1

N
F (μ̄)

=
1

N
Q(Nx̄∗) + H(μ̄)

≥ q(x̄∗) − O

„
log N

N

«

= q(x∗) − O

„
log N

N

«
. (11)

Now, suppose that πN places some mass, say πN(Aε), over set Aε

as defined in Lemma 7. It then follows from Lemma 6 that
1

N
F (πN) =

1

N
E [Q(N ·)] +

1

N
H(πN). (12)

The support of πN is over at most O(NK) elements. By standard
bounds on entropy, we have H(πN) = O(log N). Using this and
inequality (10) in (12), it follows that

1

N
F (πN ) ≤ q(x∗) + O

„
log N

N

«
− ε2πN(Aε)

C∗
. (13)

From (11) and (13), we then have

πN(Aε) = O

„
ε−2 log N

N

«
, (14)

which completes the proof of Lemma 7.

5.1.4 Completing proof of Theorem 1
Using εk = k

q
log N

N
for the value of ε in the conclusion of

Lemma 7, then from (14) we obtain

πN (|xr − x∗
r| > εk) = O

„
1

k2

«
, (15)

which immediately implies

E [|xr − x∗
r|] = O

 r
log N

N

!
×O

 X
k

1

k2

!
= O

 r
log N

N

!
.

Thus,

E[|xr − x∗
r|] = O

 r
log N

N

!
,

and since Lr = 1 − E[xr]
νr

, we have

|Lr − L∗
r | =

E[|xr − x∗
r|]

νr
= O

 
1

νr

r
log N

N

!
.

This completes the proof of Theorem 1.

5.1.5 Additional result: Value of log G(NC)

The above results (specifically, Lemma 6 and Lemma 7), lead
to a sharp characterization of log G(NC) for the scaled system as
expressed in the following lemma.

LEMMA 9.˛̨̨
˛ 1

N
log G(NC) − max

x∈S̄(C)
q(x)

˛̨̨
˛ = O

„
log N

N

«
.

PROOF. From Lemma 6, we have

log G(NC)

N
=

1

N
max

μ∈M(NC)
F (μ)

= max
μ∈M(NC)

X
x∈SN (C)

μ(Nx)
Q(Nx)

N
+

H(μ)

N
.(16)

The support of μ is over at most O(NK) elements. By standard
bounds on entropy, we have H(μ) = O(log N). Then (7) yields

log G(NC)

N
= max

μ

2
4 X

x∈SN (C)

q(x)μ(S)

3
5+ O

„
log N

N

«
.

Now any x ∈ S̄(C) can be approximated by x ∈ SN(C) so that

|x − x̂| = O

„
1

N

«
.

Since the function q(·) is continuous and it has bounded derivatives
on S̄(C), we have

|q(x) − q(x̄)| = O

„
1

N

«
. (17)

Then

max
μ

X
x∈SN (C)

q(x)μ(x) = max
x∈SN (C)

q(x), (18)

and from (17) and (18) we obtain the desired conclusion˛̨̨
˛ 1

N
log G(NC) − max

x∈S̄(C)
q(x)

˛̨̨
˛ = O

„
log N

N

«
.

5.2 Proof: Theorem 2
Kelly proves in [11] that, for any route r,

‖(1 − Lε,N
r ) − x∗

r

νr
‖ = O

„
1

N

«
. (19)

Hence, the following lemma together with (1) and (19) establishes
Theorem 2.

LEMMA 10. When the vector ν lies on the boundary of S̄(C),‚‚‚‚
„

EN [xr]

νr

«
r

−
„

x∗
r

νr

«
r

‚‚‚‚
2

= Ω

 r
1

N

!
, (20)

where (EN [xr]
νr

)r = ( EN [x1]
ν1

, EN [x2]
ν2

, . . .) is the vector consisting
of the expectations for the routes in the scaled (discrete) system

with parameter N , and (
x∗

r
νr

)r = (
x∗
1

ν1
,

x∗
2

ν2
, . . .).



PROOF. First, note that if we perform a linear transformation on
the probability density function π̄N so that each coordinate r ∈ R
becomes multiplied by 1

νr
, then the value Eπ̄N [xr] becomes ex-

actly multiplied by a factor of 1
νr

after the transformation. Sim-
ilarly the value x∗

r also becomes exactly multiplied by a factor
of 1

νr
after the transformation. Therefore, we may assume that

ν = (1, 1, . . . , 1) (and hence νN = (N, N, . . . , N)) to prove
Lemma 10. Further note that when ν lies on the boundary of S̄(C),
x∗ = ν.

Next, given a scaling parameter N , consider the following con-
tinuous probability distribution π̄N on S̄(C), which is an approxi-
mation of πN : For x ∈ S̄(C), define

π̄N (x) =
1

Ḡ(C, N)
exp(qN (Nx)),

where

qN (x) =
X

r

„
xr log Nνr + xr − xr log xr − 1

2
log xr

«
,

and Ḡ(C, N) is the normalizing constant.

CLAIM 11. For any r ∈ R,

|Eπ̄N [xr] − EN [xr]| = O

„
1

N

«
.

PROOF. Let r ∈ R be fixed, and recall that

Eπ̄N [xr] =

Z
S̄(C)

xrπ̄N(x)dx,

EN [xr] =
X

x∈SN (C)

xrπN(x).

Now, consider the following probability distribution π̂N on SN(C):
For x ∈ SN(C), define

π̂N (x) =
1

Ĝ(C,N)
π̄N(x),

where Ĝ(C, N) is the normalizing constant. Noting from Stirling’s
approximation that

log M ! = M log M − M +
1

2
log(2πM) + O(

1

M
),

we then obtain for some constant C̃N (which is independent of x
and dependent on N ) and for all x ∈ SN(C) such that xr > 0.01
for all r ∈ R

π̄N (x) = C̃N

„
1 + O

„
1

N

««
πN(x). (21)

Further note that for x ∈ SN(C) such that xr ≤ 0.01 for some
r ∈ R, we have ‖x− ν‖2 ≥ 0.99, and by the same argument as in
Lemma 8, we have for some constant Ĉ > 0 and some x̂ ∈ SN(C)
such that ‖x̂ − ν‖ = O

`
1
N

´
πN (x) ≤ πN (x̂) exp(−NĈ). (22)

Once again, from Stirling’s approximation, for all x ∈ SN(C) such
that xr ≤ 0.01 for some r ∈ R,

π̄N(x) = C̃NΘ(πN(x)), (23)

where C̃N is the same constant as in (21). Hence, from (21), (22)
and (23) we obtain

Eπ̂N [xr] =

„
1 + O

„
1

N

««
EN [xr]. (24)

Next, for any route r ∈ R, if we consider π̄N as a one-variable
function of xr (for any fixed values of the other xi’s for i ∈ R,
i 
= r), then π̄ is a concave function of xr. Therefore, by standard
Riemannian integration arguments, we have

Eπ̄N [xr] =

Z
S̄(C)

xrπ̄N (x)dx

=
X

x∈SN (C)

xrπ̂N(x) + O

„
1

N

«
= Eπ̂N [xr]. (25)

Claim 11 follows from (24) and (25).

From Claim 11, to prove Lemma 10, it suffices to show that

‖Eπ̄N [xr] − ν‖2 = Ω

„
1√
N

«
. (26)

Define

S � {v ∈ SK : S̄(C) ∩ (ν + tv) 
= ∅ for some t > 0},
where SK is the unit sphere in R

K . Now, for a given v ∈ S and
t ∈ [0, tv) where tv = sup{t ∈ R+ : (ν + tv) ∈ S̄(C)}, define

gN(v, t) � exp(qN (N(ν + tv))).

Then from spherical integration, we obtain

Eπ̄N [x] =

R
S

R tv

0
(ν + tv)gN(v, t)tK−1dt dvR

S

R vt

0
gN(v, t)tK−1dt dv

= ν +

R
S

v
R tv

0
gN (v, t)tKdt dvR

S

R vt

0
gN (v, t)tK−1dt dv

,

and thus

‖Eπ̄N [x] − ν‖2 =

‚‚‚‚‚
R

S
v
R tv

0
gN(v, t)tKdt dvR

S

R tv

0
gN(v, t)tK−1dt dv

‚‚‚‚‚
2

. (27)

Next, we prove the following lemma, which will be crucial in
proving (26).

LEMMA 12. Let the polytope S̄(C) and an integer � be given.
If N is large enough, then for all v ∈ SZ tv

0

gN (v, t)t�dt = Θ

 
N− K

2 exp(NK)
Γ
`

�+1
2

´
N

�+1
2

!
,

where Γ(·) is the Gamma function, and the constant hidden in Θ(·)
is uniformly bounded over all v ∈ S.

PROOF. First, note that since S̄(C) is a polytope having finitely
many faces, there exists a constant δ > 0 such that for all v ∈ S
and t ∈ (0, δ), ν + tv ∈ S̄(C). Then

gN(v, t) = exp(N
X

r

(νr + vrt)(1 + log(Nνr))

−N
X

r

(νr + vrt)(log N + log(νr + vrt))

−1

2

X
r

log N(νr + vrt))

= exp(N
X

r

(νr + vrt)(1 + log νr − log(νr + vrt))

−K

2
log N −

X
r

log(νr + vrt))

= exp(Nq(ν + tv) − K

2
log N −

X
r

log(νr + vrt)),



where

q(x) =
X

r

(xr + xr log νr − xr log xr).

By Lemma 8, we obtain for all v ∈ S and t ∈ (0, tv)

gN (v, t) = N−K/2

 Y
r

(νr + vrt)

!
(exp(Nq(ν + tv)))

= N−K/2

 Y
r

(νr) + O
“
t + tK

”!
(exp(Nq(ν + tv)))

≤ N−K/2
“
1 + O

“
t + tK

””
exp(Nq(ν)) exp(−Nt2/C∗)

= gN (v, 0) exp
`−Nt2/C∗´ “1 + O

“
t + tK

””
,

where C∗ = max{Cj}. Next, we will set δ = N− 1
3−0.01. Then

when N is sufficiently large, for all v ∈ S and t ∈ (δ, tv), we have

gN(v, t) ≤ gN(v, 0) exp
`−Nδ2/(2C∗)

´
, (28)

and thus Z tv

0

gN(v, t)t�dt = Θ

„Z δ

0

gN (v, t)t�dt

«
. (29)

Now, for all t ∈ [0, δ], we obtain

gN (v, t) = exp(N
X

r

(νr + vrt)(1 + log νr − log(νr + vrt))

−K

2
log N −

X
r

log(νr + vrt))

= N− K
2
Y

r

(νr + vrt)

· exp

 
N
X

r

(1 + vrt)
`
1 − vrt + v2

r t2/2 + O
`
t3
´´!

= N− K
2 (1 + O(t)) exp

 
N
X

r

(1 − v2
rt2/2 + O

`
δ3´)

!

= N− K
2 (1 + O(δ)) exp

`
KN − t2N/2 + N · O `δ3´´ .

Then the following holds for any sufficiently large N and for all
v ∈ SZ δ

0

gN(v, t)t�dt = Θ

„
N− K

2 exp(KN)

Z δ

0

exp(−t2N)t�dt

«
. (30)

If N is sufficiently large, we haveZ δ

0

exp(−t2N)t�dt = Θ

„Z ∞

0

exp(−t2N)t�dt

«
, (31)

and from the formula

Γ(z) = 2

Z ∞

0

exp(−y2)y2z−1dy,

upon substituting y =
p

N/2t, we obtainZ ∞

0

exp(−t2N)t�dt =
Γ
`

�+1
2

´
N

�+1
2

. (32)

From (29), (30), (31) and (32), we complete the proof of Lemma 12.

Finally, let T be a tangent plane of S̄(C) at the point ν and let
w ∈ SK be a unit vector that is perpendicular to T and that satisfies

v · w ≥ 0, for any v ∈ S. Then, from (27), we have

‖Eπ̄N [x] − ν‖2 =

‚‚‚‚‚
R

S
v
R tv

0
gN(v, t)tKdt dvR

S

R tv

0
gN (v, t)tK−1dt dv

‚‚‚‚‚
2

≥
˛̨̨
˛̨w ·

R
S

v
R tv

0
gN (v, t)tKdt dvR

S

R tv

0
gN(v, t)tK−1dt dv

˛̨̨
˛̨

=

˛̨̨
˛̨
R

S
w · v R tv

0
gN(v, t)tKdt dvR

S

R tv

0
gN(v, t)tK−1dt dv

˛̨̨
˛̨

=

Θ

„
N− K

2 exp(NK)
Γ(K+1

2 )

N
K+1

2

«R
S

v · w dv

Θ

„
N− K

2 exp(NK)
Γ( K

2 )

N
K
2

«R
S

1 dv

= Θ

 r
1

N

!
, (33)

where we used Lemma 12 and the facts that
R

S v·w dv
R
S 1 dv

= Θ(1) and

Γ(K+1
2 )

Γ(K
2 )

= Θ(1). From (33) we obtain (26), which completes the

proof of Lemma 10.

5.3 Proof: Theorem 3
Theorem 1 implies that the actual loss probability LN

r , r ∈ R, is
given by

LN
r = 1 − x∗

r

νr
+ O

 r
log N

N

!
.

Therefore, the proof of Theorem 3 will be implied by showing that
for all r ∈ R

LS,N
r = 1 − x∗

r

νr
+ O

 r
log N

N

!
. (34)

This result is established next where the proof crucially exploits our
concentration Lemma 7.

From the definition of the “slice method”, the estimated loss
probability LS,N

r is defined as

LS,N
r = 1 − 1

νr

P
k k exp(q(x∗(k, r)))P
k exp(q(x∗(k, r)))

. (35)

Recall that x∗(k, r) is the solution of the optimization problem

maximize q(x)

over x ∈ S̄(C) & xr = k,

further recalling the definition of the function q(·) as

q(x) =
X

r

xr log νr + xr − xr log xr.

Now, consider a route r ∈ R. In the rest of the proof, we will use

ε =

r
2C∗ log N

N
,

where C∗ = maxj Cj . Further define the following useful subsets

S(r,N) � {nr : n ∈ SN (C)} ,

Sε(r,N) � {k ∈ S(r, N) : ‖x∗(k, r) − x∗‖ ≤ ε} ,

Sc
ε(r,N) � {k ∈ S(r, N) : ‖x∗(k, r) − x∗‖ > ε} .

Next, we note two facts that will be used to prove appropriate
lower and upper bounds which yield the desired result (34).



1. Lemma 8 and the above definitions imply that, for k ∈ Sc
ε(r,N),

exp
“
Nq(xk

r )
”

≤ 1

N2
exp (Nq(x∗)) . (36)

2. It is easy to see there exists k ∈ Sε(r, N) such that

‖x∗(k, r) − x∗‖ = O

„
1

N

«
.

For this k, we have

exp (Nq(x∗(k, r))) = Θ (exp(Nq(x∗))) . (37)

5.3.1 Use of (36)-(37): Lower bound
Since |S(r, N)| = O(N) in the scaled system, (36) and (37)

imply that

X
k∈Sc

ε(r,N)

exp(Nq(x∗(k, r)))

= O

„
exp(Nq(x∗))

N

«

≤ O

0
@ 1

N

X
k∈Sε(r,N)

exp(Nq(x∗(k, r)))

1
A . (38)

From (38), the value of ε and the above subset definitions, we ob-
tain the following sequence of inequalities:

P
k∈S(r,N) k exp(Nq(x∗(k, r)))P
k∈S(r,N) exp(Nq(x∗(k, r)))

≥
P

k∈Sε(r,N) k exp(Nq(x∗(k, r)))P
k∈S(r,N) exp(Nq(x∗(k, r)))

≥
P

k∈Sε(r,N) k exp(Nq(x∗(k, r)))

(1 + O(1/N))
“P

k∈S(r,N) exp(Nq(x∗(k, r)))
”

≥ 1

1 + O(1/N)
(x∗

r − ε)

= x∗
r − O

 r
log N

N

!
. (39)

5.3.2 Use of (36)-(37): Upper bound
For all k ∈ Sc

ε(r, N), |k| is bounded by some constant, and
therefore we have

X
k∈Sc

ε(r,N)

k exp(Nq(x∗(k, r)))

= O

„
exp(Nq(x∗))

N

«

≤ O

0
@ 1

N

X
k∈Sε(r,N)

exp(Nq(x∗(k, r))

1
A . (40)

From (40) and the definition of ε, we obtainP
k∈S(r,N) k exp(Nq(x∗(k, r)))P
k∈S(r,N) exp(Nq(x∗(k, r)))

≤
P

k∈S(r,N) k exp(Nq(x∗(k, r)))P
k∈Sε(r,N) exp(Nq(x∗(k, r)))

≤ (1 + O(1/N))

P
k∈Sε(r,N) k exp(Nq(x∗(k, r)))P
k∈Sε(r,N) exp(Nq(x∗(k, r)))

≤ (1 + O(1/N))(x∗
r + ε)

= x∗
r + O

 r
log N

N

!
. (41)

Finally, equations (39) and (41) together with (35) imply (34), thus
completing the proof of Theorem 3.

5.4 Proof: Theorem 5
From Theorem 1 and (19), the error for the Erlang fixed-point

approximation is O(
p

log N/N) for a scaled system with parame-
ter N . Namely, the unique set of blocking probabilities Ej satisfies

|1 − LN
r −

Y
j

(1 − Ej)
Ajr | = O

 r
1

N

!
.

Hence, for any small positive number ε > 0, there exists δ(N) > 0
such that

|1 − LN
r −

Y
j

(1 − Ej)
Ajr | ≤ δ(N)N−1/2+ε.

We therefore have

log(1 − LN
r − δ(N)N−1/2+ε) ≤

X
j

Ajr log(1 − Ej),

and then the inequality log(1 − Ej) ≤ −Ej yields

log(1 − LN
r − δ(N)N−1/2+ε) ≤ −

X
j

AjrEj . (42)

Meanwhile, we know that Ej is the solution to the Erlang fixed-
point equations

Ej = E(ρN
j , CN

j )

where

ρN
j =

X
r

NνrAjr

Y
i�=j

(1 − Ei)
Air , (43)

which is a polynomial of Ej . Although the Erlang formula itself
is in a complicated form, this connection enables us to apply the
arguments for the one-dimensional relationship between blocking
probability and capacity demonstrated in (2). Hence, we obtain

ρN
j (1 − Ej) < CN

j < ρN
j (1 − Ej) + 1/Ej ; (44)

see Theorem 2.1 in [1]. Note that, for each j = 1, 2, · · · , J , (44)
breaks into one linear inequality and one quadratic inequality of
CN

j and Ej . This completes the proof of Theorem 5.

6. EXPERIMENTS
The main contributions of this paper are the theoretical results

presented in Sections 3 – 5. However, to illustrate and quantify the
performance of our family of slice methods, we consider two dif-
ferent sets of numerical experiments. The first is based on a small



canonical loss network topology that is used to investigate the fun-
damental properties of our slice methods and previous approaches
with respect to the scaling parameter N . Then we turn to consider
a large set of numerical experiments based on workforce manage-
ment applications in the IT services industry using real-world data.

6.1 Small loss networks
We consider a small canonical loss network topology comprised

of two routes and three links, as illustrated in Figure 1. Both routes
share link 2 with links 1 and 3 dedicated to routes 1 and 2, respec-
tively. More precisely, the network is defined by

A =

2
41 0
1 1
0 1

3
5 and C =

2
42

3
2

3
5 .

Link 1 Link 2 Link 3

Route 1

Route 2

Figure 1: Illustration of the small canonical network model.

In our first collection of experiments, we set ρ1 = 2, ρ2 = 1.
The loss probabilities for this network model instance are then com-
puted using our general slice method, the Erlang fixed-point ap-
proximation, and the 1-point approximation, where the loss prob-
abilities in each case are considered as a function of the scaling
parameter N . Note that, in this small model, the results from the
3-point slice method are identical to those from the general slice
method, since the trace of the maximizer point for each slice in the
general slice method indeed forms a linear interpolation of the three
points. We also directly compute the exact loss probability by brute
force and then obtain the average error (over both routes) for each
method. These results are presented in Figure 2.

10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N

E
rr

or

 

 

1−point
slice
Erlang

Figure 2: Average error of loss probabilities computed for each
method as a function of the scaling parameter N .

First, we observe that the slice method performs better than the
1-point approximation method for every scaling value N . This re-
sult is as expected since the slice method utilizes more informa-
tion about the probability distribution of the underlying polytope

than the 1-point method. Second, it is quite interesting to ob-
serve that the Erlang fixed-point method initially performs better
than the slice method in the small scaling region, whereas the slice
method eventually provides the best performance among the ap-
proximation methods in the larger scaling region and the perfor-
mance ordering among the methods shown for N = 70 continues
to hold for N > 70. To understand this phenomena, note that as a
function of the scaling with respect to N , the output of the Erlang
fixed-point method converges to that of the 1-point approximation
method on the order of O

`
1
N

´
and the errors of the 1-point ap-

proximation method are given by Ω
“q

1
N

”
, as established in The-

orem 2. Moreover, when N becomes larger the error of the slice
method becomes smaller than that of the Erlang fixed-point method
because the error of the 1-point approximation method is roughly a
constant times that of the slice method for every sufficiently large
N (as seen in Figure 2). Finally, while the asymptotic exactness of
the Erlang fixed-point approximation is associated with the 1-point
approximation method, Figure 2 also illustrates some of the com-
plex characteristics of the Erlang fixed-point approximation in the
non-limiting regime.

We also consider a second collection of experiments representing
the symmetric case of ρ1 = ρ2 = 1.5. These results exhibit the
same trends as in the asymmetric case, and hence are omitted.

6.2 Larger real-world networks
Numerical experiments were also conducted for a large number

of real-world loss network instances taken from various resource
planning applications within the context of workforce management
in the IT services industry. In each of these applications, the net-
work routes represent various IT service products and the network
links represent different IT resource capabilities. The various data
sets comprising these model instances were obtained from actual
IT service companies. First, we generally note that our results
from such real-world model instances exhibit trends with respect
to the scaling parameter N that are similar to those presented in
Section 6.1 for a much simpler canonical model which captures
fundamental properties of stochastic loss networks.

In the remainder of this section we shall focus on two represen-
tative model instances and present the details of our comparative
findings among the slice methods and previous approaches. The
first model instance consists of 37 routes and 84 links, whereas the
second model instance consists 110 routes and 132 links. In both
data sets, the arrival rate vector ν happens to lie on the boundary of
S(C). Figure 3 depicts the sparsity plot for the A matrix of the first
model together with the corresponding distributions for the number
of routes per link and the number of links per route. Figures 4 and
5 present the same information for the second model instance.

The loss probabilities are computed for each loss network model
instance using our general slice method, our 3-point interpolation
slice method, and the Erlang fixed-point approximation. Since all
of the real-world model instances are too large to numerically com-
pute the exact solution, we use simulation of the corresponding loss
network to estimate the exact loss probabilities within tight confi-
dence intervals. The average error (over all routes) and the individ-
ual per-route errors are then computed for each method in compar-
ison with the exact loss probabilities, where the former results are
summarized in Table 1.

The improvements in the approximation errors provided by the
general slice method and the 3-point slice method over the Erlang
fixed-point method are presented in Figures 6 and 7. Specifically,
we plot the relative improvement Ir in the approximation error for
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Figure 3: Sparsity plot and distributions of routes/link and
links/route for the first model instance.
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Figure 4: Sparsity plot for the second model instance.

each route r that is obtained with both slice methods, where

Ir :=
|LE

r − Lr| − |LS
r − Lr|

Lr
(45)

with LE
r and LS

r denoting the route-r loss probability from the Er-
lang fixed-point approximation and from one of the slice methods,
respectively, and Lr denoting the exact loss probability for route r.
Hence, a positive relative improvement Ir quantifies the benefits
of the slice method, a negative relative improvement Ir quantifies
the benefits of the Erlang fixed-point approximation, and Ir = 0
indicates equivalent results from both methods. The average rel-
ative improvement (over all routes) of I = 0.49 for the 3-point
slice method in model instance 1 is shown by the horizontal line in
Figure 6, and the average relative improvements (over all routes) of

Erlang slice method 3-point slice

Model instance 1 0.3357 0.1720 0.1720
Model instance 2 0.3847 0.0923 0.1148

Table 1: Average error of loss probabilities for each method.
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Figure 5: Distributions of routes/link and links/route for the
second model instance.

I = 0.76 and I = 0.70 for the general and 3-point slice methods
in model instance 2, respectively, are shown by the points on the
y-axis in Figure 7. We note that, in the first model instance, the
general slice method and the 3-point slice method provide identical
loss probabilities for all routes with one exception where the differ-
ence between the loss probabilities from the slice methods for this
one route is quite small. Therefore, only the results for the 3-point
slice method are presented in Figure 6.
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Figure 6: Relative improvement of the approximation errors in
loss probabilities for model instance 1.

It can be clearly observed from the results in Figures 6 and 7
that the average relative improvements of our slice methods over
the Erlang fixed-point approximation are quite significant. Even
more importantly, we observe that the relative improvements for
the individual routes are consistently and significantly better under
both slice methods. In particular, the general (respectively, 3-point)
slice method provides the exact loss probabilities for 98 (respec-
tively, 93) of the 110 routes, while the Erlang fixed-point approx-
imation never provides exact results, in model instance 2 and the
3-point slice method provides the exact loss probabilities for 10 of
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Figure 7: Relative improvement of the approximation errors in
loss probabilities for model instance 2.

the 37 routes, while the Erlang fixed-point approximation provides
the exact results for 5 of these 10 routes, in model instance 1. Note
that when LS

r = Lr , the relative error for the Erlang fixed-point
approximation, LE

r /Lr , is equal to 1 + Ir (respectively, 1 − Ir)
when LE

r > Lr (respectively, LE
r < Lr). In all of the cases where

Ir = 1.0, which represents a considerable number of routes in
model instance 1 and the overwhelming majority of routes in model
instance 2, both slice methods provide the exact loss probability for
route r while the Erlang fixed-point approximation yields LE

r = 0,
even though the exact loss probabilities for these routes span the
full range of values in (0, 1). The loss probability estimates for a
few routes are better under the Erlang fixed-point approximation
than under the slice methods, but such routes are clearly in the mi-
nority representing a single route in model instance 1 and less than
6.5% of the routes in model instance 2.

The above results for two representative examples of a large
number of loss networks taken from real-world workforce man-
agement applications clearly illustrate and quantify the benefits of
our family of slice methods over the classical Erlang fixed-point
approximation, at least for the class of loss networks considered.

7. CONCLUSION
Stochastic loss networks have emerged in recent years as canoni-

cal models for a wide variety of multi-resource applications, includ-
ing telephone and communication networks, computer systems, and
inventory management and workforce management systems. One
of the main performance measures of interest in such applications is
the stationary loss probability for each customer class. The Erlang
fixed-point approximation is the most popular approach for com-
puting these loss probabilities. However, it is well known that this
approximation can provide relatively poor results for various model
instances. In particular, we found that the Erlang fixed-point ap-
proximation can provide relatively poor loss probability estimates
when the network is critically loaded, which is often the natural
regime for stochastic loss models of many applications.

Given this motivation, we proposed a general algorithm for es-
timating the stationary loss probabilities in loss networks based on
the properties of “slices” of the exact stationary distribution along
the polytope over which it is defined. We established that our al-
gorithm always converges with an exponentially fast rate, where

convergence comparisons favor our slice method approach over the
Erlang fixed-point approximation. Through a variational character-
ization of the stationary distribution, we further established that the
loss probabilities from our slice method are asymptotically exact.
Using this characterization, we also provided an alternative proof
of an important result due to Kelly [11], which is simpler and of
interest in its own right. Numerical experiments investigate various
issues of both theoretical and practical interest. Our general slice
method provides an effective approach for computing accurate es-
timates of the stationary loss probabilities in loss networks.

Stochastic loss networks are often the underlying model in a
wide variety of resource allocation and capacity planning problems.
One of the difficulties of such optimization problems concern their
large feasible regions and the lack of known structural properties on
the relationships among resource capacities and loss probabilities
for searching through the feasible region. Although bounds on the
resource capacity required to achieve a loss probability constraint
have been established in the single-resource, single-class case, the
corresponding bounds for the multidimensional version represent a
significantly more difficult problem. To address this problem, we
determined structural properties for the region of resource capaci-
ties that ensures offered traffic will be served within a given set of
loss probabilities. In addition to the theoretical characterization of
relationships between the link capacity and loss probability vectors,
our results can be exploited to efficiently search the feasible region
of many optimization problems involving stochastic loss networks.
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