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ABSTRACT
Many people desire ubiquitous access to their personal com-
puting environments. We present a system in which a user
leverages a personal mobile device to establish trust in a
public computing device, or kiosk, prior to resuming her
environment on the kiosk. We have designed a protocol
by which the mobile device determines the identity and in-
tegrity of all software loaded on the kiosk, in order to inform
the user whether the kiosk is trustworthy. Our system ex-
ploits emerging hardware security technologies, namely the
Trusted Platform Module and new support in x86 processors
for establishing a dynamic root of trust. We have demon-
strated the viability of our approach by implementing and
evaluating our system on commodity hardware. Through a
brief survey, we found that respondents are generally willing
to endure a delay in exchange for an increased assurance of
data privacy, and that the delay incurred by our unoptimized
prototype is close to the range tolerable to the respondents.
We have focused on allowing the user to personalize a kiosk
by running her own virtual machine there. However, our
work is generally applicable to establishing trust on public
computing devices before revealing any sensitive information
to those devices.
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1. INTRODUCTION
Public computing kiosks, such as a rental computer at an

Internet café, are widely used because they provide users a
convenient and powerful computing platform without requir-
ing them to carry cumbersome and costly portable comput-
ers such as laptops. Unfortunately, being general-purpose
computers, kiosks are susceptible to a wide variety of at-
tacks that can compromise the privacy of the user’s data
and the integrity of her computations. Consequently, the
user would like assurance that a kiosk has not been compro-
mised before entrusting to it any personal data or computa-
tions. The owner of a kiosk similarly wants to ensure that
it is not used to perform malicious acts for which he may be
liable. Current kiosks do not provide such assurances.

Securing a public kiosk is a daunting task. An attacker
may, for example, install a malicious program such as a
keystroke logger, insert a rogue virtual machine monitor
(VMM) that can observe and modify an otherwise legiti-
mate software environment, compromise modifiable software
or firmware such as the BIOS, or add malicious hardware
such as a USB sniffer. Each of these attacks poses difficult
challenges. In this work we focus on detecting any malicious
software loaded by the kiosk, including a rogue VMM and a
compromised BIOS. Software attacks are far more common
than hardware attacks and an important threat in their own
right. We believe that our work meaningfully increases the
level of trust that users can place in kiosks.

This paper presents a system, depicted in Figure 1, in
which a user leverages a personal mobile device, such as a
smartphone, to gain a degree of trust in a kiosk prior to using
the kiosk. In the context of computer systems, trust is the
expectation that a system will faithfully perform its intended
purpose [10]. We refer to a kiosk as trustworthy if we have
verified the identity and integrity of all software loaded on
it. Our system aims to increase trustworthiness without
compromising functionality—the user should be able to use
the full computing and I/O capabilities of the kiosk. We
assume that the mobile device is a priori trustworthy. Mobile
device security is itself an important issue that we do not
address here except to argue, as others have done [4, 21, 26],
that a user can place a greater degree of trust in a personal
mobile device than in a general-purpose computer or public
kiosk.

We have designed a protocol by which the mobile device
verifies that the kiosk has loaded only trustworthy software.
The user’s involvement in the protocol is limited to using
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Figure 1: Kiosk computing scenario

the device to take a photo of a barcode, choose a desired
software configuration, and view the result of the protocol.
If the protocol succeeds, the user can proceed to use the
kiosk. If the protocol fails, the user can walk away. Our
design also allows a supervisor machine, acting on behalf of
the kiosk owner, to use a subset of the protocol to verify that
the kiosk has loaded only approved software. If unapproved
software is found, the owner can disable the kiosk, e.g., by
removing it from the network.

Our system employs a number of emerging security tech-
nologies. We utilize new x86 processor support for estab-
lishing a dynamic root of trust on commodity platforms that
incorporate AMD’s Secure Virtual Machine Technology [8]
or Intel’s Trusted Execution Technology [11]. We also use
the Trusted Platform Module (TPM) [10] together with the
Integrity Measurement Architecture (IMA) [23] to provide
both user and owner with proof that only trustworthy soft-
ware has been loaded.

We focus on using virtual machines to enable the user
to resume a complete personal computing environment that
includes her choice of operating system, applications, set-
tings, and data. Internet Suspend/Resume (ISR) [14] and
SoulPad [7] are two solutions based on running users’ vir-
tual machines on kiosks. Our work resolves important se-
curity issues left open by both approaches. In particular,
we eliminate blind trust in any software component on the
kiosk, including the BIOS, and we prevent the attack where
a rogue virtual machine monitor runs below an unsuspecting
user environment [13].

Our main contributions are the following:

• The design of a protocol by which a user leverages a
personal mobile device to establish trust on a public
computing device prior to revealing any personal in-
formation to the public device (Section 4).

• The implementation, using commodity components, of
a trustworthy kiosk computing system that embodies
this design (Section 5).

In a short position paper [9], we previously presented a
preliminary design and implementation of our system, and
identified a number of open issues. This paper improves
upon our earlier work by presenting a more complete design,
implementation, and evaluation of our system. In particular,
this paper additionally presents:

• A practical procedure for distributing a database of fin-
gerprints of trusted software components (Section 4.2).

• A solution to the kiosk-in-the-middle attack that uses
a visual channel to identify the particular kiosk in front
of the user (Section 4.3.1).

• How to set up a secure channel between the phone
and kiosk for the transmission of private data (Sec-
tion 4.3.4).

• How to securely establish a personalized computing en-
vironment on the kiosk by resuming a virtual machine
there (Sections 4.3.6 and 5.3).

• A procedure for purging any personal data that may
reside on a kiosk when a user finishes using it (Sec-
tion 4.3.7).

• An evaluation of user expectations in the kiosk sce-
nario together with relevant performance characteris-
tics of our prototype system (Section 6).

2. USER EXPERIENCE
To provide context for the rest of this paper, we begin

with an overview of how a user interacts with our trustwor-
thy kiosk computing system. We believe this interaction is
simple enough that it does not place an undue burden on
the user while providing important security functionality.

Figure 2 shows a timeline of the steps a user follows after
stepping up to a kiosk that she intends to use. First, she
makes the identity of the kiosk known to her mobile phone.
We propose for kiosk owners to display a numerical identifier
on the outside of the kiosk in barcode form. The user cap-
tures the contents of the barcode using the digital camera
available on modern phones [17].

Second, the phone presents the user with a list of software
configurations available on the kiosk. Figure 3(a) is an ex-
ample of a mobile phone screen that presents these choices
to the user. In this example, there are two choices, a person-
alized computing environment to be provided by the user, or
a standard set of applications provided by the kiosk owner.
The user selects the configuration she wants to use, and the
phone forwards the choice to the kiosk.

Third, the user simply waits while the phone and kiosk
carry out the rest of our trust establishment protocol, which
we will describe in detail in Section 4. At the completion of
this protocol, the phone announces to the user that the kiosk
is either untrustworthy or trustworthy. Figures 3(b) and 3(c)
show examples of these two cases. If the kiosk is declared
untrustworthy, the user can walk away before divulging any
personal information to the kiosk. If the kiosk is declared
trustworthy, the user can proceed to use the kiosk.

Fourth, Figure 2 depicts what we consider to be a particu-
larly compelling example of kiosk computing, namely when
the user runs a personal virtual machine on the kiosk. Vir-
tual machines enable users to run complete and highly cus-
tomized computing environments on a wide range of hard-
ware machines, including public kiosks. However, a virtual
machine can contain a great deal of personal information,
and therefore the user should only run virtual machines on
trustworthy kiosks. Figure 3(d) shows a mobile phone screen
that gives the user a choice of virtual machines to run on
the kiosk. This step is unnecessary if the user earlier chose
to use standard software provided by the kiosk instead of a
personalized environment.
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Figure 2: Timeline for use of a trustworthy and personalized kiosk
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Figure 3: Mobile device screens seen by a user when interacting with a kiosk

Fifth, the user proceeds to work on the kiosk. Finally, the
user logs out of the kiosk, which triggers cleanup operations
to make the kiosk ready for the next user.

3. BACKGROUND
This section provides technological background that is

useful in understanding the rest of the paper.

Trusted Platform Module (TPM).
The TPM [10] is a hardware component that is increas-

ingly available in personal computers and servers at a frac-
tion of the cost of other secure hardware, such as a copro-
cessor. It provides a variety of security functions, includ-
ing cryptographic primitives, such as signatures, and secure
storage for small amounts of data, such as cryptographic
keys. The TPM is resistant to software attacks because it is
implemented in hardware and presents a carefully designed
interface.

Especially notable is the TPM’s ability to store crypto-
graphic hashes, or measurements, of software components in
a set of Platform Configuration Registers (PCRs). PCRs
are initialized at boot and may not be otherwise reset, with
one important exception described below. They may only
be modified via the extend operation, which takes an in-
put value, appends it to the existing value of the PCR, and
stores the SHA1 hash of the result in the PCR. A single
PCR can thus store an aggregate representation of an arbi-
trary sequence of software components. The cryptographic
properties of this operation state that it is infeasible to reach
the same PCR state through different sequences of inputs.

This technique allows the TPM to guarantee the load-time
integrity of running software. This is sufficient to detect the
execution of malicious software (e.g., a keystroke logger), but

the TPM cannot detect compromises, such as buffer overflow
attacks, that occur after software is loaded. Providing strong
run-time guarantees is an area of active research (cf. [25]).

Each TPM has a variety of associated keys; we limit our
discussion to the asymmetric Attestation Identity Key (AIK).
The TPM generates this keypair, and stores the private key
in internal protected storage. The private AIK is used to
sign quotes that attest to the current state of the TPM’s
PCRs. The public AIK is included in an AIK certificate
that provides a binding between a public key and a certified-
legitimate TPM. The reliance on a certification authority is
a commonly perceived weakness of current TPM implemen-
tations.

Integrity Measurement Architecture (IMA).
The TPM may be used to achieve trusted boot, where

measurements stored in PCRs are used to verify that the
software stack through the OS kernel meets expectations.
IMA [23] extends trusted boot by having the OS additionally
measure applications and configuration files. IMA maintains
in software a measurement list containing a text description
and the corresponding hash value of each software compo-
nent that has been measured into the TPM.

IMA further provides an attestation protocol that allows
a remote IMA verifier to challenge the integrity of an IMA
platform. The verifier first sends an attestation request to
the IMA attestation server, which then replies with the cur-
rent measurement list, along with a quote containing an ag-
gregate of the current PCR values, signed by the TPM.
The verifier then uses the measurement list to replay the
sequence of PCR extend operations and verify that the re-
sulting aggregate PCR value agrees with the signed quote.
Finally, the verifier compares the measurement list to a



measurement database of known software, thus verifying the
identity and integrity of software on the challenged system.

Dynamic Root of Trust for Measurement (DRTM).
As mentioned, general PCRs are initialized at boot time

and cannot be reset. Trusted boot uses these PCRs to estab-
lish a static root of trust, which must include all software
loaded since boot, starting with the BIOS. Recent exten-
sions to the x86 architecture support the establishment of a
dynamic root of trust by allowing a special PCR (PCR 17)
to be reset at any time by a special CPU instruction, skinit

in AMD processors and senter in Intel processors. This in-
struction takes as input a 64KB section of code known as
the secure loader, and places the processor in a special state
that guarantees atomicity, e.g., by disabling interrupts. The
instruction then resets PCR 17, measures the secure loader,
extends PCR 17 with this measurement, and transfers con-
trol of the processor to the secure loader.

These three technologies offer distinct benefits in our kiosk
computing scenario. The TPM provides a hardware root of
trust and is thus resistant to software attacks. IMA allows
the kiosk to use the TPM to prove to the user’s phone that
the kiosk has loaded a particular software stack. A DRTM
allows us to remove the BIOS and boot loader from the set
of software that must be measured.

4. SYSTEM DESIGN
This section presents the design of our trustworthy kiosk

system, in particular the trust establishment protocol that
is central to our approach. As shown in Figure 1, our system
consists of a user carrying a mobile device, a kiosk, and a
kiosk supervisor. The mobile device is pre-equipped with an
application that aids the user in ascertaining the trustwor-
thiness of the kiosk. This application incorporates an IMA
verifier. The kiosk is a PC-class platform equipped with a
DRTM-enabled processor and a TPM. The kiosk will addi-
tionally run an IMA attestation server and a front-end for
talking to the mobile device. The kiosk supervisor may be
any platform capable of running an IMA verifier.

4.1 Threat Model
Our system aims to protect the confidentiality of the user’s

data in an environment where an attacker is located in close
physical proximity to the kiosk, and may eavesdrop on or
inject messages into any wireless communication between
the mobile device and the kiosk. The attacker may have
unfettered access to the kiosk before the user arrives and
after the user leaves (including knowledge of the root pass-
word), and has computational and communication resources
roughly equivalent to that of a desktop PC (i.e., insufficient
to break any underlying cryptographic primitives).

The user must trust the kiosk owner to not maliciously
modify the kiosk’s hardware. Furthermore, she must trust
the owner to periodically inspect kiosks to ensure that they
remain unmodified. The user trusts the owner’s intention
to install only benign software on the kiosk, but the TPM
allows her to verify that the owner has done so correctly.

4.2 Measurement Database
The IMA verifier on the mobile device requires access to

a database containing the expected measurements for all
software loaded on the kiosk. In our system, the kiosk pro-

vides the mobile device with this database. This database is
signed by a trusted third party, such as the kiosk’s vendor,
who certifies the trustworthiness of the software identified
in the database. This process assumes that the mobile de-
vice knows the public key of the trusted third party, or can
readily obtain it via a public-key infrastructure.

Maintaining a set of IMA databases for general computing
is onerous because of the variety of software components and
versions that must be tracked. However, several aspects of
our system combine to mitigate this problem. First, kiosks
often have restricted functionality (e.g., a kiosk that loads
only a VMM), which reduces the number of software compo-
nents that must be tracked, especially applications. Second,
establishing a DRTM after the BIOS loads eliminates the
BIOS from the Trusted Computing Base (TCB), which in
addition to gaining the security benefits of a smaller TCB,
implies that the IMA verifier need not track BIOS versions
across different kiosks. Despite being small and relatively
stable, the BIOS poses a unique challenge in that it varies
widely between machines. Third, since the kiosk owner is re-
sponsible for aggregating the requisite database information,
he need only collect information pertaining to his kiosks,
which are likely to have similar configurations.

Whenever the kiosk owner updates the kiosk software, the
owner can identify the installed software to the third party,
who can respond with a signed database containing only
the software present on the kiosk. Since the third party,
through prior communication with software vendors, is likely
to already know the measurements for the software installed
on the kiosk, a signed kiosk-specific database can be created
using an automated process.

4.3 Trust Establishment Protocol
Figure 4 presents our protocol for establishing trust in a

kiosk. The protocol roughly consists of six phases. In the
first phase (Steps 0–3), the phone obtains the public key that
can be used to verify attestations from the kiosk’s TPM.
In the second phase (Steps 4–5), the phone demonstrates
to the kiosk that it is authorized to use the kiosk. In the
third phase (Steps 6–7), the phone and kiosk decide which
software configuration the kiosk should boot. In the fourth
phase (Step 8), the kiosk reboots, establishes a dynamic root
of trust, and loads the desired software. In the fifth phase
(Steps 9–14), the phone utilizes the IMA protocol to verify
the integrity of the kiosk’s software using the public key
obtained in the first phase. If this succeeds, the phone will
deem the kiosk trustworthy, and continue to the final phase,
in which the user interacts with the kiosk (Steps 15–16).

4.3.1 Obtain the public key of the kiosk

Establishing secure communication between two wireless
devices is challenging because the user has little evidence in-
dicating which device is on the other end of the connection.
The solution we adopt is that of McCune et al. [17] in which
the visual channel provided by the phone’s camera is used to
securely obtain the address and public key of the kiosk. Sec-
tion 7 discusses the security ramifications of this approach.
First, the user photographs a barcode affixed to the kiosk
(Step 0). This barcode encodes both the Bluetooth address
of the kiosk and the hash of the Attestation Identity Key
(AIK) certificate of the kiosk. The AIK certificate includes
the public AIK, whose private counterpart the kiosk’s TPM
will use to sign integrity measurements later in the protocol.
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0 hash(AIK Certificate) via camera
�

1 Hello
-

2 AIK Certificate
�

3 Compute hash(AIK Certificate)
Check that hashes match
Verify AIK Certificate

4 User authorization protocol (optional)
-�
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6 Supported configurations
�
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-
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that contains K

Measure C into TPM

9 K, C, measurement DB signed by trusted third party
�

10 IMA attestation request, nonce
-

11 Generate IMA quote:
h←hash(PCR0|| . . . ||PCRN )
q ← sig{h||nonce}AIKpriv

12 IMA measurement list, quote q signed by TPM
�

13 Verify quote with AIK from (2)
Verify C in measurement list

14 Kiosk is trusted

15 Personal data encrypted under K
-

16 User works with kiosk...
User is done
Cleanup

Figure 4: Trust establishment protocol between mobile device and kiosk

After capturing the barcode, the phone will initiate the
protocol with the kiosk (Step 1) using the Bluetooth ad-
dress obtained from the barcode. The kiosk then transmits
its AIK certificate over the wireless channel to the phone,
who verifies the signature on the certificate and that the
hash of the certificate matches the barcode. With current
TPM implementations, verifying the AIK certificate’s signa-
ture requires the phone to know the public key of the cer-
tification authority (known as the Privacy CA) that issued
the certificate. At the conclusion of this phase, the phone
knows the public AIK that the kiosk’s TPM will use to sign
integrity measurements and that the TPM is legitimate.

4.3.2 Demonstrate authority to use the kiosk

In scenarios where kiosk use is restricted to certain indi-
viduals (e.g., paying customers), Step 4 allows the user to
demonstrate authority to use the kiosk. Since the kiosk is
not yet trusted, this scheme should not reveal private infor-
mation about the user. Anonymous proof of payment [6] is
one possibility. Free public kiosks may omit Steps 4 and 5.
At the conclusion of this phase, the kiosk has determined
that the user is authorized.

4.3.3 Select desired configuration

In Step 6, the kiosk provides the phone with a list of con-
figurations that it is prepared to boot. The phone then
prompts the user to select the desired configuration and for-
wards the choice to the kiosk.

4.3.4 Reboot

Figure 5 shows the boot sequence for our kiosk, which dif-
fers from a standard boot sequence by the addition of Steps 2
and 3. Step 2 executes the skinit or senter instruction to es-
tablish a dynamic root of trust and extend a designated PCR
with the digest of the secure loader. Control of the processor
is then transferred to the secure loader (Step 3), which ex-
tends a PCR with the digest of the relevant hypervisor and
OS kernel files. The secure loader then starts the hypervisor
and IMA-enabled kernel, which continues the boot process
by measuring each successive component before loading it.

The BIOS and boot loader are removed from the trusted
computing base by establishing a dynamic root of trust af-
ter they are loaded. Care must be taken to ensure that
the loaded BIOS and boot loader code are not referenced
again—Section 5 explains how this is accomplished. The
boot loader merely reads the relevant kernel files into mem-
ory so that the secure loader does not need to include sup-
port for file systems or storage devices. This use of an un-
trusted boot loader reduces the complexity of the secure
loader, a security-critical component.

After the kiosk boots, it generates a keypair that will allow
the phone to encrypt secrets destined for the kiosk. The
kiosk includes the public key K in a self-signed certificate
C, and extends a PCR with the digest of C. If the phone
later decides that the kiosk is trusted, this will imply that
the kiosk software will not divulge the private key. As the



0 Shut down Hypervisor/OS
1 Run BIOS and Boot Loader
2 Establish DRTM
3 Run Secure Loader
4 Boot Hypervisor/OS

Figure 5: Reboot sequence

keypair is only for this session, the private key should not
be written to stable storage.

4.3.5 Verify the integrity of kiosk software

When the reboot completes, the kiosk alerts the phone
and sends it the self-signed certificate of the newly gener-
ated public key (Step 9) . In this step the kiosk also pro-
vides a signed database of the expected measurements for
the chosen configuration. The phone verifies the database’s
signature using the public key of the trusted third party.
The phone then proceeds to verify the integrity of the soft-
ware loaded in the boot process using the IMA protocol [23]
(Steps 10–12). Briefly, the phone challenges the kiosk to pro-
duce a quote signed by the TPM in Step 10. Step 11 depicts
the creation of this quote. All relevant PCRs are hashed
together along with the nonce from Step 10 and signed by
the TPM using the private AIK. The inclusion of the nonce
prevents the replay of a quote from a previous session, and
the cryptographic properties of the hash function prevent an
alternative boot sequence from producing the same value for
h in Step 11. The kiosk provides the phone with the signed
quote and a measurement list describing the boot sequence
that produced the final PCR values represented in the quote
(Step 12).

To verify that the quote is legitimate (Step 13), the phone
first verifies the signature on the quote using the public por-
tion of the AIK obtained in Step 2. The phone then replays
the series of PCR extensions described in the measurement
list and computes h′ ←hash(PCR0|| . . . ||PCRN ). Both h′

and the nonce supplied in Step 10 must match the contents
of the signed quote.

Finally, the phone verifies that each software component
in the measurement list is trusted by referencing the database
of known trusted software obtained in Step 9. The only mea-
surement that will not be in the database is the credential C
containing the public key for this session. The phone must,
however, ensure that C is actually included in the measure-
ment list. At the end of this phase (Step 14), the phone
trusts the kiosk and is in possession of a public encryption
key K generated by the kiosk.

4.3.6 Use kiosk

At this point, the phone encrypts any necessary personal
information and sends it to the kiosk (Step 15). The per-
sonal information can take many forms depending on the use
case. For example, it may be a password for accessing an
email account, a credit-card number for making a purchase,
or a key for decrypting a user’s virtual machine image. If
the user selected to resume a personalized VM, the steps
shown in Figure 6 will replace Step 15 of Figure 4.

In Step 1 of Figure 6, the mobile device sends to the kiosk
a URL where the encrypted VM image can be accessed.
The image may reside on a network server as in the ISR
model [14], or be carried on the device itself as in the Soul-

Pad model [7]. In Step 2, the kiosk fetches that image. In
Step 3, the device sends to the kiosk the key with which to
decrypt the image over an encrypted channel. The channel
encryption key is the same one generated in Step 8 of Fig-
ure 4. Finally, in Step 4 of Figure 6, the kiosk decrypts,
loads, and resumes the VM image.

4.3.7 Clean up kiosk

After using the kiosk for some amount of time, the user
will indicate that she is finished (Step 16 of Figure 4). At
this point, we want to ensure that no personal data can be
retrieved from the kiosk after the user walks away. To avoid
leaving any traces of data on the kiosk’s disk, the user’s
virtual machine must operate out of an encrypted file sys-
tem [7]. The only key that the hypervisor must maintain
is the decryption key for the VM itself. When the user fin-
ishes, the hypervisor suspends the VM, zeroes the memory
that was allocated to the VM, and zeroes the memory that
stored the VM’s decryption key. By this point, we have es-
tablished that the hypervisor is trustworthy, and we there-
fore trust it to complete these steps correctly.

4.4 Security Properties
The barcode captured by the phone binds the public por-

tion of the AIK to the TPM in the machine physically in
front of the user. The signature on the quote and the cryp-
tographic properties of the hash function bind the observed
measurement sequence to the TPM holding the AIK de-
scribed above. The nonce in the quote binds the quote to
this session. From this, the phone can conclude that the
kiosk in front of the user did in fact boot the reported soft-
ware stack while the user was physically present. By ref-
erencing all loaded software against a database of trusted
software, the phone can then conclude that the kiosk is trust-
worthy.

4.5 Kiosk Supervisor
The goal of the kiosk owner is to detect when a kiosk

is being used inappropriately. In addition to any standard
external monitoring mechanisms (e.g., intrusion detection
systems), the kiosk supervisor machine may also use the
IMA protocol to monitor which software has been loaded
on the kiosk. In the scenario where the user uses only
kiosk-provided software, the kiosk supervisor can reference
all loaded software against a database containing measure-
ments of known-trusted software. In the scenario where the
user runs a personalized VM, that VM is unlikely to respond
to attestation challenges from the kiosk supervisor for pri-
vacy reasons, and therefore the supervisor can only ensure
that a trustworthy hypervisor environment is running on
the kiosk. This hypervisor environment can, however, be
configured to monitor the external behavior of the VM and
suspend it should it misbehave.

5. PROTOTYPE IMPLEMENTATION
This section describes our implementation, using com-

modity components, of a trustworthy kiosk computing sys-
tem that embodies the design presented in the previous
section. Our prototype comprises three parties shown in
Figure 1: a mobile device, a kiosk, and a kiosk supervi-
sor. Our mobile device is a Nokia N70 smartphone with a
220 MHz ARM processor and 32 MB of memory, along with
GSM/GPRS/EDGE and Bluetooth radios. The smartphone
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1 URL for encrypted VM image
-

2 Retrieves encrypted VM from URL

3 Enc{Decryption key KV M for VM image}K
-

4 a. Decrypt VM image using KV M

b. Load and resume VM

Figure 6: Protocol for resuming a user-specified virtual machine on a kiosk

is a Symbian Series 60 platform, which supports Java Micro
Edition (Java ME).

Our kiosk is a desktop PC equipped with a 2.4GHz AMD
Secure Virtual Machine-capable x86 processor, 2 GB of mem-
ory, 60 GB of disk, an Infineon TPM 1.2, and an Iogear
USB Bluetooth adapter. The kiosk runs the Xen hypervisor
managed by a virtual machine running Linux. Our kiosk
supervisor is a generic Linux PC that runs an existing IMA
verifier [23] to periodically request an integrity attestation
from the kiosk.

5.1 Mobile Device Software
For the phone we wrote a Java ME application that in-

teracts with the user via the screens shown in Figure 3, and
talks to the kiosk over Bluetooth. A wired connection would
offer greater security than Bluetooth, but is impractical here
because the cables are generally phone-specific. This appli-
cation includes an IMA verifier written for the Java ME
environment. We used the Bouncy Castle [20] library for
all cryptographic operations carried out by the IMA veri-
fier, such as replaying PCR extend operations and verifying
TPM signatures.

Currently, there is no open-source Java ME implementa-
tion for capturing a barcode using the phone’s camera, so
our prototype omits this functionality. However, the viabil-
ity of this approach on the Symbian Series 60 platform has
been demonstrated in both C++ [17, 24] and Java [5]. In
addition to the hash of the AIK certificate, the barcode will
also encode the Bluetooth address of the kiosk, which allows
the phone to bypass the exceedingly slow device discovery
protocol [24].

5.2 Kiosk Software
We added three software components to the kiosk plat-

form: a new kiosk front-end application, an existing IMA
attestation server [23], and a modified version of the OSLO
secure loader [12].

Kiosk front-end.
The front-end interacts with the phone over Bluetooth

to establish the desired software configuration, reboots the
kiosk into this configuration, and provides a conduit for the
phone to retrieve measurements from the IMA attestation
server. The front-end application is written in Java Stan-
dard Edition (Java SE), with some help from Perl scripts to
manipulate the configuration of the GRUB boot loader.

IMA attestation server.
We employ an unmodified IMA attestation server [1], which

listens for requests via TCP. To avoid the additional diffi-
culty of layering TCP on Bluetooth, the phone transmits
IMA requests as a Java byte stream to the kiosk front-end,

which in turn communicates with the IMA attestation server
via loopback TCP.

Secure loader.
Figure 5 outlines the kiosk boot sequence. After reboot-

ing, the BIOS runs the GRUB boot loader, which in turn
launches the OSLO secure loader. We use GRUB to load
multiboot modules from disk, allowing OSLO to remain sim-
ple. OSLO establishes a dynamic root of trust for measure-
ment (DRTM) by invoking skinit, then measures and runs
the remaining multiboot modules, in particular the Xen hy-
pervisor and Linux kernel. As described in Section 3, skinit

atomically measures the secure loader itself, stores the result
in the TPM, and transfers execution to that loader.

We extended OSLO to record, prior to calling skinit, the
measurements of itself, the hypervisor, and the kernel in
the Advanced Configuration and Power Interface (ACPI) ta-
bles maintained in system memory by the BIOS. Standard
OSLO does not keep a list of the measurements made by
skinit and by OSLO itself. As described in Section 3, such
a list is needed by the IMA verifier to replay the measure-
ment sequence. We used the ACPI tables to communicate
these measurements to IMA because there is no higher-level
communication facility (e.g., a file system) available from
within OSLO. Our extensions involved calling a BIOS in-
terrupt routine from 16-bit real-mode x86 assembly code.
This routine records measurements in the ACPI tables and
is available on all BIOSes that support the TPM. While the
ACPI tables are maintained by the BIOS, they may be read
directly from system memory by the OS.

As mentioned previously, software that runs after the DR-
TM is established must never invoke code that has not al-
ready been measured into the TPM. In the case of our pro-
totype, nothing may invoke the BIOS or boot loader after
OSLO executes skinit because OSLO does not measure the
BIOS or boot loader. Our prototype kiosk satisfies this re-
quirement because neither Xen or the paravirtualized ver-
sion of Linux used in Xen virtual machines ever call back
into the BIOS or boot loader, or permit applications run-
ning inside a VM to do so.

5.3 Personalized Environments
Our prototype supports personalized computing environ-

ments through the use of migrateable Xen virtual machines.
The base software stack on our kiosk consists of the Xen 3.0
hypervisor plus a management VM running Fedora Core 4
Linux. The phone first determines if this software stack is
trustworthy by carrying out the protocol in Figure 4 through
Step 14. The phone then specifies a user VM to run and the
kiosk loads and resumes that VM, as per the protocol in
Figure 6. Our sample user VM runs Fedora Core 6 Linux.
The VM’s suspended state is encapsulated in an encrypted
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Figure 7: Tolerable delay prior to web surfing
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Figure 8: Tolerable delay prior to checking email

compressed archive containing three files: a configuration
file used to start the VM, a file containing the VM’s main
disk image, and a file containing the VM’s swap disk image.
The size of this archive is 104MB for our sample user VM
that uses 1GB of uncompressed disk space. When Xen sus-
pends a VM, it zeroes the memory allocated to that VM,
but does not, to our knowledge, zero the memory used to
store the VM’s decryption key. This minor change would al-
low Xen to fully implement the cleanup procedure described
in Section 4.3.7.

Many refinements are possible on this basic proof of con-
cept [7] [14]. The emphasis of this work has been on resolv-
ing the trust issues surrounding the use of personal virtual
machines on public hardware.

6. EVALUATION
This section presents an evaluation of user expectations

in the kiosk scenario, together with relevant performance
characteristics of our prototype system.

6.1 User Expectations
We conducted a survey to determine the extent to which

users would tolerate an additional delay prior to using a
kiosk, in exchange for an assurance that there is no malware
running on the kiosk. We administered the survey via the
SurveyMonkey website [2]. The 88 respondents were volun-
teers solicited from a popular campus-wide discussion board
at Carnegie Mellon University.

After giving the respondents a brief description of the
threats malware poses on a kiosk and the type of delay in-
curred by using our system, we asked them the following
questions:

1. How long would you be willing to wait if you planned
on only surfing the Internet?

2. How long would you be willing to wait if you were
going to check your email?

3. How long would you be willing to wait if you were going
to make a financial transaction through your bank’s
website?
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Figure 9: Tolerable delay prior to electronic banking

For each of these questions, the respondents selected one
of the following choices:

a. I would not be willing to wait any extra time.

b. 1 to 30 seconds.

c. 31 seconds to 1 minute.

d. 1 to 2 minutes.

e. More than 2 minutes.

f. I would never use a computer at an Internet cafe for
this purpose.

The distribution of responses by question are shown in
Figures 7–9. The results show that when the intended ac-
tivity is surfing the web, 58% of respondents would be willing
to wait longer than 30 seconds, and 27% would be willing
to wait longer than a minute. When the intended activity is
email, these percentages increase to 68% and 47%, respec-
tively. Most (63%) of respondents would not be willing to
perform bank transactions on a general-purpose kiosk, but
of those that would, 74% would be willing to wait longer
than a minute.

To estimate the delay that users presently tolerate, we
measured the amount of time necessary to log in to a fre-
quently used campus computer cluster. This particular clus-
ter supports the migration of a personalized environment,



consisting of settings and network folders, between machines.
As such, the usage model of this cluster closely resembles
that of our kiosk. We define the log-in time to be the de-
lay between the time the user clicks “log in” (after entering
the password), and the point at which the GUI becomes
responsive enough to open the Windows start menu. We
measured the log-in time on three Pentium 4 machines run-
ning Windows XP Service Pack 2, with clock speeds rang-
ing from 2.8-3.0 GHz and installed memory ranging from
1.0-1.5 GB. The fastest log-in time observed was approxi-
mately 90 seconds, and the slowest was 105 seconds. This
suggests that the benefits of using a personalized computing
kiosk are sufficient for users to tolerate, albeit grudgingly, a
rather lengthy initial delay.

6.2 Data Sizes
We measured the sizes of data used by our trust establish-

ment procedure to verify that they are practical in a mobile
computing setting. Table 1 shows the sizes of the three main
data sets used for integrity verification by the unoptimized
prototype described in the previous section.

First, the measurement database includes an entry for
each known software component that may run on the kiosk.
Each entry contains the SHA-1 hash of the component plus
an ASCII string further describing the component. The
string contains the name of the file where the component
is installed and an indication of whether the component is
trusted or untrusted. The Xen and Fedora Core 4 Linux dis-
tributions installed on our prototype kiosk generated 20,929
such entries with a total database size of just under 1.3
megabytes and an average entry size of 65 bytes. This
database is sent by the kiosk to the phone in Step 9 of the
protocol in Figure 4.

Second, the measurement list includes an entry for each
unique software component that has been loaded on the
kiosk. Each entry contains the SHA-1 hash of the com-
ponent, the number of the Platform Configuration Register
that was extended with this hash value, and an ASCII string
holding the name of the file from where the component was
loaded. In our prototype, the measurement list sent by the
kiosk to the phone in Step 12 of our protocol contained 676
entries, for a total list size of just under 38 kilobytes and an
average entry size of 57 bytes. This list grows very slowly
over time because measurements are only added to the list
when a previously unseen software component is loaded.

Third, the Trusted Platform Module quote includes the
contents of the requested Platform Configuration Registers,
a digital signature, and a nonce. The TPM quote sent by
the kiosk to the phone in Step 12 of our protocol contained
796 bytes. The quote format follows the TPM standard and
its size is fixed for a given number of requested PCR values.
We always request all 24 PCR values in our prototype.

The above data sizes are already well within the storage
capacity of modern smartphones. The Nokia N70 in our pro-
totype system has 32 MB of built-in storage and a socket for
adding additional flash memory. Furthermore, there is am-
ple room for reducing the measurement database and list
sizes via compression because they are currently composed
mostly of uncompressed ASCII text. For example, applying
Lempel-Ziv compression yields a measurement database of
630,941 total bytes (46% of the uncompressed size), and a
measurement list of 21,377 total bytes (55% of the uncom-
pressed size).

Component
Total # of Average
Size Entries Entry

(bytes) (count) (bytes)

Measurement DB 1,360,640 20,929 65
Measurement List 38,867 676 57

TPM Quote 796 1 796

Table 1: Integrity verification data sizes

Delay Delay
Stage Average Std Dev

(seconds) (seconds)

Xen + Linux Shutdown 25 1.15
OSLO + GRUB Secure Load 2 0.58

Xen + Linux Boot 66 0.58
Measurement DB Transfer 42 3.27

Integrity Verification 23 0.58

Table 2: Trust establishment delays

6.3 Delays
We measured the delays introduced by our trust establish-

ment procedure to determine whether they would be tolera-
ble to users. Table 2 shows the most salient delays incurred
by our unoptimized prototype. More specifically, the delays
in the table correspond to protocol Steps 8 through 14 in
Figure 4. The averages and standard deviations were calcu-
lated across three runs of the protocol.

Some of the largest delays were due to the reboot sequence
called for by Step 8. Shutting down Xen and Linux took ap-
proximately 25 seconds, running the combination of OSLO
and GRUB took 2 seconds, and booting Xen and Linux took
66 seconds, for a total reboot latency of 93 seconds.

Table 2 also shows the delay incurred by transferring the
measurement database from the kiosk to the phone in Step 9
of our protocol. This transfer took approximately 42 sec-
onds. The last row in Table 2 shows the delay incurred by
the integrity verification stage of our protocol. This stage
includes everything in Steps 8 through 14 with the exception
of the reboot sequence and measurement database transfer
discussed above. This stage took approximately 23 seconds,
for a total latency without rebooting of 65 seconds. The to-
tal delay including rebooting, transferring the measurement
database, and verfying software integrity was roughly two
and half minutes.

Potential optimizations.
There is a great deal of room for improvement in these

delays. With respect to the reboot sequence in Step 8, the
kiosk could boot into a clean configuration stored in a static
disk image since there is no need for a public kiosk to save
user state. This procedure would eliminate the shutdown
stage in Table 2 and thus reduce that reboot latency by
approximately 25 seconds.

Other parts of the reboot sequence can also be optimized
extensively. For example, our prototype uses Fedora Core 4
Linux, a standard software distribution not tailored to the
kiosk scenario. Fedora Core includes several dozen software
services that by default are started during boot and stopped
during shutdown. It should be possible to shave many sec-



onds off the reboot sequence by removing unnecessary ser-
vices from the sequence.

Nevertheless, even a streamlined reboot sequence may in-
cur a delay that is unacceptable when the user intends to
use the kiosk for only a short time. We introduced the re-
boot sequence in Step 8 of our protocol because we provide
only load-time guarantees of integrity. A reboot there of-
fers the greatest degree of security by minimizing the time
between software measurement and use. However, it may
be acceptable to boot the kiosk into the most likely con-
figuration prior to the user’s arrival. If this configuration
meets the needs of the user, the phone could skip Steps 8–9
of the protocol. Steps 10–14 would still verify the integrity
of all loaded software, but the guarantee provided by these
steps would be weaker because the software would have been
running for longer.

With respect to the transfer of the measurement database,
ongoing advances in short-range wireless networks will greatly
reduce the delay of this stage. Our prototype uses the Blue-
tooth 1.2 standard with a maximum transfer rate of 90 kilo-
bytes per second. Devices are already available that use
Bluetooth 2.0 with a maximum transfer rate of 263 kilo-
bytes per second, almost 3 times faster. A future version of
Bluetooth is being planned to provide up to 60 megabytes
per second, several orders of magnitude faster. These band-
width improvements will also translate into delay reductions
in the integrity verification stage of our protocol, since that
stage also transfers a significant amount of data, most no-
tably the measurement list.

Discussion.
Comparing our delay measurements with our survey re-

sults, the trust establishment latency of our unoptimized
prototype system is already acceptable to a small fraction
of our respondents. We believe that the total delay incurred
in Steps 8–14 could be reduced to less than one minute by
eliminating the kiosk shutdown stage, removing unnecessary
software services on the kiosk, and upgrading to Bluetooth
2.0. This delay would then be acceptable to 47% of the sur-
vey respondents who want to check their email. The vast
majority of respondents were willing to incur some addi-
tional delay for increased security, so it seems reasonable to
expect that a carefully engineered kiosk could satisfy their
needs.

We conclude from our user survey, delay measurements,
and data size characterization that it is feasible to use a mo-
bile phone to establish the trustworthiness of a kiosk follow-
ing the procedure we have proposed. Tailored optimization,
along with expected hardware and software advances, will
further improve performance and usability.

7. OPEN ISSUES AND FUTURE WORK
This section discusses issues left open by our work to date

on trustworthy kiosk computing, and suggests possible ap-
proaches to resolving these issues.

Hardware attacks.
While our work focuses on detecting software attacks,

hardware attacks are a very real concern in the public kiosk
scenario. An attacker may have physical access, and can
install a USB sniffer or even replace hardware components
such as the network or video card with malicious versions.

As detecting such attacks is difficult and tamper-resistant
hardware is expensive, we believe that the kiosk should have
as many peripherals as possible integrated onto the moth-
erboard, and all I/O devices should be connected without
external cables (as is done in laptops), preferably soldered to
the motherboard. Simpler physical security measures such
as enclosing the kiosk hardware in a locked plastic case can
also raise the bar for attackers.

Barcode attacks.
While technically a hardware component, the barcode af-

fixed to the kiosk deserves further consideration. Our system
assumes that the barcode correctly identifies the AIK of that
kiosk’s TPM. However, an attacker with physical access to
kiosk A may be able to replace the barcode in a way that
escapes the user’s notice. The malicious barcode could then
identify the AIK of a TPM in kiosk B. If the attacker com-
promises kiosk A, A could be configured to simply forward
input to kiosk B and display B’s output on A’s screen. B

would boot the trusted software stack, and provide an attes-
tation to the user’s phone, which would believe that it came
from A. As a result, A can monitor the user’s actions and
what is displayed on the screen. This highlights an impor-
tant problem with current TPMs: it is difficult for the user
to verify the physical location of any TPM. To our knowl-
edge, the barcode is the best solution available to users of
commodity hardware.

Runtime attacks.
The measurements stored in the TPM guarantee the in-

tegrity of all software loaded on the kiosk. However, soft-
ware may be compromised after it is loaded, e.g., by code-
injection attacks. Providing stronger run-time guarantees is
a difficult problem and the focus of active research (e.g., [25]).
Future run-time attestation solutions can be incorporated
into our trust-establishment protocol alongside IMA.

Time of measurement to time of use.
There is a window of time between when the measurement

is taken from the TPM and the user begins using the kiosk.
If a malicious program is loaded during this time, it may
compromise the user’s privacy. To limit this vulnerability,
the user’s phone can periodically request new measurements
in the background and alert the user (e.g., by playing a tone)
if a malicious program was loaded.

Cleanup with kiosk-provided software.
If the user elects not to use a personalized environment,

and instead uses software provided by the kiosk, then cleanup
becomes more complicated than the case where a virtual ma-
chine is run out of an encrypted file system. We believe that
a similar solution can be employed where all writable par-
titions are configured to use a file system that is encrypted
with a key generated for this session, but this approach needs
further investigation.

8. RELATED WORK
Previous research has investigated several usage models

for kiosk computing. We adopt the model in which the
kiosk allows the user to resume a suspended virtual machine
(VM), thus providing the user with a personalized comput-
ing environment. Internet Suspend/Resume [14] and Soul-



pad [7] describe two different realizations of this model: the
former migrates portions of a VM over a network as needed,
while the latter resumes a VM from portable storage pro-
vided by the user. Neither work thoroughly addressed the
security ramifications that are the focus of this paper. Surie
et al. [28] propose that the kiosk boot from a USB flash drive
provided by the user. The software on this drive may estab-
lish a software root of trust prior to booting the kiosk. How-
ever, this approach remains susceptible to attacks in which
the BIOS has been compromised or the entire environment
is booted within a rogue VM monitor. Nishkam et al. [22]
use software-only techniques to verify the integrity of the
BIOS and check for the presence of a VM monitor. Our ap-
proach establishes a hardware root of trust and is thus more
secure against both BIOS- and VM monitor-based attacks.

An alternative model is for the kiosk to operate as a thin
client, acting as an input/output device for programs that
are run elsewhere. Since all computation is performed re-
motely, the security of this model reduces to the security
of the input and output operations performed at the kiosk.
Oprea et al. [21] propose that the user perform all input
through a trusted PDA, which relays the commands to the
remote server via an encrypted tunnel. In addition, Sharp
et al. [26] propose that the kiosk only display an obfuscated
view of the remote server. The kiosk aids in high-level navi-
gation operations, but all security sensitive input and output
operations are performed through the PDA. The drawback
to these approaches is that they limit the functionality of
the kiosk, whereas our approach does not.

Another approach is to use kiosk-provided software, but
limit the amount of information that is revealed to that
software. MP-Auth [15] is a protocol that allows a user
to authenticate to a remote party (such as a bank’s web-
site) without trusting their PC. MP-Auth allows the user
to input their password using a trusted mobile phone, and
the protocol ensures that the plaintext password is not re-
vealed to any other device. Bump in the Ether [18] uses
a trusted mobile phone in conjunction with a TPM to es-
tablish a secure tunnel to an application running on a PC.
All trusted user input is performed using the phone, or a
wireless keyboard that communicates with the PC through
the phone. Flicker [16] establishes a dynamic root of trust
to verifiably run security-sensitive code in isolation from all
other software, including the operating system. Secret data
may be stored using the TPM in such a way that it can
only be accessed while this security-sensitive code is execut-
ing. The challenge of these approaches is that there must
be a well-defined distinction between security-sensitive data
and standard data. In contrast, we treat all user data as
sensitive.

Arbaugh et al. [3] propose an architecture for secure boot,
in which each layer in the software stack is measured and
compared to an expected value before it is loaded. If the
software is not as expected, the architecture attempts to
recover by obtaining the correct version of the software from
either local backup or a trusted third party. Thus a machine
will not boot using compromised software. In our scenario,
the phone, not the kiosk, ascertains the trustworthiness of
loaded software, so it is more efficient to adopt the trusted
boot approach in which the software is verified after it is
loaded.

Previous research considered kiosks in other security-sen-
sitive applications. Sinclair and Smith [27] propose that a

phone, in possession of a sensitive private key, temporar-
ily delegate authority to a short-lived keypair known to the
kiosk. The trustworthiness of this kiosk is explicitly encoded
in a credential signed by the system administrator. In con-
trast, our system verifies the load-time integrity of the soft-
ware running on the kiosk, which we feel provides a stronger
security guarantee. Furthermore, our system considers the
confidentiality of general user data (e.g., a personal VM) in
addition to private keys.

Many of the systems described above, including ours, uti-
lize a mobile device under the assumption that it is more
trustworthy than the kiosk in question. Balfanz and Fel-
ten [4] explore this assumption and maintain that it holds.
McCune et al. [19] emphasize that some simple device is nec-
essary to help users determine if a more complex machine
can be trusted. They envision a minimal device that indi-
cates yes/no trustworthiness via a green/red light. Such a
minimal device, if realized, could be useful in our scenario,
but a phone enables more complex operations, which are
needed if the user is to select and resume custom environ-
ments.

9. CONCLUSION
We have presented the design of a system in which a user’s

mobile device serves as a vehicle for establishing trust in a
public computing kiosk by verifying the integrity of all soft-
ware loaded on that kiosk. This procedure leverages several
emerging security technologies, namely the Trusted Plat-
form Module, the Integrity Measurement Architecture, and
new x86 support for establishing a dynamic root of trust.
Our system balances the desire of the user to maintain data
confidentiality against the desire of the kiosk owner to pre-
vent misuse of the kiosk. We have demonstrated the viability
of our approach by implementing our system on commodity
hardware. The delay incurred by the trust establishment
protocol in our prototype is close enough to the range of
delays reported as tolerable by users that we feel moderate
engineering effort would result in a useable system.

In this paper we have focused on allowing the user to per-
sonalize a kiosk by running her own virtual machine there.
However, our work is generally applicable to establishing
trust on public computing devices before revealing any sen-
sitive information to those devices.

Acknowledgments

We thank our shepherd Maria Ebling and the anonymous
reviewers for comments and suggestions that helped to im-
prove the paper. We thank Jonathan McCune and Bryan
Parno for their advice regarding various technical aspects of
our prototype.

10. REFERENCES

[1] Integrity Measurement Architecture Implementation.
http://sourceforge.net/projects/linux-ima.

[2] SurveyMonkey. http://surveymonkey.com/.

[3] W. Arbaugh, D. Farber, and J. Smith. A Secure and
Reliable Bootstrap Architecture. In Proc. of the IEEE
Symposium on Security and Privacy, 1997.

[4] D. Balfanz and E. Felten. Hand-held computers can
be better smart cards. In Proc. of the USENIX
Security Symposium, 1999.



[5] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter,
J. Rouse, and P. Rutenbar. Device-enabled
authorization in the Grey system. In Information
Security: 8th International Conference, ISC 2005,
2005.

[6] S. Brands. Untraceable off-line cash in wallet with
observers (extended abstract). In Advances in
Cryptology – CRYPTO ’93, Lecture Notes in
Computer Science, 1993.
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