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We study the following problem related to pricing over time. Assume there is a collection of

bidders, each of whom is interested in buying a copy of an item of which there is an unlimited
supply. Every bidder is associated with a time interval over which the bidder will consider buying
a copy of the item, and a maximum value the bidder is willing to pay for the item. On every time
unit the seller sets a price for the item. The seller’s goal is to set the prices so as to maximize
revenue from the sale of copies of items over the time period.

In the first model considered we assume that all bidders are impatient, that is, bidders buy the
item at the first time unit within their bid interval that they can afford the price. To the best of
our knowledge, this is the first work that considers this model. In the offline setting we assume
that the seller knows the bids of all the bidders in advance. In the online setting we assume that
at each time unit the seller only knows the values of the bids that have arrived before or at that
time unit. We give a polynomial time offline algorithm and prove upper and lower bounds on the
competitiveness of deterministic and randomized online algorithms, compared with the optimal
offline solution. The gap between the upper and lower bounds is quadratic.

We also consider the envy free model in which bidders are sold the item at the minimum price
during their bid interval, as long as it is not over their limit value. We prove tight bounds on the
competitiveness of deterministic online algorithms for this model, and upper and lower bounds
on the competitiveness of randomized algorithms with quadratic gap. The lower bounds for the
randomized case in both models use a novel general technique.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms; Problems; F.1.2 [Theory of Computa-

tion]: Models of Computation—Modes of Computation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Digital goods, Online Algorithms, Pricing

1. INTRODUCTION

The problems considered in this paper are motivated by the application illustrated
in the following example. Consider a Video On Demand (VOD) service that multi-
casts a movie at different times and sets the subscription price dynamically. Suppose
that the potential customers submit requests in which they specify an interval of
time when they wish to watch the movie and a limit value for their subscription
(similar to a “limit order” in the stock market). At each time unit, based on the
information available to the VOD server, it sets a subscription price for the time
unit. The customers are assumed to be “impatient”: they subscribe to the service
at the first time unit within their interval whose subscription price is no more than
their limit value. The goal of the VOD server is to set the prices to maximize its
revenue.

Note that, unlike the situation in the stock market, in our case the seller (the VOD
server) has information on the limit orders when it sets the price. To “compensate”
for this we also consider a less realistic “envy free” variant in which customers
subscribe in the time unit within their interval with the lowest subscription price,
as long as this price is no more than their limit value.

We consider both offline and online versions of the problem. In the offline version
the VOD server has full information on current and future limit orders while in the
online version it only knows the limit values of the active customers at each time
unit.

The pricing problem described above is formalized as follows. Assume there is
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a collection of bidders, each of whom is interested in buying a copy of an item of
which there is an unlimited supply. In particular, this implies that the seller has
no restriction on the number of bidders that it can sell a copy of the item at any
point of time. Every bidder i is associated with a tuple (si, ei, bi), where the range
[si, ei] denotes the time interval over which bidder i will consider buying a copy of
the item, and bi is the maximum amount the bidder is willing to pay for a copy of
the item. We refer to the tuple (si, ei, bi) as the bid of bidder i, the quantity bi as
her bid value, the interval [si, ei] as her bid interval, and si and ei as the start and
expiration time respectively.

From now on we assume that the time units in which si and ei are specified are
days. On every day t = 1, 2, . . . , T , the seller (or the VOD server) sets a price p(t)
for the item. The seller’s goal is to set the prices {p(1), . . . , p(T )} so as to maximize
revenue from the sale of copies of items over the time period.

In the first model considered we assume that all bidders are impatient, that is,
bidders buy the item on the first day within their bid interval they can afford
the price. More formally, bidder i buys (a copy of) the item on the first day
t ∈ [si, ei], such that p(t) ≤ bi. We call this model the IB-model (where IB stands
for impatient bidders). To the best of our knowledge, ours is the first work that
considers this model.

In the offline setting we assume that the seller knows the bids of all the bidders
in advance. In the more realistic online setting we assume that on day t, the seller
only knows about the bids that have arrived before or on day t, i.e., all bids i such
that si ≤ t.1 In fact, we assume that the seller only knows the value bi of these
bids, and does not necessarily know the expiration date ei of bid i. We use the
classical approach of competitive analysis to study the online model. That is, our
aim is to design algorithms for setting prices that minimize the competitive ratio,
which is the maximum ratio (over all possible bid sequences) of the revenue of the
optimal offline solution to that of the online algorithm.

Our model is closely related to the pricing over time variant of the envy-free
model first considered by [Guruswami et al. 2005]. Their setting is similar to ours,
except that a bidder is sold the item at the minimum price during her bid interval,
provided that she can afford it. That is, the bidder buys the item at the price
mint∈[si,ei]p(t) (provided this price is less than bi). In this model, a bidder is never
“envious” of another bidder and the pricing is envy-free [Guruswami et al. 2005].
We call this model the EF-model (where EF stands for envy free).

1.1 Notation and Preliminaries

We will assume that the bid values are in the interval [1, h]. In the online setting,
the value of h is not known to the algorithm. The total number of bidders will
be denoted by n. For every bidder i, the quantity ei − si + 1 will sometimes be
referred to as the bid length of bid i. We will say that a bid i is alive at time t if
t ∈ [si, ei] and the bidder has not bought a copy of the item by day t − 1. For any

1Note that we assume that on day t, the seller knows the values of bids that arrive on day t

in addition to the ones that have arrived before. This is necessary to obtain non-trivial results.
Otherwise, the adversary can only give bids of duration one, and make the performance arbitrarily
bad since these bids expire before the online algorithm is even aware of their value.
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set of bids B, let OPT (B) denote the optimal offline revenue obtainable from B.
OPT will denote the optimal revenue from the set of all input bids. For notational
convenience, we will use OPT for both the EF-model and the IB-model, since
the model under consideration will always be clear from the context.

For several pricing problems, randomized algorithms that have a logarithmic
competitive ratio often follow trivially using the “classify and randomly select”
technique. In particular, consider the algorithm that rounds down the bid values to
the nearest powers of 2, randomly chooses one of these log h bid values and sets this
same price every day. For any bid with value v, there is at least 1/ logh probability
that the chosen price lies in [v/2, v], and hence the expected revenue obtained by
this algorithm is at least 1/(2 logh) fraction of the total bid values in the instance.
Thus this algorithm is trivially O(log h) competitive for both the IB-model and the
EF-model. For most pricing problems in the literature (including the EF-model)
these are essentially the best randomized algorithms known. Our focus in this paper
will be to either give algorithms that improve on this straightforward guarantee, or
show close to logarithmic lower bounds which suggest that the trivial “classify and
randomly select” algorithm is essentially close to the best possible.

1.2 Our Results and Techniques

We show that the offline version of the IB-model can be solved in polynomial time
by a dynamic programming based algorithm. The rest of the results are in the
online setting. For the EF-model, we show an Ω(

√

log h/ log log h) lower bound
on the competitive ratio of any randomized algorithm. This may suggest that the
trivial O(log h) competitive randomized “classify and select algorithm” is close to
the best possible in this model. We also show that any deterministic algorithm
must have a competitive ratio h− ε, where ε is an arbitrarily small constant greater
than 0. Note that the deterministic algorithm that sets the price of 1 every day
is trivially h competitive, and hence the lower bound implies that this seemingly
trivial algorithm is the best possible (without ignoring any constant factor).

For the IB-model, we give a randomized algorithm with competitive ratio
O(log log h). We also show that any randomized algorithm has a competitive ratio of
Ω(
√

log log h/ log log log h), which again may suggest that O(log log h) is close to the
best possible randomized guarantee in this model. For deterministic algorithms, we
show that any deterministic algorithm must have a competitive ratio Ω(

√
log h), and

present a simple greedy (and well-known) deterministic algorithm that is O(log h)-
competitive.

Note that our results imply an exponential separation between the EF-model

and IB-model in terms of competitive ratio for both deterministic and randomized
algorithms. We summarize the results for online algorithms in Table I.

Technically, the most interesting results of the paper are the lower bounds for
randomized algorithms. Recall that the “classify and randomly select” algorithm
achieves in expectation a revenue of at least a 1/(2 logh) fraction of total bid values
in the instance. Thus to show, say, an Ω(log h) lower bound the instance must be
such that the optimum can satisfy almost all bids at essentially their bid values,
and yet any online algorithm must perform poorly. For any online algorithm to
perform poorly, the bids in the instance must be such that their bid intervals have
substantial overlap and dependence among each other. However, the goal is to do
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Deterministic Randomized
Upper Bound Lower Bound Upper Bound Lower Bound

IB-model O(log h)† Ω
�√

log h
�

O(log log h) Ω
�q

log log h

log log log h

�
EF-model h† h − ε O(log h)† Ω

�q
log h

log log h

�
Table I. Our results for online algorithms. (The upper bounds with † are previously known and/or
trivial.)

this without reducing the offline profit significantly.
It is instructive to consider the following “binary tree” like instance where bid

intervals have a non-trivial dependence among each other. There is one bid with
value h and interval [0, T ], two bids with value h/2 and intervals [0, T/2 − 1] and
[T/2, T ] respectively, four with value h/4 and intervals [0, T/4 − 1], . . . , [3T/4, T ]
respectively, and so on. We can view this instance as a binary tree in the natural
way. The total value of bids in the instance is O(h log h) and each price level con-
tains a value of h. While any reasonable algorithm can obtain a revenue of h (for
example by setting the same price every day), it is a simple exercise to see that in
the EF-model no algorithm can achieve a revenue of more than 2h. Intuitively,
if the algorithm sets low prices at some time to gain some bids with low value, it
loses all the high value bids that overlap with this time. Interestingly, we use a
randomized version of this binary tree like instance to obtain our lower bound for
the EF-model. We show that if the instance is such that number of children of
each node is an exponentially distributed random variable (instead of exactly two
in the binary tree instance) then there are sufficiently many “disjoint” and “high
value” regions in the tree such that the offline algorithm can obtain an expected
revenue of Ω(h ·

√

log h/ log log h). To show this, we analyze a natural branching
process associated with this construction and carefully exploit the variance (second
order effects) of the exponential distribution. We believe that this technique should
be useful in other contexts. To get the lower bound on the randomized compet-
itive ratio for the IB-model we start with a construction similar to that for the
EF-model and define an intricate one-to-many mapping of the bids defined by the
binary tree. The mapping relates the IB-model to the EF-model and the result
for IB-model follows using similar arguments as for EF-model.

1.3 Related Work

Pricing and auctions have received a lot of attention in economics and recently also
in the computer science literature. In an auction, given the bids (in either offline or
online fashion), the auctioneer has to decide on an allocation of items to the bidders
and the price to charge them. (Note that in particular every bidder can be charged
a different price while in our model every bidder is offered the same price on any
given day.) Generally, the focus of these works is on one of the following: maximize
the social welfare of all bidders or maximize the revenue of the seller. Our work
falls in the latter category. In the rest of the section, we attempt to summarize a
few previous works that are related to ours.

The work closest to ours is that of [Guruswami et al. 2005], which considers the
EF-model. They give a polynomial time algorithm to compute the optimal set of
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prices for the offline version of EF-model, which is based on a dynamic program.
In fact, our dynamic program-based algorithm for the offline IB-model is similar
in structure to theirs.

For unit bid length setting, [Goldberg et al. 2006] look at competitive revenue
maximizing truthful offline auctions for a single good with unlimited supply, where
truthfulness requires that the bidders are best off not lying about their true values.
The goal is to design truthful auctions that are still competitive. Online truthful
auctions have also been considered for this model [Blum and Hartline 2005; Blum
et al. 2004]. We point out two key differences between this model and ours. First,
in the truthful offline auctions model every bidder can be offered a different price.
Second, the benchmark is not the best offline performance (as we consider in this
work) but the revenue of the auction is compared to that of the best fixed-price
auction. It is worthwhile to note that the requirement of truthfulness is important in
this model as it is trivial to generate optimal revenue without this extra requirement
(by selling the good to all bidders at their bid value). Note that we do not consider
truthful auctions in this paper.

Auctions for the case when the bid intervals can be arbitrary have been considered
in [Hajiaghayi et al. 2004; Lavi and Nisan 2005; Hajiaghayi et al. 2005]. However,
these are in some sense orthogonal to this work as they are either concerned with
maximizing the social welfare or the items are available in limited supply. Again,
every bidder can be offered a different price and these works deal with truthful auc-
tions. We again note that maximizing the social welfare of an item with unlimited
supply is trivial by giving the items “for free”.

2. RESULTS FOR THE EF-MODEL

In this section, we present lower bound results for the EF-model.

2.1 Lower Bounds for Deterministic Online Algorithms

Recall that the algorithm that sets the price of 1 on each day is trivially an h
competitive deterministic algorithm. Theorem 2.1 below shows that this is the best
possible for any deterministic algorithm.

Theorem 2.1. Any deterministic online algorithm A for EF-model must have
a competitive ratio of at least h − ε, for any ε > 0.

Proof. Consider the following game that the adversary plays with the online algo-
rithm A. On day 1, k bids (1, kh2, h) arrive (i.e., each has value h and is valid until
day kh2), for some integer k that we will fix later. In addition, on each day t ≥ 1,
one bid (t, t, 1) arrives. These bids arrive until either A first sets p(t) = 1, or until
t = kh2. At this point the game stops, that is, no more new bids are introduced by
the adversary.

Let t∗ ≤ kh2 be the day the game stops. We consider two cases:
Case 1: Algorithm A never sets its price to 1. In this case t∗ = kh2. The revenue
of A consists only of the k bids with value h each and hence is at most kh. The
optimum sets the price to be 1 on each day and thus its revenue is kh2 +k, yielding
a ratio of (kh2 + k)/(kh) > h.
Case 2: Algorithm A sets its price to 1 at some time t∗ ≤ kh2. In this case
every bid with value h contributes only 1 to the revenue (by the property of the
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EF-model). Additionally, it gets exactly one unit of revenue due to the unit value
bid that arrives on day t∗. Hence the total revenue is exactly k + 1. The optimum
performance it at least as good as the pricing that sets a price of h each day. Thus
the optimum revenue is at least kh, yielding a ratio of kh/(k + 1), which is at least
h − ε if we pick k to be at least h/ε. 2

2.2 Lower Bounds for Randomized Online Algorithms

In the remainder of this section we focus on proving the lower bound on the com-
petitive ratio of any randomized algorithm. Our main result is as follows:

Theorem 2.2. Any randomized online algorithm for EF-model has competitive

ratio Ω
(√

log h
log log h

)

.

We use Yao’s principle [Borodin and El-Yaniv 1998]. To do this, we will define
a set of bid instances I1, I2, . . ., and a probability distribution D on them. By

Yao’s principle, the quantity minA
EI←DOPT (I)
EI←DRevA(I) is a lower bound on the competitive

ratio of any randomized algorithm. Here the minimum is taken over all possible
deterministic online algorithms A and RevA(I) is the revenue of algorithm A on
instance I.

2.2.1 Technical Facts. We first derive a few technical facts which will be used
in the proof. Geometric distribution will be a key building block in our lower
bound constructions. Let G(p) denote the discrete distribution on positive integers
m = 1, 2, 3, . . . such that Pr(m) = (1 − p)m−1p. We need the following well-known
facts about this distribution.

Fact 2.1. A random variable X drawn from G(p) has the following properties:

(1 ) The expectation is given by E(X) = 1
p

(2 ) Pr[X ≤ m] = 1 − (1 − p)m.

(3 ) E(X |X > m) = m + E(X), that is, the geometric distribution is memoryless.

We also need the following fact.

Fact 2.2. Let k be a fixed positive integer such that k > 4, and let c be a real
such that c > k. Consider the sequence xk, xk−1, . . . , x0, where xk = 1 and xi is
recursively defined in terms of xi+1 for i = k − 1, . . . , 0 as

xi = 1 + xi+1

(

1 − 1

c

)
c

xi+1

− (1 + xi+1)

(

1 − 1

c

)c2

.

Then x0 ≥
√

k/4.

Fact 2.2 follows from standard algebraic manipulations, and the reader can jump
to Section 2.2.2 without any loss of continuity. To prove Fact 2.2, we will need the
following technical results.

Proposition 2.1. For any positive reals a and b such that a ≥ 8 and ab < 1,
the following holds:

(1 − b)a ≥ 1 − ab +
a2b2

8
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Proof. Using Taylor expansion, and noting that b ≤ 1/8, we obtain that

a ln(1 − b) = −a(b +
b2

2
+

b3

3
+ . . .)

≥ −a(b +
b2

2
+

b2

21
) = −a(b +

23b2

42
)

≥ −ab − 23a2b2

336
≥ −ab − a2b2

14
(as a ≥ 8) (1)

For convenience, we use β to denote ab + a2b2/14.
Since e−x = 1− x + x2/2− x3/6 + . . ., it follows that e−x ≥ 1− x + x2/2− x3/6

for x ≤ 2. Exponentiating (1) and observing that

ab ≤ β <
15

14
ab,

we obtain that

(1 − b)a ≥ e−β

≥ 1 − β +
a2b2

2
−
(

1

6

)(

15

14

)3

a3b3

≥ 1 − ab +
a2b2

8

which implies the desired result. 2

Proposition 2.2. For c > 1 and y ≥ 1/c, the following function is non-
decreasing

f(y) = y

(

1 − 1

c

)c/y

− (y + 1)

(

1 − 1

c

)c2

Proof. We show that the derivative of f with respect to y is non-negative if y ≥ 1/c.

df

dy
=

(

1 − 1

c

)
c
y

+ (c/y)

(

1 − 1

c

)
c
y

log

(

c

c − 1

)

−
(

1 − 1

c

)c2

As y ≥ 0 and c > 1, the second term is non-negative. Further, by the choice of y,
c/y ≤ c2, and hence the third term is no greater than the first term. 2

Proposition 2.3. For integers a, c such that 1 ≤ a ≤ c and c ≥ 3,

1√
a
≥ (4 +

√
a)

(

1 − 1

c

)c2

. (2)

Proof. This follows by noting that e−c ≤ 1/(5c) for c ≥ 3 and observing that

(4 +
√

a)

(

1 − 1

c

)c2

≤ 5
√

a · e−c ≤ 5
√

c · e−c ≤ 1/
√

c ≤ 1/
√

a.

2

Proof of Fact 2.2: More generally we will show that xj ≥
√

k−j
4 for all j = 0, . . . , k.

ACM Journal Name, Vol. V, No. N, April 2008.
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We first show that this is true for k − 16 ≤ j ≤ k. In fact, we will show that
xj ≥ 1 for k − 16 ≤ j ≤ k. This is clearly true for j = k by definition. Let f(y)
be defined as in Proposition 2.2. Then the recurrence defining xj can be written
as xj = 1 + f(xj+1). As f(y) is non-decreasing for y ≥ 1/c (and hence for y ≥ 1),
it is easily seen that if f(xk) = f(1) ≥ 0, then by an inductive argument xj ≥ 1

for all k − 16 ≤ j ≤ k. But f(1) = (1 − 1/c)c − 2(1 − 1/c)c2

, and hence f(1) ≥ 0 if

(1 − 1/c)c2−c ≤ 1/2 which is true since c ≥ 4.
Henceforth, we assume that j ≤ k − 16. Let us assume by induction that

xj ≥
√

k−j
4 for some j (this is true for j = k−16 as shown above). Again, by Propo-

sition 2.2, since f(y) is non-decreasing in y, the inductive step that xj−1 ≥
√

k−j+1
4

follows if one can show that

`(j)
def
= 4 +

√

k − j

(

1 − 1

c

)
4c√
k−j

− (4 +
√

k − j)

(

1 − 1

c

)c2

≥
√

k − j + 1.

Using Proposition 2.1 with b = 1/c and a = 4c/
√

k − j (note that 4c/
√

k − j ≥
4c/

√
k ≥ 4

√
c ≥ 8 as c > k ≥ 4 and by our assumption 4/

√
k − j < 1), we have

`(j) ≥ 4 +
√

k − j

(

1 − 4√
k − j

+
2

k − j

)

− (4 +
√

k − j)

(

1 − 1

c

)c2

=
√

k − j +
2√

k − j
− (4 +

√

k − j)

(

1 − 1

c

)c2

(3)

Setting a = k − j in Proposition 2.3 we get

1√
k − j

≥ (4 +
√

k − j)

(

1 − 1

c

)c2

and thus (3) implies that

`(j) ≥
√

k − j +
1√

k − j
.

Squaring both sides we get

`(j)2 ≥ k − j + 2 ·
√

k − j · 1√
k − j

+
1

k − j
≥ k − j + 1.

This completes the proof. 2

2.2.2 Proof of Theorem 2.2. We are now ready to describe the set of instances
for the lower bound. We will not describe the distribution explicitly but instead
describe a procedure that will implicitly describe both the instances and the prob-
ability distribution over them.

We have the following k +1 distinct bid values: h, h/ logh, h/(logh)2, · · · , 1. We
say bids with bid value pi = h/(logh)i are at level i. Note that p0 > p1 > · · · > pk

and k = Θ(log h/ log log h). To simplify notations, let c denote the quantity log h.
We also assume that log h is a power of 2, and hence all bid values pi are integers.

The instances have the property that for each i, the bids at level i are completely
disjoint. Moreover, every bid at level i is completely contained inside a bid at level
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j for each j < i. Thus we can view each instance as a tree with k + 1 levels (with
the root having level 0) where a bid b at level i > 0 is a child of a bid b′ at level
i − 1 if and only if the bid interval of b is completely contained in the bid interval
of b′.

Consider the following procedure for generating random trees. (We refer the
reader to Figures 1 and 2 for an example.) Each tree has k+1 levels. Starting with
the root, each node v at level i such that 0 ≤ i < k−1, independently generates mv

children, where mv is chosen from the geometric distribution G(1/c). However, if
mv exceeds c2 then it is truncated to c2. Given such a tree instance, we associate an
instance with bids as follows: each node at level i is a bid with bid length (h/ci)2 =
h2/c2i and bid value h/ci. If u is the jth child of node v (which is at level i), then the
bid associated with node u is (sv +(j−1) ·h2/(c2i+2), sv +(j ·h2/c2i+2)−1, h/ci+1),
where sv is the start date of the bid associated with v. The root node has the bid
(1, h2, h). We will refer to an instance from this distribution by I and use D to
denote the induced distribution on the instances.

v
1

v
2 v

3

v
4 v

5 v
6

v
7 v

8
v

10v
9

Fig. 1. A tree structure which can be generated by the random process described above with
h = 16, c = log h = 4 and k = 3. The root is v1. The bids corresponding to this example are in
Figure 2.

Since the expected number of children of each node is at most c, it follows by
a simple inductive argument that expected number of nodes (bids) at level i is at
most ci and hence expected total value of bids in level i is at most ci · h/ci = h.
Thus the expected total value of all the bids in the tree is at most (k + 1)h =
Θ(h log h/ log log h) = o(h log h).

For technical convenience, we consider the following modified version of the
EF-model. For a bid b at level i, if the price is set to a value pj strictly less
than pi during the duration of b, then b is lost and we obtain a revenue of 0 from b.
Note that in the actual EF-model, this bid might yield a revenue of pj which could
be as large as pi/ logh. However, since the expected total value of the bids in the
tree is at most (k+1)h = o(h log h) and the bid values between any two levels differ
by at least log h, for any setting of prices, the (additive) difference between the rev-
e nue o f the E F-m o d el a nd mo difie d mo de l is a t mo s t (1 / lo g h ) · (k + 1 )h = o(h ),
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Time
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Bid Value

v9
v10v7v5

v6v4

Fig. 2. The bids corresponding to the tree structure in Figure 1. The figure is to scale except the
time axis is broken between day 32 and day 256 = h2.

which will be insignificant for our purposes.
Our first lemma shows that the expected revenue of any deterministic online

algorithm is O(h). This essentially follows from the memoryless property of the
geometric distribution.

Lemma 2.1. The expected revenue (w.r.t to the distribution D) of any determin-
istic online algorithm is O(h).

Proof. We show by induction on the number of levels in the tree that the optimum
strategy for the online algorithm in the modified version of EF-model is to set the
highest fixed price h at all times and hence best achievable expected revenue is h.
Clearly, this is true for the base case of k = 1. Inductively, assume that this is the
best online strategy for all trees up to depth k. Consider an instance with k + 1
levels. If the online algorithm decides not to set the (highest) price h at any time
t ∈ [1, h2], then this bid is lost and yields revenue 0, no matter how prices are set at
other times. So the algorithm might as well never set price to h at any time in this
case. By the inductive hypothesis, the expected achievable revenue for each subtree
of the root is no more than h/ logh and since the expected number of subtrees is
strictly less than log h (since the geometric distribution is truncated at mv = c2,
and hence has mean strictly less than c = log h), the expected revenue is no more
than h. Thus the best possible strategy is to set the price to h at all times. 2

We now show (the harder part) that the expected value of OPT (I), where I is
chosen according to D, is quite large. Clearly, Lemma 2.1 and Lemma 2.2 (below)
imply Theorem 2.2 by Yao’s principle.

Lemma 2.2. Let D be the distribution on instances as describe above, then

EI←D[OPT (I)] = Ω

(

h

√

log h

log log h

)

Proof. Again, it is convenient to consider the modified EF-model. In this model,
given an instance I, OPT (I) can be computed recursively starting from the leaves
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in a bottom up fashion. In particular, let Rev(v) denote the optimal revenue
obtainable from the subtree rooted at v at level i. Let u1, . . . , umv

denote the
children of v. Then, the algorithm can either set price pi at all times during the
duration of v, or else try to obtain optimum revenue from each of the subtrees
rooted at u1, . . . , umv

. Thus we obtain that

Rev(v) = max





h

ci
,

mv
∑

j=1

Rev(uj)



 . (4)

Note that given an instance I, OPT (I) = Rev(r), where r is the root. Thus we
have that EI←D[OPT (I)] = E(Rev(r)). By definition of expectation, for any node
v and any positive real number α, E(Rev(v)) = E (Rev(v) | mv ≤ α) ·Pr [mv ≤ α]+
E (Rev(v) | mv > α) ·Pr [mv > α]. Thus, from (4) and the linearity of expectation,

E(Rev(v)) ≥ (h/ci) · Pr [mv ≤ α] + E





mv
∑

j=1

Rev(uj)|mv > α



 · Pr [mv > α]

Further, note that since the random coin tosses in subtrees rooted at the children
u1, · · · , umv

are independent, E(Rev(u1)) = E(Rev(u2)) = · · · = E(Rev(umv
)) and

hence,

E(Rev(v)) ≥ (h/ci) · Pr [mv ≤ α] + E(Rev(u1)) · E (mv | mv > α) · Pr [mv > α]
(5)

To simplify notation, we will use xi to denote the expected optimal revenue gener-
ated from any node at level i when the bid values are normalized such that the bid
value at level i is 1. That is, for any node v at level i,

xi =
ci

E(Rev(v))

h
.

Note that by the above definition, E(Rev(u1)) = xi+1h/ci+1. Thus equation (5)
can be written as

xi ≥ Pr[mv ≤ α] +
xi+1

c
· E(mv|mv > α) · Pr[mv > α] (6)

Let q = (1 − 1/c). By Fact 2.1, Pr[mv ≤ α] = 1 − qα. To bound E(mv|mv >
α) · Pr[mv > α], observe that E(mv|mv > α) = α + c for a geometric distribu-
tion. However, we need a slightly more careful accounting since we truncate our
distribution at c2. Below, we use the identities

∑

j>i jqj−1(1/c) = (i + c)qi and
∑

j>i qj−1(1/c) = qi.

Pr[mv > α] · E(mv|mv > α) =
∑

α<j≤c2

jqj−1 (1/c) +
∑

j>c2

c2qj−1 (1/c)

= (α + c)qα − (c2 + c)qc2

+ qc2

(c2)

= (α + c)qα − cqc2

≥ (α + c)(qα − qc2

)
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Choosing α = c/xi+1, and plugging the values above, equation (6) can be written
as

xi ≥ (1 − qα) +
xi+1

c
(α + c)(qα − qc2

)

= (1 − qα) + (1 + xi+1)(q
α − qc2

)

= 1 + xi+1q
α − (1 + xi+1)q

c2

(7)

Strictly speaking, c/xi+1 is not necessarily an integer while α is always required
to be an integer. However, as we show next, the quantity

(1 − qα) +
xi+1

c
(α + c)(qα − qc2

) (8)

is convex as function of α, and hence (6) holds for either α = bc/xi+1c or α =
dc/xi+1e. The convexity follows by considering the second derivative of (8) with
respect to α which is

−qα ln2 q +
xi+1

c

(

2qα ln q + (α + c)qα ln2 q
)

.

As xi+1 ≥ 1, it is easily checked that this term is always non-negative.

As q = (1 − 1/c) and α = c/xi+1, if we set xi = 1 + xi+1q
α − (1 + xi+1)q

c2

, the
recursion given by (7) is identical2 to that considered in Fact 2.2. Thus, we have

that x0 ≥
√

k
4 or E(Rev(r)) = hx0 ≥ h ·

√
k/4 (where r is the root), which proves

the lemma. 2

3. RESULTS FOR THE IB-MODEL

We now consider the IB-model. Recall that in this model, the bidders are impa-
tient and buy the item at the earliest time they can afford it.

3.1 Optimal Offline Algorithm

As in the EF-model, the pricing problem in the offline IB-model can be solved
by dynamic programming. Our solution is similar in spirit to that of [Guruswami
et al. 2005].

Theorem 3.1. The optimal set of prices for the offline IB-model can be com-
puted in polynomial time.

Proof. We describe a dynamic program to compute the optimal revenue (the set
of prices will be a by-product). Let the bids be numbered such that the bid values
b1 ≥ b2 ≥ · · · ≥ bn are in decreasing order. Let p1 > p2 > . . . > pL denote the
distinct bid values where L ≤ n. Note that any optimum algorithm sets prices
from the set {p1, . . . , pL}. (Otherwise, the solution can be trivially improved by
increasing the price to the nearest larger element in the set {p1, . . . , pL}.)

The idea of the dynamic program is the following: consider the optimum solution
subject to the constraint that all prices used are at least pk. If we consider the
times where the price is exactly set to pk, then the solution between every two such
consecutive time steps has prices that are at least pk−1. Thus, given precomputed

2Even though (7) in an inequality, observe that we can replace it by equality since by Proposition
2.2 setting xi to the lowest possible value can only decrease the value of xi−1, . . . , x0.
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pieces of the solution where the prices are constrained to be at least pk−1, we can
stitch these together to obtain a solution where the prices are at least pk. We now
give the details.

For any pair of days s and e, where s ≤ e, and parameters ` ∈ {0, 1, 2, · · · , n} and
k ∈ {1, 2, · · · , L}, let Ak(s, e, `) denote the optimal revenue obtainable under the
following constraints: (1) the subset of bids considered consists only of bids i such
that bi ≥ pk and si ∈ [s, e], (2) mint∈[s,e] p(t) ≥ pk, and (3) ` bids with bid value
at least pk are still alive on day e + 1. We also define Ck(s, e) to be the optimal
revenue obtainable under the following constraints: (1) the subset of bids considered
consists only of bids i such that bi ≥ pk and si ∈ [s, e], (2) mint∈[s,e−1] p(t) > pk,
and (3) p(e) = pk; that is, Ck(·, ·) is like Ak(·, ·, 0) with the additional constraint
that the price pk is used on the last day.

Let nk
s,t denote the number of bids i with si ∈ [s, t], ei ≥ t and bi = pk, and let

mk
s,t denote the number of bids i with si ∈ [s, t], ei ≥ t + 1 and bi = pk.
We now spell out the recurrence relation for Ak(s, e, `) (assuming ` > 0):

Ak(s, e, `) = max(Ak−1(s, e, ` − mk
s,e), max

t′∈[s,e−1]
(Ck(s, t′) + Ak(t′ + 1, e, `))).

Note that for the optimal revenue Ak(s, e, `) there are two options: either only
use prices greater than or equal to pk−1 or use the price pk somewhere in the
time interval [s, e]. The first case is captured by the term Ak−1(s, e, ` − mk

s,e), we

subtract out mk
s,e from ` because, by definition, the last argument in Ak−1(·, ·, ·) is

the number of bids with value greater than pk−1 that are still alive on day e + 1.
In the second case when the price pk is used, let t′ be the first time it is used. This
implies that for days in [s, t′ − 1] the price is at least pk−1. Then by definition, the
revenue obtained on the first t′ days is Ck(s, t′). Note that any bid with value at
least pk that was alive on day t′ cannot be alive on day t′ + 1. This implies that
the optimal revenue obtainable from days [t′ + 1, e] such that ` bids with bid value
greater than pk are alive on day e + 1 is Ak(t′ + 1, e, `). Of course, for the optimal
revenue Ak(s, e, `) one has to pick the best possible value of t′. This is obtained by
the expression maxt′∈[s,e−1](Ck(s, t′) + Ak(t′ + 1, e, `)).

Using similar reasoning and defining for any ` < 0, Ak(s, e, `) = 0, we get the
following recurrence relation:

Ak(s, e, 0) = max

(

Ak−1(s, e,−mk
s,e), max

t′∈[s,e−1]
(Ck(s, t′) + Ak(t′ + 1, e, 0)) , Ck(s, e)

)

.

We now give the recurrence relation for Ck(s, e). Note that in this case the minimum
price used in the time range (s, e − 1) is at least pk−1. If there are `′ many bids
with value greater than pk−1 that are alive on day e, then the maximum revenue
obtainable from the days (s, e − 1), by definition, is Ak−1(s, e − 1, `′). Further, on
day e, `′ + nk

s,e copies of items are sold at price pk. Finally optimizing over the
choice of `′, we get

Ck(s, e) = max
`′∈{0,1,··· ,n}

(

Ak−1(s, e − 1, `′) + (`′ + nk
s,e)pk

)

.
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The base cases of the recurrences are pretty simple. For any s ≤ e and `

C1(s, e) = n1
s,e · p1

A0(s, e, `) = 0

A1(s, s, `) = 0, if ` 6= 0

A1(s, s, 0) = C1(s, s), as follows from the recurrence relation above

We are interested in the quantity AL(1, maxi=1..n ei, 0). The optimality of the above
follows from considering the prices set and the days in non-increasing order.

We finally need to show that the dynamic program runs in polynomial time. The
number of days considered in the above recurrence relations is maxn

i=1 ei which
need not be polynomial in n. However, one can assume w.l.o.g. that mini{si} = 1
and maxi{ei} ≤ n + 1. To see this note that we may consider only “efficient”
algorithms, i.e., algorithms for which p(t), for every time t, is no more than the
maximum bid value of the bidders at this time (if such exist). This implies that if
there are bidders at day t, at least one of them buys a copy of the item at this day.
It follows that by a simple preprocessing the bid intervals can be “shortened” in
such a way that either maxi{ei} = n + 1 or there exists t < maxi{ei} such that t is
not contained in any bid interval in which case the problem can be broken into two
subproblems. In the preprocessing we scan the bid intervals [si, ei) in increasing
order of their start day, and set ei = si + `, where ` is the minimum index such that
` bid intervals intersect the interval [si, si + `). It follows that at most n3 entries
need to be considered for Ak(·, ·, ·) and at most n2 entries for Ck(·, ·). Further, for
each level k, only entries in the level k − 1 need to be accessed. Since at most n
different price levels are considered by the dynamic program, the above dynamic
program runs in polynomial time. 2

3.2 Deterministic Online Algorithms

Next we focus on online algorithms. In this section we study deterministic algo-
rithms and Section 3.3 contains our results for randomized algorithms. To simplify
the analysis we round down each bid value to the closest power of 2. This may
decrease the revenue by no more than a factor of 2, which is insignificant since all
our bounds are not constants. Thus, from now on we assume that the bid values
are powers of 2 and hence lie in the set {1, 2, 4, · · · , h/2, h}.

We first show a trivial (and well-known) O(log h) competitive deterministic al-
gorithm, and then show that any deterministic algorithm has a competitive ratio
of Ω(

√
log h).

Theorem 3.2. The algorithm that on day t only considers the bids that arrive
on that day and sets the price that yields the maximum revenue among these bids
is O(log h) competitive.

Proof. Let bi,t denote the sum of bid values for bids that have bid value 2i each and
arrive at time t. Clearly the optimum is bounded above by the sum of all bid values,
i.e. OPT ≤∑t

∑log h
i=0 bi,t. On the other hand, on each day t the online algorithm

obtains a revenue of at least
∑

i bi,t/(log h+1) (by the pigeonhole principle) on the
bids that arrive on day t. Since the bidders are impatient the bids sold on day t are
not affected by the prices set on days after t. Thus the online algorithm obtains a
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revenue of at least
∑

t

∑

i bi,t/(log h + 1). 2

Theorem 3.3. Any deterministic online algorithm A for IB-model must have
a competitive ratio of Ω(

√
log h).

Proof. Consider the following game that the adversary plays with the online algo-
rithm A. On day 1, 2i bids (1, log h, h/2i) arrive, for every i = 0, 1, 2, · · · , log h− 1.
In addition, on each t ≥ 1, h

√
log h bids (t, t, 1) arrive. These bids arrive either

until A first sets p(t) = 1, or until t = log h. At this point the game stops, that is,
no more new bids are introduced by the adversary.

Let t∗ ≤ log h be the day that the game stops. The revenue of the offline algorithm
is bounded below by the revenue obtained using two possible algorithms. The first
algorithm is to set price 1 on each day and obtain a revenue of at least t∗ ·h√log h.
The second algorithm sets price p(t) = 2log h+1−t on day t, for t = 1, 2, . . . , log h. On
each day t = 1, . . . , log h, this algorithm gets a revenue of h due to the 2t−1 bids with
value h/2t−1, and thus h log h overall. Thus, OPT ≥ max

{

h logh, t∗ · h√log h
}

.
Note that by the way the bids are set up, setting price p(t) = 2i for i ≥ 1 results

in a revenue of at most 2i ·
(

∑

j≥i h/2j
)

≤ 2h on day t, as each of the h/2j bids for

j ≥ i are sold at price 2i. It follows that on each day before t∗ algorithm A gets a
revenue of at most 2h since the price it sets is at least 2. In case A sets p(t∗) = 1 it
gets additional revenue of h

√
log h from the unit value bids arriving at day t∗ and

at most h from the higher bids. Thus, the competitive ratio of the algorithm is at
least

max{h logh, t∗ · h√log h}
t∗ · 2h + h

√
log h + h

= Ω(
√

log h)

˙2

3.3 Randomized Online Algorithms

We first give a randomized O(log log h)-competitive algorithm for IB-model, and
then show that any randomized online algorithm has a competitive ratio of
Ω(
√

log log h/ log log log h).
The randomized algorithm is a “classify and randomly select” algorithm. How-

ever, here the classification is according to bid lengths. The following lemmas
imply the classification by showing that the bid lengths can be partitioned into
O(log log h) groups such that there exists an O(1) competitive algorithm if the
lengths are limited to be from a single group.

As usual, at the loss of a factor of at most 2, we assume throughout that the bid
values are powers of 2.

Lemma 3.1. Let k ≤ log h be a fixed integer, and consider instances in which
the length of every bid lies between 2k and 4k. If k is known in advance, then there
is an O(1)-competitive randomized algorithm.

Proof. We divide time into intervals of size k. In particular, for i ≥ 1, let Ti denote
the interval [(i−1)k+1, ik]. Let Vj(i) denote the sum of all bid values for bids with
value 2j that arrive during Ti. Let j1(i), j2(i), . . . , jk(i) be the k indices with the k
highest values of Vj(i). Order these indices such that j1(i) > j2(i) > . . . > jk(i).
Let V(i) denote the set of these k indices j1(i), . . . , jk(i). Finally, let R(i) denote
the value Vj1 (i) + Vj2(i) + . . . + Vjk

(i).
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Consider the following algorithm that we call Algeven(k). During Ti, for i =
2, 4, 6, . . . , algorithm Algeven(k) sets the prices to be 2 to the power of the indices
in the set V(i−1) in decreasing order. Specifically, on the `th day of interval Ti (i.e.,
day (i − 1)k + `), it sets the price to 2j`(i−1). On the other days during intervals
T1, T3, T5, . . ., the prices are set to infinity. Note that Algeven(k) is a well-defined
online algorithm, as V(i−1) is known at the start of Ti. Also, as each bid has length
at least 2k, every Ti has length k and as the prices during Ti−1 are set to infinity,
the bids that arrive during Ti−1 are all alive at the start of Ti (and have expiration
days outside Ti). Finally, since the prices set during Ti are in a decreasing order,
the algorithm Algeven(k) collects a revenue of at least R(i− 1) during Ti. Thus the
total revenue of this algorithm is at least R(1) + R(3) + . . .. Analogously, define
the algorithm Algodd(k) that sets infinite prices during T2, T4, . . . and sets prices in
V(i− 1) during Ti, for odd i. It is easy to see that the total revenue of Algodd(k) is
at least R(2) + R(4) + . . .. Note that both algorithms do not get any revenue for
bids that arrive in the last interval of size k. However, by the assumption on the
bid length there are no such bids.

Our randomized online algorithm simply tosses one coin at the beginning and
either executes Algodd(k) or Algeven(k). We call this algorithm Alg(k). Clearly, the
expected revenue of this algorithm is at least 1/2

∑

i≥1 R(i).
We now show that any offline algorithm can get a total revenue of at most

∑

i≥1 10R(i). Consider the period Ti for some i ≥ 1. Since each bid has length at
most 4k, the revenue obtained during Ti can only be due to bids that arrived during
Ti−4, .., Ti. Thus it suffices to show that for q = i−4, . . . , i, the revenue that can be
obtained during Ti due to bids that arrive during Tq is at most 2R(q). Without loss
of generality we assume that the prices are also powers of 2. Let j′1 > j′2 > . . . > j′`,
where ` ≤ k, denote the distinct base 2 logarithms of the prices that the offline
algorithm sets during Ti. The revenue obtained from bids that arrive during Tq

when the price is set to 2j is at most
∑

s≥0 Vj+s(q)/2s. Thus, the total revenue
due to bids that arrive during Tq is at most

∑̀

r=1

∑

s≥0

Vj′r+s(q)

2s
=
∑

s≥0

1

2s

(

∑̀

r=1

Vj′r+s(q)

)

≤
∑

s≥0

1

2s
R(q)

≤ 2R(q)

The inequality follows since R(q), by definition, is the sum of the k highest values
of the sum of all bids from one level in interval Tq. 2

Our next observation implies that the problem is easy for instances with bid
lengths at least 2 logh + 2.

Lemma 3.2. If all bid durations are at least 2 log h + 2, then there is a 2-
competitive randomized algorithm.

Proof. The proof is similar to the proof of Lemma 3.1. The only additional ob-
servation is that when k = log h + 1 the revenue obtained in each interval equals
the total value of the bids that arrived in the previous interval. Specifically, con-
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sider the following two algorithms. The first sets its prices to {h, h/2, . . . , 1} during
the first log h + 1 time slots, sets price to infinity during the next log h + 1 time
steps and repeats this pattern forever. The second algorithm sets its price to in-
finity during the first log h + 1 time slots, sets the prices to {h, h/2, . . . , 1} during
the next log h + 1 time slots and repeats this pattern forever. Consider the time
partitioned into consecutive intervals of length log h + 1. The profit obtained by
the first algorithm is the total value of bids arriving in the even intervals, and the
profit obtained by the second algorithm is the total value of bids arriving in the
odd intervals. Thus choosing one of these randomly obtains at least half of all bid
values. Following previous notation we denote this algorithm by Alg(log h + 1). 2

Finally, if all bids have duration 1, the bids arriving on different days do not over-
lap and hence the instance can be solved optimally, by simply setting the revenue
maximizing price on each day. We call this algorithm Alg(0).

Theorem 3.4. There is a randomized online algorithm for the IB-model with
a competitive ratio O(log log h).

Proof. Divide the bids into log log h+3 groups according to their bid lengths: group
0 consists of all bids of length 1, group `, for ` = 1, 2, . . . , log log h+1, consists of all
bids whose length lies between 2` and 2`+1 − 1, and group log log h + 2 consists of
all bids of length at least 4 logh. By Lemmas 3.1 and 3.2 and the discussion above
if the bid lengths are taken from a single group then the algorithm Alg(∗) is O(1)
competitive. Consider the “classify and randomly select” algorithm that chooses k
uniformly at random from the set S = {0, 1, 2, 4, . . . , (log h)/2, logh, 2 logh, 4 logh}
of cardinality log log h+ 4 and executes the algorithm Alg(k). Thus, this algorithm
is O(log log h) competitive. 2

The algorithm as stated above requires prior knowledge of h. However, this
requirement can be removed using standard techniques: consider the algorithm
begins afresh whenever the current value of h changes by more than a factor of 2.
We introduce new possible groups according to the new value of h, and randomly
select a value k to execute the algorithm Alg(k). It can be seen that before the
update of h, the algorithm actually achieves better performance (since h is lower)
on the bids that arrived thus far.

We next show the lower bound of Ω(
√

log log h/ log log log h) on the competitive
ratio of any randomized algorithm.

Theorem 3.5. Any randomized online algorithm for IB-model has competitive

ratio Ω
(√

log log h
log log log h

)

.

Proof. We start with a construction similar to that used in the proof of Theorem
2.2 (but with different parameters). However, unlike EF-model the price cannot
be fixed for the whole interval thus we need to apply the following transformation
to each bid in the construction: Consider a bid of value b(v) and duration t (say
its interval is (τ, τ + t − 1)), which is associated with node v in the tree. Let
b′(v) ≤ b(v) be some divisor of b(v). We replace v with t levels of bids (to distinguish
from the levels in the original tree, we denote them by stairs), where each stair i =
0, 1, . . . , t−1 has (b(v)/b′(v))2i bids, each of which has value b′(v)/(t2i) and interval

(τ, τ + t − 1). Note that the total bid value
∑t−1

i=0(b(v)/b′(v))2i · b′(v)/(t2i) = b(v),
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and each new bid has the same duration as the original bid. Thus, the value b(v)
is distributed over t different price stairs.

The motivation for this transformation is the following. Suppose that an algo-
rithm for EF-model obtains value b(v) from the bid in the interval (τ, τ + t − 1).
Moreover, assume that to do this it sets the prices in a restricted form where the
price is set to exactly b(v) during the entire interval (τ, τ +t−1). (This is restrictive
since in the general EF-model the algorithm can also set prices higher than b(v)
during (τ, τ + t − 1).) Consider the corresponding algorithm for IB-model that
sets the price to b′(v)/(t2i) at time τ + i for 0 ≤ i ≤ t − 1 to collect the entire
value b(v) that is now distributed over t stairs. Thus, if there is an offline algorithm
for the EF-model which sets prices in the restricted form mentioned above (i.e.,
whenever the algorithm obtains the value b(v) it sets the price to b(v) throughout
the bid interval associated with node v), then there is also a corresponding offline
algorithm for the IB-model with the same profit in the transformed tree.

Consider a suitable tree instance of depth k as in Theorem 2.2, and apply the
transformation above. In proof of Theorem 2.2 we exhibited an offline algorithm
that has the restricted form, and achieves an expected profit of Ω(h

√
k) on the tree

instance. By the argument above this implies a corresponding algorithm that also
achieves Ω(h

√
k) profit for IB-model in the transformed instance.

Below, we show that any online deterministic algorithm can only obtain an O(h)
profit, which implies a lower bound of Ω(

√
k) on the randomized competitive ratio.

Since the addition of the stairs for each node increases the depth of the tree, we
will only be able to choose k to be about log log h/ log log log h, unlike Theorem 2.2,
where k was about log h/ log log h. Next, we give the details of the construction
and estimate the depth of the transformed tree.

As in the proof of Theorem 2.2, we consider the bid instances as a tree. There
will be k + 1 tree levels with the root r being at level 0 with duration d2k, and bid
value b(r) = h. (The value of d will be computed later.) Each node v at level i
has duration d2(k−i), bid value b(v) = h/di. Each v at level i < k has mv children,
where mv is chosen from G(1/d). However, if mv exceeds d2, then it is truncated
to d2. The value of a child is 1/d times the value of its parent.

Now consider the transformation applied to this instance. A node v at level i has
duration d2(k−i) and hence in the transformed instance consists of bids at d2(k−i)

stairs each of duration d2(k−i). Specifically, level 0 node has d2k distinct price stairs.
For every stair ` = 0, · · · , d2k−1, there are 2` bids (1, d2k, h/(d2k·2`)). For each node
v at level i > 0, for each of the corresponding d2(k−i) stairs ` = 0, · · · , d2(k−i) − 1,
there are (h/di)2`/b′(v) bids

(

su + (j − 1)d2(k−i), su + jd2(k−i) − 1,
b′(v)

d2(k−i) · 2`

)

where su is the start time of the parent u of v (and v is the jth child of u for
1 ≤ j ≤ mu).

We need to specify the value of b′(v) for each node v. For the root r, we set
b′(r) = b(r) = h. Consider an internal node v and let u be the parent of v. We
need to maintain that the bid values are decreasing exponentially. Note that the
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last stair of u corresponds to bid value

b′(u)

d2(k−i+1)2d2(k−i+1)−1
.

Thus b′(v) must satisfy

b′(v)

d2(k−i)
≤ b′(u)

d2(k−i+1)2d2(k−i+1)
.

Set

b′(v) =
b′(u)

d22d2(k−i+1)
.

Note that if b′(u) divides b(u) then also b′(v) divides b(v) = b(u)/d.
We now need to estimate the depth k and the parameter d. Recall that we must

have d > k. Note that the bid value associated with the top stair of the root is
h/d2k and the bid value associated with the bottom stair of a leaf node must be at
least 1. Given the relation above between the value associated with a node and the
value associated with its parent, we get

h

d2k
≥ d2k ·

k−1
∏

j=0

2d2(k−j)

= d2k · 2
d2(k+1)−d2

d2−1 .

Taking the logarithms of each side and rearranging terms we get

log h ≥ 4k log d +
d2(k+1) − d2

d2 − 1
.

Note that d = O (log log h), and k = O
(

log log h
log log log h

)

.

As discussed above, applying the argument for the offline strategy in the proof of
Lemma 2.2, it follows that the expected value of the optimal revenue is Ω(h

√
k) =

Ω
(

h
√

log log h
log log log h

)

. Thus to prove Theorem 3.5, it suffices to show that any online

algorithm can only obtain O(h) profit.
First, consider the case when the number of levels k is 1. In this case the optimal

online algorithm is to simply set prices corresponding to all d2 stairs in decreasing
order during time t = 0, . . . , d2 − 1, which yields a total revenue of h. Assume
inductively that the optimal online algorithm for a k level tree fetches a profit of
at most h(1 + (k − 1)/d2) (for notational convenience, we assume here that the bid
values are normalized so that value at the root of the k level tree is h). Consider
an instance with k + 1 levels. Observe that following our previous arguments we
may consider a modified version of the IB-model in which once we set the price
in tree level 1 or below, all bids associated to level 0 vanish. Assume that in the
first t days the optimal online algorithm sets the prices to the ones associated with
stairs at level 0 in decreasing order. Thus the algorithm achieves at most (h/d2k)t
revenue from level 0. Let j = bt/d2k−2c. Since a bid at level 1 has duration d2k−2,
the algorithm has already lost its chance to obtain revenue from the first j subtrees
rooted at level 1. Since the number of subtrees at level 1 follows a truncated
geometric distribution G(1/d), the expected number of subtrees at level 1 after
time t is at most (1 − 1/d)jd. By the induction hypothesis it follows that each of
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these subtrees can yield a revenue of at most (h/d) · (1 + (k − 1)/d2). Thus the
total expected revenue is at most

max
t∈[0,d2k]

(

ht

d2k
+

(

1 − 1

d

)j

d · h

d

(

1 +
(k − 1)

d2

)

)

.

Note that ht/d2k < (j + 1)h/d2, and hence this is at most

max
j∈[0,d2)

(

h(j + 1)

d2
+

(

1 − 1

d

)j

d · h

d

(

1 +
(k − 1)

d2

)

)

.

The second derivative of this expression with respect to j is

(

1 − 1

d

)j

ln2

(

1 − 1

d

)

h

(

1 +
(k − 1)

d2

)

,

which is strictly positive for all j ∈ [0, d2) and hence the expression achieves its
maximum at either j = 0 or j = d2 − 1. At j = d2 − 1, the value of this expression
is R = h+(1−1/d)d2−1h(1+(k−1)/d2). Now, as k < d2 and (1−1/x)x ≤ 1/e for
any x > 0, we have R ≤ h(1 + 2e−d+1/d) ≤ h(1 + 2e−(d−1)). Now for large enough
d, 2e−(d−1) ≤ 1/d2, which implies that R ≤ h(1 + 1/d2). At j = 0 the value of the
expression is h/d2+h(1+(k−1)/d2) = h(1+k/d2). Thus the maximum is attained
for j = 0 and the inductive claim follows. Since k < d2, the overall revenue is O(h).
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