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Abstract

We present a new algorithm, Iterative Estimatiorxividzation (IEM), for stochastic linear and convex
programs with Conditional-Value-at-Risk (CVaR) ctragits. IEM iteratively constructs a sequence of
compact-sized linear, or convex, optimization peoi$, and solves them sequentially to find the agtim
solution. The problem size IEM solves in each tierais unaffected by the size of random sampldschv
makes it extreme efficient for real-world, largexfscproblems. We prove that IEM converges to the tr
optimal solution, and give a lower bound on the hanof samples required to probabilistically sgtesf
CVaR constraint. Experiments show that IEM is atheoiof magnitude faster than the best known

algorithm on large problem instances.

1. Introduction

Consider the following risk-constrained stochastic linear program,

maxc' x
(CSLP) CVaR,(¢'¥) <b
xOD

where D O R" is a convex polytope generated by a set of linear inequalitieR" is a

vector of objective function coefficients, is a random vector in spa¢®’, CVaR,()l is

a risk measure called Conditional-Value-at-Risk (CVaR), which maps a raratable

to a real number iR , bR is a upper bound imposed upon risk measivaR, (1,

modeling the maximum acceptable risk one is willing to take.



Problem CSLP extends the linear programming model. It allows input paranoeber
random variables, and thus can capture uncertainty associated with the problem of
interest. CSLP can be applied to model a large set of practically importéatems. One
application is in portfolio optimization. In a portfolio optimization problem, random

vector ¢ represents the future security prices, decision vanabdépresents the portions
of total wealth allocated to individual securiti€syaR, (£"X) measures the risk of a

given allocationx, b bounds the maximum level of risk,typically contains the
expected return of individual securities, and budget and other constraints can be modeled

asxOD.

The risk measure that we consider in this paper is CVaR, which is coherent in the sens
of Artzer et al. (1999). It was proposed as an alternative to Value-at-Rag®,(Which is

a popular risk measure widely used in financial industry. VaR is the lowestipblesd

that may occur with a given small probability. Detdenote a random variable with

continuous probability density functirand1- 80 (0,1) denote a small probability that
a large loss may occur, and then VaR is defined as

VaR,(Y) =inf{yOR:PrlY >y]<1-j},
and CVaR is defined as

CVaR,(Y) = E[Y |Y = VaR,(Y)].
Basically, CVaR measures the average extreme loss given that thedosater than
VaR.

If we replace the CVaR risk measure in problem CSLP by VaR, we peahae:
constrained stochastic linear program, which has been studied extensigeb.gseKall
and Wallace (1994), and for most recent development, see NemirovskiapidoS2006)

and references therein). One major difficulty of applying a chance cons$trédound

! The definition of CVaR for general discontinuouslability density functions is more complicated,
involving a procedure of “splitting probability melsat discontinuous points. For simplicity, we assu
random variables have continuous density functibrmughout the paper. Our method is not affected by
this assumption.



risk is that in general it leads to a non-convex problem, which is difficult to soleptexc
for a few special cases.

The feasible region of problem CSLP is convex because of the nice propertie¥affat
enjoys. Follow Artzer et al. (1999), CVaR is a coherent risk measure andtisfies

the following four properties any coherent rigkl) does:

» Translation invariance. For any random varia¥l@and any real numbeq,
p(Y +K) = p(Y) +k.

e Subadditivity. For any random variablesand Y,
P(X +Y) < p(X)+ p(Y).

» Positive homogeneity. For any random varialend any real numbet = 0O,
P(AY) = Ap(Y).

* Monotonicity. For any random variableéandY , if X <Y almost surely,
P(X) < p(Y).

The feasible region defined by the constram‘t/,aRﬁ(fo) <b, is clearly convex, as

implied by subadditivity and positive homogeneity. This implies that, potentiaitye
instances of problem CSLP can be solved efficiently.

Though it is a convex problem, finding the exact solution to problem CSLP is impossible
in the general case. This is because even for a givesmputing the distribution of " x
requires performing & -dimensional integrationn( is the dimension ok and¢). If n

is large, we will be overwhelmed by the “curse of dimensionality”.

One way to overcome this difficulty is to take a sample approximation approach, in

which the original problem CSLP is approximated by another problem that isuztedtr
based on a set of samples of random parandet®&e take this approach in this paper.

For briefness, we do not differentiate between problem CSLP and its sample

approximation, and simply call the optimal solution to a sample approximation as “the
optimal solution to problem CSLP”.



In this paper, we propose an algorithm, Iterative Estimation Maximization)( &M

solve problem CSLP. IEM iteratively constructs a sequence of compadtlisizar
programs and solves them sequentially to find the optimal solution. The solution obtained
in the preceding iteration is used to construct the linear program for the next acte, whi
guarantees that we always get a better approximation to the optimadrsalsitihe
algorithm progresses. The size of the linear program that IEM solvedhteation is
comparable to the original problem, and is unaffected by the size of random samples.
This makes it extremely efficient for large problem instances. Indeedawshow that

IEM can be interpreted as embedding a set of column generation sub-problems to the
well-known simplex method. In this interpretation, the sub-problems are condticte
such a way that each sub-problem can be solvé&yMlogN) time, whereN is the

size of samples. This interpretation explains the good practical perfaroaHeM.
Considering we are solving a stochastic linear program Witkamples, the extra

overhead ofO(NlogN) seems to be unavoidable.

We also extend IEM to solve the general CVaR-constrained stochastic convensogr
which has the following canonical representation

maxh(x)
(CSCP) CVaR;[g(¢,x)]<b
xtbD

where D is a convex subset ®", h(x) is a strictly concave function, arg(¢, x) is a
convex function orx for any &. Problem CSCP is a natural extension to convex
programs, along the same lines as problem CSLP is an extension to linear prtgjvams.
takes a similar procedure to solve problem CSCP: a new convex program is cedstruct
and then solved iteratively. Like in the linear case, the convex problem solvedhin eac
IEM iteration is unaffected by the size of samples. As far as we know,dEM ifirst

algorithm that solves problem CSCP.

Rockafellar and Uryasev (2000), and Krokhmal et al. (2002) proposed a sample

approximation based method for problem CSLP. Their key observation is that the I.h.s.



for the CVaR constraint can be approximated by its sample average estirbation

¢, é,,...,&, denoteN samples of random vectdr, then constrainCVaRﬁ(fo) <b can

be approximated by
1 X N
a+———=Y (¢ x-a) <b
NA-pB) &

wherea is a free auxiliary variable. Introducing varialde i 512,...,N, the above

constraint can be linearized and replaced by the following set of constraints
1 N
at——
Na-p8) &
z 2EiTx—a’, i=12,...,N
z=20 i=12...,N

z<b

This procedure transforms problem CSLP into a large linear program andisolves
accordingly. One major shortcoming of this approach is that both the number ofrguxilia

variablesz and the number of newly introduced constraints are proportional to the

number of samples, which makes this approach impractical even for modest sz orig
problems, when the sample size is large. Our IEM algorithm does not saffethis

shortcoming.

The rest of the paper is organized as follows. Section 2 presents the |IEMaigand

proves it correctively solves CVaR-constrained stochastic linear pnegta Section 3,

we extend the IEM algorithm to CVaR-constrained stochastic convex programs and
prove that it converges. Section 4 gives a lower bound on the size of samples required so
that a CVaR constraint can be satisfied with high probability. Section 5 shows the
performance of IEM on randomly generated problem instances. Section 6 conlctudes t
paper.



2. lterative Estimation Maximization

We first describe the IEM algorithm.

lterative Estimation Maximization:

1. GeneratdN samplesé,,é,,...,&, for the random vectof .

2. Set iteration index = 0. let LP° denote the initial linear program &£ 0,

max c'x

xOD

(LP°)

Solve LP° to get the initial valuex’ 0D .

3. Let LP' and x' denote the linear program and the solution in the current iteration
t. Perform the following steps for the constrai@t/aRﬂ(fo) <b, in the original
problem CSLP:

a. Computel, =¢&'x' for each sampld,,i =12,...,N
b. Sortl, i=12,...,N inascending order. Ldt; denote the-th smallest

value in the list of sorted,; values, andf;, denote the corresponding

sample used to compute,, i.e,

EgX S &pX .. &)X (1)
c. Let K denote the smallest integer that is greater thén i.e.,
K=min{i0{12,...,N} :i > NS}, (2)

add the following constraint to the current linear progiai,

1 A
— 2 X<Db. 3
NG-5) & 0 ©
4. After finishing step 3, we obtain a new linear prograRi** by adding a new

constraint (3) toLP'. Now solveLP'*'to get a new solutioxi**.

5. Remove all non-binding constraints like (3) that have been addef'tb in

previous iterations.



6. If ||x"*"—x'|| is small enough, terminate, and outptit= x"**

as the optimal
solution to the original problem CSLP. Otherwise,tset +1, x' = x'**, and go

back to step 3 to start the next iteration.

For a given solutionx', step 3a and 3b estimaﬂé\/aRﬂ(fot) based on samples

XL, EX,..LEUX . In step 3c, thosé, 's that have contributed to the estimation, i.e., top

N - K +1 samples, are used to create constraint (3). Intuitively, IEM seeks tovébrat
replace the CVaR constraint in the original problem with estimates in the fdmeaf
constraints as shown in step (3). It does so, by using the best solution obtained so far to

speculate the coefficients of the linear constraint (3). When IEM temsinat
CVaR,(¢7X'), the CVaR value of "X corresponding to the optimal solution, is

estimated by the I.h.s. of constraint (3), and conversely, solving a linear pragham

such a constraint leads to the optimal solution to the original problem CSLP.

To prove that IEM indeed converges, we first construct a sample approxinmation t

problem CSLP, and then demonstrate that IEM solves such an approximation.

Let ® denote the collection of all subsets of the{gets,,...,&,, , with size, N -K +1 ,
and | ,(IY denote the indicator function of a subgeil @, i.e.,

allA

IA(a)=§ aOA"

Corresponding to all subsefsC1d, we can construct a set of linear constraints (the

number of constraints i€, _, ), which take the following form.

1 AR
———— M & XL(E) b, DADD. 4
Note that constraint (3) in step 3c of the IEM algorithm belongs to constra{d) $et

some subseAD® .



Proposition 1: Constraint set (4) is a sample approximation to the CVaR constraint
CVaR,(¢™x) <b (5)
in problem CSLP.
Proof: For OxOR", constraint (5) can be approximated by
1 N
NA-5) &
where B(x) O ® is a subset ofé,,¢,,....&, } with sizeN - K +1, such that for

&M Xl gy (&) <b (6)

O0&0O0B(X) andOd&OB(X), {'x=&Tx, i.e.,
B(X) ={AD®:'x>¢"x, OFOA andDEOA (7)
We call B(x) the dominant set induced bxy. In essenceB(x) contains the top

N - K +1 samples that have the largé&s values.

Now we claim that fol JAO® - B(x), if x satisfies (6), it also also satisfies all the rest

of the constraints, shown in (8).

1 X B
NL- D) IzgﬁxIA(gﬁ)sb, OAD® - B(x) 8)

By the definition ofB(x), we know that

> EHAE)S Y (@), CAD® B

as replacing]é OB(x) by O& OB always results in a smallér x value. Constraints (6)

and (8) imply constraint set (4). o

Proposition 2 IEM solves the following linear program, which is a sample

approximation to problem CSLP,

maxc' x

1N
N{@- ) £ &'xl,(&)<b, DAO®

xdD

(SA-CSLP)




Proof: Let A, denote the dual variable corresponding to the constraint indexed by

AO®. Consider applying the simplex method to solve the dual of problem SA-CSLP. In

each simplex pivot step, a column that has the minimum reduced cost

N
! &'xl (&) is put into the base. Finding the minimum reduced cost is

b &
N@-5) 2

equivalent to solving the following column generation problem
N
T .
m/;av{gfi Xl (&) : AD®}

It is clear that for a giver, its dominant seB(x) solves the above column generation
problem. FindingB(x) is easy, because we only need to comgjite for each
é,i=12,..,N, and then sort them and pick up the tép- K +1 ones. This is what IEM

does in steps 3a and 3b. The time to $brvalues of&' x is O(NlogN) , which is the

overhead we need to pay in each iteration. After identiffig) , the simplex method
selectsA,, and adds it into the basis. In the primal problem, this is equivalent to
constructing a constraint like (3) and adding it to the preceding linear proghsrs

exactly what IEM does in step 3c. Note that in each simplex pivot step, only one dual
variable A ,, that is zero will enter the basis, while the rest of the dual variablesréhat

zeros will continue to be kept as zeros. Those dual variables that are continued to be kept

as zeros correspond to non-binding constraints in the primal, and thus can be safely

removed without affecting the solution of the next iteration. o

3. CVaR-constrained Stochastic Convex Programs

Extending IEM for problem CSCP is straightforward. In steps 3a, 3b and 3c,twe sor

g9(¢,x), i=12,...,N and add the following convex constraint to the preceding convex

optimization problem

1

N-p) & S0 =P



where the definition o€ ;, is similar to that in (1), or more precisely,

96w, X) < 96, X) <...< ¢y X) -

Proposition 3 Constraint set

1 N

N@-pB) £

Is a sample approximation to the CVaR constraint
CVaR,[g(&X)]<b

9(¢ 91 (¢) =b, DAD® 9)

in problem CSCP.

Proof: Similar to the proof of proposition 1. m

Proposition 4: IEM solves the following sample approximation to problem CSCP,
max h(x)

1 N
Na-8) &
xtD

(SA-CSCP) 9(& )1 (&) <b, DAD®

Proof: Let X denote the optimal solution of problem SA-CSCP. Iff@&0® , none of

the constraints in constraint set (9) is bindingatIEM obviously solves problem SA-

CSCP as IEM steps 3, 4 and 5 have no effect on the final solution.

Now assume that at least one constraint in constraint set (9) is bindingvsie claim
that as IEM progresseb(x') > h(x'*!* for any iteratiort, i.e., IEM keeps getting strictly
better approximations t& , and the sequence of solutions is strictly monotonically
decreasing across all iterations in IEM. We prove this by contradiction.

Suppose that in an iteratiar+ 1, we get a solutionx"™*, such thath(x') < h(x'** )

Clearly, x'** can not lie in the feasible region of the convex problem IEM just solved in
the preceding-th iteration, because otherwisg&"* would be the optimal solution to the

th iteration problem. Therefore; ™ must be infeasible for theteration problem. Since

in iterationt +1, IEM keeps all binding constraints in tth iteration problem, and

removes all non-binding constraints, it follows tik&t must violate some of the non-



binding constraints that have been removed. On the other Ranbyiously satisfies all
these non-binding constraints as it is the optimal solution tbtth#eration problem.

Now we have two pointg' and x'**, lying on two sides of some non-binding constraints
of thet-th iteration problem. It follows that there exist a paintying on the line

t+1

segment connecting' and x'**, such thatx is feasible for thé-th iteration problem.

Sinceh(x) is strictly concave, we hav&(X) > h(x') as well, which contradicts the

assumptionx' is the optimal solution to theth iteration problem.
Given thath(x') > h(x'** )is always true akEM progresses, we know that IEM must

terminate after a finite number of iterations. When it terminatesratida t +1, we have

t+1 _ Ut

X"t =x" (or more preciselyj| X" —x' |s small enough). Now consider the constraint

IEM added in iterationt +1. It is a constraint in constraint set (9) indexedB{yx' )
(recall thatB(x' )is the dominant set induced ). Given that IEM solves thé +1) -
th iteration problem with a constraint indexed Bfx' , ahd the optimal solution is equal

to x', it follows thatx' satisfies each and every constraint in constraint set (9), as the
constraint indexed b(x' Jlominates all the other constraints. This meansxhéat the

optimal solution to problem SA-CSCP. m

IEM solves a sequence of nonlinear programs iteratively. It is desicabi@rin-start an
iteration based on the solution obtained in the previous one. As IEM converges close to
the optimal solution, warm-starting an iteration is especially helpful asotisecutive
solutions are close to each other. The most widely used interior point methods for
nonlinear programs are not suitable for this task, as our IEM algorithm cosveripe
optimal solution from the infeasible region. On the other hand, active-set methods are
well appropriate to be embedded into IEM to warm-start new iterations. There are
considerable new developments on active-set methods in recent yeargy(s8gre and
Waltz (2007), Chen et al. (2006), Byrd et al. (2004)). Though the current available
implementations of active-set methods still can not compete with those ofimieint

methods, we expect them to improve significantly in the near future.



4. Bound on Sample Size

Problem SA-CSLP increasingly better approximates problem CSLP as therrafmbe

samplesN grows. In this section, we give a boundMsuch that the CVaR constraint

holds with high probability at the optimal solutien. For the sake of presentation
simplicity, we will derive the bound for problem CSLP. The exact same technique
applies to problem CSCP.

To make sure that the CVaR constraint is satisfied with higher probabilityghten the

r.h.s. of the CVaR constraint, and solve the sample approximation problem corresponding
to the tightened version. More specifically, we replace the CVaR caristrgaroblem

CSLP by

CVaR,(('X)<b-¢,
where ¢ is a small positive number, and solve the corresponding sample approximation

problem. Letx denote the optimal solution, then we want the following inequality to
hold

Pr{CVaR,(¢'x) -b>0} <4, (10)

where0<J <1 is a small probability threshold.

When IEM terminates, we get an estimator@¥aR,(¢'x), i.e.,

CVaR,(¢'x) = ﬁ; X s

where;, andK are defined in definitions (1) and (2) respectively. Hdtx'  dehote the

above estimator. There are two possibilities that can hapgpen) =b-¢ (the

approximated CVaR constraint is binding),l8(x') <b-¢& (the approximated CVaR

constraint is not binding). We consider the binding case only, since it will produce a

conservative bound aX that holds even for the non-binding case.



Manistre and Hancock (2005) showed thitx  is in asymptotically unbiased
estimator ofCVaR,(¢'x'), and furthermore,H (X') - CVaR,(¢'X') is asymptotically

normal distributed with mean 0 and varianz®, which can be approximated by

o 2 T X X i X) + BH(K) =L X )

N@-25)

where o2 (&, X, &y X 1oy X ) is the empirical variance ofN — K +1 data points

(11)

EhoX 1 EkanX 1y X - AsN grows large, both the empirical variance and the term

(H(X) = &l,X)? will converge to some constants. The former converges to the true

variance of the tail distribution, and the later converges to the square of the true
difference between the CVaR value and the VaR value. Therefore, wengn si
equation (11) as

o? = C1 + :8C2 )

N@d-2B)

To satisfy inequality (10), we need

N > [ A-9(C, + BC,)

£°(1-P)

Whereg™ ()is the inverse cumulative distribution function of the standard normal

(12)

distribution.

Monte Carlo methods usually converge at 1@{@& ™% . Rgsult (12) is consistent with
that rate. Also note thatl grows proportionally td/(1- £8) . This matches our intuition,
as we actually only ussl (1- 8) data points to estimate CVaR. Importance sampling can

reduces the number of sample points required. We will investigate this issue irr anothe

paper.

5. Computational Performance



In order to characterize the computational performance of IEM in practicsynvadeicted

a comparison study on a set of CSLP problem instances that were generated using an
instance generator. We describe the instance generator and report thecdbser
computational performance of IEM, in comparison with the linear programming

reformulation proposed by Rockafellar and Uryasev (2000).

The instance generator creates instances of CSLP with the followingoseaofeters.
The number of columns (variables) was fixed at 30, while the number of rows, each of
which is a CVaR constraint as described in the definition of CSLP, was varied foom 2 t
200. The random constraint matrix (in the Left Hand Side, of the constraint set) was
generated using a random seed, and the following equation, which generatfs a se
positive, random, constraint coefficients.

randseed =8

Aj =max(0.1, Normal(Uniform(1,10), Uniform(&0)))
The objective function coefficient vector was fixed; the constraint right-sated

coefficient was fixed to take a value of 1 for each constraint.

Note that the above instance generator will generate an instance of (P

specification of the number of rows, i.e. the number of CVaR constraints. Wktteste
computational performance of IEM, as well as the linear programmiogmefation

proposed by Uryasev and Rockafellar, on the following set of instances, wherhirdiff

the number of rows that range from 2 to 200, using a sample size of 1000 to approximate
each problem instance. For the purposes of comparison, we implemented IEM using
AMPL along with a C function call in order to enable the sorting procedure required i
Step 3 of IEM. Further, the tolerance parameter for termination of IEM jeSieas

chosen to be 1E-6. Similarly, we also implemented the linear programming reftomul

of CSLP proposed by Uryasev and Rockafellar using AMPL. Lastly, we used ILOG
CPLEX 10.0 as the linear programming solver for both algorithms. The computations
were performed on a Lenovo Thinkpad T60p, with an Intel CPU, T2600 at 2.16 GHz, and
2 GB RAM.



The table below shows the resulting computational performance.

Rockafellar and Uryasev IEM
Instance Number of Rows | (secs) (secs)
1 2 0.1 45
2 10 9.4 81.1
3 50 273.3 129.2
4 100 1148.4 420
5 150 2880.5 494.1
6 200 >5400, Terminated 730.2

Table 1: Computational performance of IEM and Rockdellar and Uryasev’'s method.

The above results are compared in the following figure.

6000

5000 1 —=— R&U method Va
—— |EM

4000

3000

2000 /

1000 /

0 ﬂré';r/‘/‘
2

Number of CVaR constraints

Time in seconds

Figure 1: Compare performance of IEM and Rockafella and Uryasev’'s method.

The table shows that the performance of IEM is significantly superi@mn wie number
of rows (constraints) is large. This is because, as mentioned ealier, the linear
programming reformulation proposed by Rockafellar and Uryasev introduces a large
number of additional variables and constraints, whose size scales linearly with the
number of samples, for each original constraint in CSLP. In other words, ifattezne

original constraints in any of the above CSLP instances, the reformulatiotuoes



about 100fn auxiliary variables and additional constraints, since the number of samples
has been fixed at 1000 for the above instances. As shown in Figure Inwhbich is

the number of rows, increases from 2 to 200, the additional burden imposed by the
increased complexity of the reformulation weighs in significantly on itspedational

performance.

On the other hand, IEM does not suffer from such an increase in complexity, because i
each iteration of IEM, we solve a linear programming problem that is almosartine

size and complexity as the original CSLP, in terms of number of constraintaatly e

the same size and complexity as the original CSLP, in terms of the number blegaria
This aspect of IEM is very appealing from both a computational time, aasvell

computer memory size point of view. It is also very appealing in terms ofrtijgesa
average approximation quality, because the algorithmic complexity of $Edatively

insensitive to the number of samples that are chosen in the sampgeaapproximation.

6. Conclusion

IEM is an efficient algorithm for stochastic linear and convex progratis@WaR
constraints. A fundamental characterization of coherent risk measuresnalgand
CVaR in specific, is that they can be represented as the worst-castagapec some
probability space (Artzner et al. (1999)). IEM exploits this property to seqligntia
approximate CVaR constraints and solve CVaR-constrained stochastic lineanaex c

problems simultaneously.
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