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Abstract 
 
We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear and convex 

programs with Conditional-Value-at-Risk (CVaR) constraints. IEM iteratively constructs a sequence of 

compact-sized linear, or convex, optimization problems, and solves them sequentially to find the optimal 

solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which 

makes it extreme efficient for real-world, large-scale problems. We prove that IEM converges to the true 

optimal solution, and give a lower bound on the number of samples required to probabilistically satisfy a 

CVaR constraint. Experiments show that IEM is an order of magnitude faster than the best known 

algorithm on large problem instances. 

 

1. Introduction 
 
Consider the following risk-constrained stochastic linear program, 

(CSLP) 
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where nD R⊂  is a convex polytope generated by a set of linear inequalities, nc R∈  is a 

vector of objective function coefficients, �  is a random vector in space nR , )(CVaR ⋅β  is 

a risk measure called Conditional-Value-at-Risk (CVaR), which maps a random variable 

to a real number in R , R∈b  is a upper bound imposed upon risk measure )(CVaR ⋅β , 

modeling the maximum acceptable risk one is willing to take.   

 



Problem CSLP extends the linear programming model. It allows input parameters to be 

random variables, and thus can capture uncertainty associated with the problem of 

interest. CSLP can be applied to model a large set of practically important problems. One 

application is in portfolio optimization. In a portfolio optimization problem, random 

vector �  represents the future security prices, decision variablex  represents the portions 

of total wealth allocated to individual securities, )(CVaR x�Tβ  measures the risk of a 

given allocation x ,  b  bounds the maximum level of risk, c  typically contains the 

expected return of individual securities, and budget and other constraints can be modeled 

as Dx ∈ .  

 

The risk measure that we consider in this paper is CVaR, which is coherent in the sense 

of Artzer et al. (1999). It was proposed as an alternative to Value-at-Risk (VaR), which is 

a popular risk measure widely used in financial industry. VaR is the lowest potential loss 

that may occur with a given small probability. Let Y  denote a random variable with 

continuous probability density function1, and )1,0(1 ∈− β  denote a small probability that 

a large loss may occur, and then VaR is defined as 

}1]Pr[:inf{)(VaR ββ −≤>∈= yYyY R , 

and CVaR is defined as 

)].(VaR|[)(CVaR YYYEY ββ ≥=  

Basically, CVaR measures the average extreme loss given that the loss is greater than 

VaR.  

 

If we replace the CVaR risk measure in problem CSLP by VaR, we get a chance-

constrained stochastic linear program, which has been studied extensively (see, e.g., Kall 

and Wallace (1994), and for most recent development, see Nemirovski and Shapiro (2006) 

and references therein). One major difficulty of applying a chance constraint to bound 

                                                 
1 The definition of CVaR for general discontinuous probability density functions is more complicated, 
involving a procedure of “splitting probability mass” at discontinuous points. For simplicity, we assume 
random variables have continuous density functions throughout the paper. Our method is not affected by 
this assumption. 



risk is that in general it leads to a non-convex problem, which is difficult to solve except 

for a few special cases. 

 

The feasible region of problem CSLP is convex because of the nice properties that CVaR 

enjoys. Follow Artzer et al. (1999), CVaR is a coherent risk measure and thus satisfies 

the following four properties any coherent risk )(⋅ρ  does: 

•  Translation invariance. For any random variable Y  and any real number k , 

kYkY +=+ )()( ρρ . 

•  Subadditivity. For any random variables X and Y ,  

)()()( YXYX ρρρ +≤+ . 

•  Positive homogeneity. For any random variable Y and any real number ,0≥λ  

)()( YY λρλρ = . 

•  Monotonicity. For any random variables X and Y , if YX ≤ almost surely, 

).()( YX ρρ ≤   

 

The feasible region defined by the constraint, bx�T ≤)(CVaRβ , is clearly convex, as 

implied by subadditivity and positive homogeneity. This implies that, potentially, large 

instances of problem CSLP can be solved efficiently.  

 

Though it is a convex problem, finding the exact solution to problem CSLP is impossible 

in the general case. This is because even for a givenx , computing the distribution of x� T  

requires performing a n -dimensional integration (n  is the dimension of x  and ξ ). If n  

is large, we will be overwhelmed by the “curse of dimensionality”.   

 

One way to overcome this difficulty is to take a sample approximation approach, in 

which the original problem CSLP is approximated by another problem that is constructed 

based on a set of samples of random parameter ξ . We take this approach in this paper. 

For briefness, we do not differentiate between problem CSLP and its sample 

approximation, and simply call the optimal solution to a sample approximation as “the 

optimal solution to problem CSLP”. 



 

In this paper, we propose an algorithm, Iterative Estimation Maximization (IEM), to 

solve problem CSLP. IEM iteratively constructs a sequence of compact-sized linear 

programs and solves them sequentially to find the optimal solution. The solution obtained 

in the preceding iteration is used to construct the linear program for the next one, which 

guarantees that we always get a better approximation to the optimal solution as the 

algorithm progresses. The size of the linear program that IEM solves in each iteration is 

comparable to the original problem, and is unaffected by the size of random samples. 

This makes it extremely efficient for large problem instances. Indeed, we can show that 

IEM can be interpreted as embedding a set of column generation sub-problems to the 

well-known simplex method. In this interpretation, the sub-problems are constructed in 

such a way that each sub-problem can be solved in )log( NNO  time, where N  is the 

size of samples. This interpretation explains the good practical performance of IEM. 

Considering we are solving a stochastic linear program with N  samples, the extra 

overhead of )log( NNO  seems to be unavoidable. 

 

We also extend IEM to solve the general CVaR-constrained stochastic convex programs, 

which has the following canonical representation 

 (CSCP)   
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where D  is a convex subset of nR , )(xh  is a strictly concave function, and ),( xg ξ  is a 

convex function on x  for any ξ . Problem CSCP is a natural extension to convex 

programs, along the same lines as problem CSLP is an extension to linear programs. IEM 

takes a similar procedure to solve problem CSCP: a new convex program is constructed 

and then solved iteratively. Like in the linear case, the convex problem solved in each 

IEM iteration is unaffected by the size of samples. As far as we know, IEM is the first 

algorithm that solves problem CSCP. 

 

Rockafellar and Uryasev (2000), and Krokhmal et al. (2002) proposed a sample 

approximation based method for problem CSLP. Their key observation is that the l.h.s. 



for the CVaR constraint can be approximated by its sample average estimation. Let 

Nξξξ ,...,, 21  denote N  samples of random vector ξ , then constraint bx�T ≤)(CVaRβ  can 

be approximated by 
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where α  is a free auxiliary variable. Introducing variable ,iz  ,,...,2,1 Ni =  the above 

constraint can be linearized and replaced by the following set of constraints 
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This procedure transforms problem CSLP into a large linear program and solves it 

accordingly. One major shortcoming of this approach is that both the number of auxiliary 

variables iz  and the number of newly introduced constraints are proportional to the 

number of samples, which makes this approach impractical even for modest size original 

problems, when the sample size is large. Our IEM algorithm does not suffer from this 

shortcoming.  

 

The rest of the paper is organized as follows. Section 2 presents the IEM algorithm and 

proves it correctively solves CVaR-constrained stochastic linear programs. In Section 3, 

we extend the IEM algorithm to CVaR-constrained stochastic convex programs and 

prove that it converges. Section 4 gives a lower bound on the size of samples required so 

that a CVaR constraint can be satisfied with high probability. Section 5 shows the 

performance of IEM on randomly generated problem instances. Section 6 concludes the 

paper.  

 

 

 



2. Iterative Estimation Maximization 

 

We first describe the IEM algorithm. 

 

 

Iterative Estimation Maximization: 

1. Generate N  samples  Nξξξ ,...,, 21  for the random vector ξ .  

2. Set iteration index .0=t  let 0LP  denote the initial linear program at 0=t , 

)( 0LP   
Dx

xcT

∈

max
      

Solve 0LP  to get the initial value Dx ∈0 . 

3. Let tLP  and tx denote the linear program and the solution in the current iteration 

t . Perform the following steps for the constraint, bx�T ≤)(CVaRβ , in the original 

problem CSLP: 

a. Compute tT
ii xL ξ=  for each sample .,...,2,1, Nii =ξ  

b. Sort iL , Ni ,...,2,1=  in ascending order. Let )(iL  denote the i-th smallest 

value in the list of sorted iL  values, and )(iξ  denote the corresponding 

sample used to compute )(iL , i.e, 

                 t
N

tt xxx )()2()1( ... ξξξ ≤≤≤     (1) 

c. Let K  denote the smallest integer that is greater than βN , i.e.,  

                 },:},...,2,1{min{ βNiNiK >∈=    (2) 

add the following constraint to the current linear program tLP ,  

                 bx
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β
.    (3) 

4. After finishing step 3, we obtain a new linear program 1+tLP  by adding a new 

constraint (3) to tLP . Now solve 1+tLP to get a new solution 1+tx . 

5. Remove all non-binding constraints like (3) that have been added to 1+tLP  in 

previous iterations. 



6. If |||| 1 tt xx −+  is small enough, terminate, and output 1+∗ = txx  as the optimal 

solution to the original problem CSLP. Otherwise, set ,1+= tt  1+= tt xx , and go 

back to step 3 to start the next iteration.  

 

 

For a given solution, tx , step 3a and 3b estimate )(CVaR tT x�β  based on samples 

tT
N

tTtT xxx ξξξ ,...,, 21 . In step 3c, those iξ ’s that have contributed to the estimation, i.e., top 

1+− KN  samples, are used to create constraint (3). Intuitively, IEM seeks to iteratively 

replace the CVaR constraint in the original problem with estimates in the form of linear 

constraints as shown in step (3). It does so, by using the best solution obtained so far to 

speculate the coefficients of the linear constraint (3). When IEM terminates, 

)(CVaR *x�Tβ , the CVaR value of *x� T  corresponding to the optimal solution ∗x , is 

estimated by the l.h.s. of constraint (3), and conversely, solving a linear program with 

such a constraint leads to the optimal solution to the original problem CSLP. 

 

To prove that IEM indeed converges, we first construct a sample approximation to 

problem CSLP, and then demonstrate that IEM solves such an approximation. 

 

Let �  denote the collection of all subsets of the set, },...,,{ 21 Nξξξ , with size, 1+− KN  , 

and )(⋅AI  denote the indicator function of a subset �∈A , i.e., 
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Corresponding to all subsets �∈A , we can construct a set of linear constraints (the 

number of constraints is N KNC 1−−  ), which take the following form. 
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Note that constraint (3) in step 3c of the IEM algorithm belongs to constraint set (4) for 

some subset �∈A . 

  



Proposition 1: Constraint set (4) is a sample approximation to the CVaR constraint 

bx�T ≤)(CVaRβ        (5) 

in problem CSLP.  

Proof: For nx R∈∀ , constraint (5) can be approximated by 
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      (6) 

where �∈)(xB  is a subset of },...,,{ 21 Nξξξ  , with size 1+− KN , such that for 

)(xB∈∀ ξ  and )( xB∉∀ ξ , xx TT ξξ ≥ , i.e., 

}  and,:{)( AAxxAxB TT ∉∀∈∀≥∈= ξξξξ�  (7) 

We call )(xB  the dominant set induced by x . In essence, )(xB  contains the top 

1+− KN  samples that have the largest x� T  values.  

 

Now we claim that for )(xBA −∈∀ � ,  if x  satisfies (6), it also also satisfies all the rest 

of the constraints, shown in (8). 
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By the definition of )(xB , we know that  
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as replacing )(xB∈∀ ξ  by B∉∀ ξ  always results in a smaller xTξ  value. Constraints (6) 

and (8) imply constraint set (4).  � 

 

Proposition 2: IEM solves the following linear program, which is a sample 

approximation to problem CSLP, 

(SA-CSLP)  
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Proof:  Let Aλ  denote the dual variable corresponding to the constraint indexed by 

�∈A . Consider applying the simplex method to solve the dual of problem SA-CSLP. In 

each simplex pivot step, a column that has the minimum reduced cost  
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 is put into the base. Finding the minimum reduced cost is 

equivalent to solving the following column generation problem 

}:)({max
1
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It is clear that for a given x, its dominant set )(xB  solves the above column generation 

problem. Finding )(xB  is easy, because we only need to compute xT
iξ  for each 

Nii ,...,2,1, =ξ , and then sort them and pick up the top 1+− KN  ones. This is what IEM 

does in steps 3a and 3b. The time to sort N  values of xT
iξ  is )log( NNO , which is the 

overhead we need to pay in each iteration. After identifying )(xB , the simplex method 

selects )(xBλ  and adds it into the basis. In the primal problem, this is equivalent to 

constructing a constraint like (3) and adding it to the preceding linear program. This is 

exactly what IEM does in step 3c.  Note that in each simplex pivot step, only one dual 

variable )(xBλ  that is zero will enter the basis, while the rest of the dual variables that are 

zeros will continue to be kept as zeros.  Those dual variables that are continued to be kept 

as zeros correspond to non-binding constraints in the primal, and thus can be safely 

removed without affecting the solution of the next iteration.  � 

 

3. CVaR-constrained Stochastic Convex Programs 

 

Extending IEM for problem CSCP is straightforward. In steps 3a, 3b and 3c, we sort 

),( xg iξ , Ni ,...,2,1=  and add the following convex constraint to the preceding convex 

optimization problem  
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where the definition of )(iξ  is similar to that in (1), or more precisely, 

  ),(...),(),( )()2()1( xgxgxg Nξξξ ≤≤≤ . 

 

Proposition 3: Constraint set   
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  (9)  

is a sample approximation to the CVaR constraint 

bx�g ≤)],([CVaRβ         

in problem CSCP.  

Proof: Similar to the proof of proposition 1.   � 

 

Proposition 4: IEM solves the following sample approximation to problem CSCP, 

(SA-CSCP)  
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Proof: Let *x  denote the optimal solution of problem SA-CSCP. If for �∈∀ A , none of 

the constraints in constraint set (9) is binding at *x , IEM obviously solves problem SA-

CSCP as IEM steps 3, 4 and 5 have no effect on the final solution.  

Now assume that at least one constraint in constraint set (9) is binding at *x . We claim 

that as IEM progresses, )()( 1+> tt xhxh  for any iteration t, i.e., IEM keeps getting strictly 

better approximations to *x , and the sequence of solutions is strictly monotonically 

decreasing across all iterations in IEM. We prove this by contradiction. 

Suppose that in an iteration 1+t , we get a solution 1+tx , such that )()( 1+< tt xhxh . 

Clearly, 1+tx  can not lie in the feasible region of the convex problem IEM just solved in 

the preceding t-th iteration, because otherwise 1+tx  would be the optimal solution to the t-

th iteration problem. Therefore, 1+tx  must be infeasible for the t-iteration problem. Since 

in iteration 1+t , IEM keeps all binding constraints in the t-th iteration problem, and 

removes all non-binding constraints, it follows that 1+tx  must violate some of the non-



binding constraints that have been removed. On the other hand, tx  obviously satisfies all 

these non-binding constraints as it is the optimal solution to the t-th iteration problem. 

Now we have two points tx  and 1+tx , lying on two sides of some non-binding constraints 

of the t-th iteration problem. It follows that there exist a point x  lying on the line 

segment connecting tx  and 1+tx , such that x  is feasible for the t-th iteration problem. 

Since )(xh  is strictly concave, we have )()( txhxh >  as well, which contradicts the 

assumption tx  is the optimal solution to the t-th iteration problem. 

Given that )()( 1+> tt xhxh  is always true as IEM progresses, we know that IEM must 

terminate after a finite number of iterations. When it terminates at iteration 1+t , we have 

tt xx =+1  (or more precisely, |||| 1 tt xx −+  is small enough).  Now consider the constraint 

IEM added in iteration 1+t . It is a constraint in constraint set (9) indexed by )( txB  

(recall that )( txB  is the dominant set induced by tx ). Given that IEM solves the )1( +t -

th iteration problem with a constraint indexed by )( txB , and the optimal solution is equal 

to tx , it follows that tx  satisfies each and every constraint in constraint set (9), as the 

constraint indexed by )( txB  dominates all the other constraints. This means that tx  is the 

optimal solution to problem SA-CSCP.  � 

 

IEM solves a sequence of nonlinear programs iteratively. It is desirable to warm-start an 

iteration based on the solution obtained in the previous one. As IEM converges close to 

the optimal solution, warm-starting an iteration is especially helpful as the consecutive 

solutions are close to each other. The most widely used interior point methods for 

nonlinear programs are not suitable for this task, as our IEM algorithm converges to the 

optimal solution from the infeasible region. On the other hand, active-set methods are 

well appropriate to be embedded into IEM to warm-start new iterations. There are 

considerable new developments on active-set methods in recent years (see, e.g., Byrd and 

Waltz  (2007), Chen et al. (2006), Byrd et al. (2004)). Though the current available 

implementations of active-set methods still can not compete with those of interior point 

methods, we expect them to improve significantly in the near future. 

 



4. Bound on Sample Size 
 
Problem SA-CSLP increasingly better approximates problem CSLP as the number of 

samples N grows. In this section, we give a bound on N such that the CVaR constraint 

holds with high probability at the optimal solution *x . For the sake of presentation 

simplicity, we will derive the bound for problem CSLP. The exact same technique 

applies to problem CSCP. 

 

To make sure that the CVaR constraint is satisfied with higher probability, we tighten the 

r.h.s. of the CVaR constraint, and solve the sample approximation problem corresponding 

to the tightened version. More specifically, we replace the CVaR constraint in problem 

CSLP by 

  εβ −≤ bx�T )(CVaR , 

where ε  is a small positive number, and solve the corresponding sample approximation 

problem. Let *x  denote the optimal solution, then we want the following inequality to 

hold 

 δβ <>− }0)(CVaRPr{ * bx�T ,     (10) 

where 10 << δ  is a small probability threshold.  

 

When IEM terminates, we get an estimator of  )(CVaR *x� Tβ , i.e., 
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where )(iξ  and K are defined in definitions (1) and (2) respectively. Let )( *xH  denote the 

above estimator. There are two possibilities that can happen: ε−= bxH )( *  (the 

approximated CVaR constraint is binding), or ε−< bxH )( *  (the approximated CVaR 

constraint is not binding). We consider the binding case only, since it will produce a 

conservative bound on N that holds even for the non-binding case.  

 



Manistre and Hancock (2005) showed that )( *xH  is an asymptotically unbiased 

estimator of )(CVaR *x�Tβ , and furthermore,  )(CVaR)( ** x�xH T
β−  is asymptotically 

normal distributed with mean 0 and variance 2σ , which can be approximated by  
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)1(

*
)(

2 x�x�x� T
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K +σ  is the empirical variance of  1+− KN  data points 
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K + . As N grows large, both the empirical variance and the term 

2*
)(

* ))(( x�xH T
K−  will converge to some constants. The former converges to the true 

variance of the tail distribution, and the later converges to the square of the true 

difference between the CVaR value and the VaR value. Therefore, we can simply 

equation (11) as   
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To satisfy inequality (10), we need  

 
)1(
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βε
βδφ

−
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− CC
N ,       (12) 

Where )(1 ⋅−φ  is the inverse cumulative distribution function of the standard normal 

distribution.  

 

Monte Carlo methods usually converge at rate )( 2/1−NO . Result (12) is consistent with 

that rate. Also note that N  grows proportionally to )1/(1 β− . This matches our intuition, 

as we actually only use )1( β−N  data points to estimate CVaR. Importance sampling can 

reduces the number of sample points required. We will investigate this issue in another 

paper. 

 

5. Computational Performance  

 



In order to characterize the computational performance of IEM in practice, we conducted 

a comparison study on a set of CSLP problem instances that were generated using an 

instance generator. We describe the instance generator and report the observed 

computational performance of IEM, in comparison with the linear programming 

reformulation proposed by Rockafellar and Uryasev (2000). 

 

The instance generator creates instances of CSLP with the following set of parameters. 

The number of columns (variables) was fixed at 30, while the number of rows, each of 

which is a CVaR constraint as described in the definition of CSLP, was varied from 2 to 

200. The random constraint matrix (in the Left Hand Side, of the constraint set) was 

generated using a random seed, and the following equation, which generates a set of 

positive, random, constraint coefficients. 

8

max(0.1, Normal(Uniform(1,10), Uniform(5,10)))

randseed

Aij

====
====  

The objective function coefficient vector was fixed; the constraint right-hand-side 

coefficient was fixed to take a value of 1 for each constraint. 

 

Note that the above instance generator will generate an instance of CSLP, upon 

specification of the number of rows, i.e. the number of CVaR constraints.  We tested the 

computational performance of IEM, as well as the linear programming reformulation 

proposed by Uryasev and Rockafellar, on the following set of instances, which differ in 

the number of rows that range from 2 to 200, using a sample size of 1000 to approximate 

each problem instance. For the purposes of comparison, we implemented IEM using 

AMPL along with a C function call in order to enable the sorting procedure required in 

Step 3 of IEM. Further, the tolerance parameter for termination of IEM in Step 6 was 

chosen to be 1E-6. Similarly, we also implemented the linear programming reformulation 

of CSLP proposed by Uryasev and Rockafellar using AMPL. Lastly, we used ILOG 

CPLEX 10.0 as the linear programming solver for both algorithms. The computations 

were performed on a Lenovo Thinkpad T60p, with an Intel CPU, T2600 at 2.16 GHz, and 

2 GB RAM. 

 



The table below shows the resulting computational performance. 

Instance Number of Rows 

Rockafellar and Uryasev 

(secs) 

IEM 

(secs) 

1 2 0.1 45 

2 10 9.4 81.1 

3 50 273.3 129.2 

4 100 1148.4 420 

5 150 2880.5 494.1 

6 200 >5400, Terminated 730.2 

 
Table 1: Computational performance of IEM and Rockafellar and Uryasev’s method. 
 

The above results are compared in the following figure. 
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Figure 1: Compare performance of IEM and Rockafellar and Uryasev’s method. 

 

The table shows that the performance of IEM is significantly superior, when the number 

of rows (constraints) is large. This is because, as mentioned ealier, the linear 

programming reformulation proposed by Rockafellar and Uryasev introduces a large 

number of additional variables and constraints, whose size scales linearly with the 

number of samples, for each original constraint in CSLP. In other words, if there are m 

original constraints in any of the above CSLP instances, the reformulation introduces 



about 1000m auxiliary variables and additional constraints, since the number of samples 

has been fixed at 1000 for the above instances.  As shown in Figure 1, when m, which is 

the number of rows, increases from 2 to 200, the additional burden imposed by the 

increased complexity of the reformulation weighs in significantly on its computational 

performance. 

 

On the other hand, IEM does not suffer from such an increase in complexity, because in 

each iteration of IEM, we solve a linear programming problem that is almost the same 

size and complexity as the original CSLP, in terms of number of constraints, and exactly 

the same size and complexity as the original CSLP, in terms of the number of variables. 

This aspect of IEM is very appealing from both a computational time, as well as 

computer memory size point of view. It is also very appealing in terms of the sample 

average approximation quality, because the algorithmic complexity of IEM is relatively 

insensitive to the number of samples that are chosen in the sample average approximation.  

 

6. Conclusion 
 
IEM is an efficient algorithm for stochastic linear and convex programs with CVaR 

constraints. A fundamental characterization of coherent risk measures in general, and 

CVaR in specific, is that they can be represented as the worst-case expectation in some 

probability space (Artzner et al. (1999)). IEM exploits this property to sequentially 

approximate CVaR constraints and solve CVaR-constrained stochastic linear and convex 

problems simultaneously. 
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