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1 Objective 

As part of identifying the best approach to be used for National Analysis, we 
performed a detailed comparison of Bayesian Belief Network Modeling and Goal 
Programming approach. A reference problem was identified and then cast as a BBN 
model and Goal Programming. Results from the analysis were gathered and 
compiled into a set of recommendations. Since validation is a key to a successful 
project, we outline some ideas on validating the proposed approach. 

2 Business Problem 

To enable the broader team to relate to the outcome of this analysis, it was decided 
to keep the business problem relevant to fire domain. We have used two program 
components: Initial Attack and Fuels and two effectiveness-efficiency performance 
metrics: IA Success and WUI @Risk. Also, we have used GeNIe for building 
National Analysis Bayesian Network Model. 

3 Bayesian Network (BN) Modeling Approach 

Bayes networks are becoming an increasingly important tool for modeling and 
analyzing the data in many applications, such as inferring gene regulatory networks 
from the mRNA microarray data, deep space and knowledge acquisition in 
astronomic space by NASA, and social network study in social science.   
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3.1  National Analysis Reference Model: Bayesian Network Approach 

3.1.1 Overview  

 Figure1 shows our initial design of the Bayesian networks 

 

Figure1: Initial design of Bayesian networks for fire management 
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3.1.2 Descriptions of the model 

To demonstrate the basic idea of our Bayesian network for the fire management 
task. We show a subgraph with only two FPU as in Figure2.  

 

Figure2: A simplified example of Bayesian networks with two FPU 

 

Nodes definition: In the example, we have 10 types of nodes in the graph, 
including: 

 

National funding: the total budget for nation-wide fire management. Ideally, the 
variable should be continuous (value range as [0, budget limit]) denoting the amount 
of money for national fire management. In our model, it is a discrete variable with 
three possible values: high, medium, low 

 

IA National funding: the total budget for nation-wide initial attack (IA) management. 
Ideally, the variable should be continuous (value range as [0, national funding 
value]). In our model, it is a discrete variable with two possible values: high, low 

 

Fuel National funding : the total budget for nation-wide fuel management. Ideally, the 
variable should be continuous (value range as [0, national funding value]). Notice 
that the sum of Fuel National funding and IA funding cannot exceed the national 
funding.  In our model, it is a discrete variable with two possible values: high, low.  
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IA funding proportion: the proportion of IA funding that can exceed the budget. 
Ideally, the variable should be continuous (value range as [0.95, 1.05]). In our model, 
it is a discrete variable with three possible values: between_95_100, eq_100, 
between_100_105.  

 

Fuel funding proportion: the proportion of fuel funding that can exceed the budget. 
Ideally, the variable should be continous (value range as [0.95, 1.05]). In our model, 
it is a discrete variable with three possible values: between_95_100, eq_100, 
between_100_105.  

 

FPU IA funding: the budget of IA funding for FPU1. Ideally, the variable should be 
continuous (value range [0, IA_Funding_Limit]). In our model, it is a discrete variable 
with two possible values: high and low 

 

FPU fuel funding: the budget of IA funding for FPU1. Ideally, the variable should be 
continuous (value range [0, IA_Funding_Limit]). In our model, it is a discrete variable 
with two possible values: high and low 

 

FPU IA success: whether the IA control is successful or not. It is a discrete variable 
with two possible values: 0 or 1 

 

WUI @risk: whether the fuel control is successful or not. It is a discrete variable with 
two possible values: 0 or 1 

 

National utility: the utility function that evaluates the effectiveness of fire 
management. It is a continuous value. 

 

Edge Definition: most part of the graph in Figure 2 is self-explained except the one 
for “national utility”. There is an edge from the node “FPU IA funding” to “national 
utility” because the utility is not only determined by the IA success rate, but also has 
to be normalized by the funding that we input for IA control. For example, the value 
of the “national utility” should be high if the “IA funding” is low while the “IA success” 
is 1; on the other hand, the value of “national utility” should be medium if the IA 
funding is high and the IA success is 1. Figure 3 shows an example of the PDF we 
defined in the model 
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Figure3: An example of PDF of National utility 

 

3.1.3 Inference  

In using GeNIe for developing Bayesian networks for decision support and for 
solving these models, we used the Bayesian networks inference algorithms, 
including the clustering and sampling algorithms. Specifically, we analyzed the 
National model using two algorithms: finding best policy and policy evaluation. 

3.1.3.1 Find Best Policy 

This influence diagram algorithm computes the optimal decision only. It does not 
compute the expected utility values. Using this algorithm in analyzing the National 
Analysis model provides us with the optimal value of the National Funding decision. 

Among the three decision options of National Funding viz: Low / Medium / High, the 
algorithm computes the optimal value as “High”. This is the only outcome of the 
model.  

 

 

Optimal 
Decision 
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Figure4: Using Find Best Policy algorithm to analyze National Model 

3.1.3.2 Policy Evaluation 

This algorithm computes the expected utility of each of the decision alternatives. It 
does this by performing repeated inferences in the network.  

 

Figure5: Using Policy Evaluation algorithm to analyze National Model 
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As a result, it computes the expected utility values for the National Analysis Model 
corresponding to all combinations of IA National Funding and Fuels National 
Funding. 

 

Figure6: Expected Utility values for National Analysis Model 

 

3.1.4 An Simple Example of Discretized Model  

In the initial design of national analysis model described above, we make one 
simplification about the funding value by using discrete values as “high” or “low”.  In 
the real applications, we need the funding assessment to be at much finer granularity 
so that the results of the analysis model are meaningful and useful. A straightforward 
solution to the problem is setting all the nodes involving the funding values as 
continuous variable. However, this is well beyond the capability of the Bayesian 
network models, which are designed to only handle the discrete variables. 

 

To solve the problem, we design a discretized version of the desired model with less 
complication. Figure 7 shows a simple example, in which there are only two nodes, 
“funding” and “success rate”. The possible value of the “funding” node is 1, 2, 3…,  
and 100, representing the amount of funding as $1M, $2M, …, and etc. The possible 
value of “success rate” is binary, i.e. 1 or 0. To complete the definition, we need to 
define the probability distribution P(Funding) and  P(Success Rate| Funding). In this 
example, we set the distribution as follows:   

P(Funding) ~ Poisson(60),  P(Success Rate|Funding) ~ Burnolli(min(Funding/75, 1)). 
In the real applications, we can estimate the probability density from the data.  
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Figure7: A simple example of discretized model 

With the definition above, we are able to make some simple inference over the 
model. For example, given the success rate as 1, we can answer the question of 
what is the probability that the Funding amount is $54M (see Figure 8).  
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Figure8: Inference on the discretized model: set the evidence of “success rate” as 
1, infer the value of funding 

 

4 Transforming the BBN Outputs for Input to Goal Program 

Fpu level Bayesian Network analysis provides as output at each budget level, the 
(discrete) probability distributions for the EEPs. At a given National Funding level f, 

kljf  represents the funding for at jth $ level, lth program component, for kth fpu 

corresponding to the program effectiveness measures (EEPs) klS . 

The table below describes the output probability distribution data for one Fpu 

obtained from the Fpu level Bayesian network model. kljip  represents the probability 

value for kth Fpu, jth funding level, lth program component, and ith state. 

 

Probabilities of 

klS
 states � 

kljf  levels      

1klS  … 
kliS  … 

klmS  

1klf  11klp     
mklp 1  

2kf

 
21klp     

mklp 2  

… …     

…      

kljf    
kljip    

…      

…      

…      

…      

lnkf      
mkp ln  

Figure9: Output probability distribution data from Fpu level Bayesian Network 
Model 
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Two Fpu National Model Example 

 

 

 
 

Figure10: A two Fpu National Model representation 

Here, we are interested in the following probability distribution in a parametric form 
from the output of the Bayesian Network: 

 

( ) ibfaffsSPfp kliklikliklkli ∀+×==== ,}|{)(  

ffp
i

kli ∀=∑ ,1)(   

To obtain such a distribution computationally, we propose a mathematical 
programming formulation as follows: 

 
 
Decision variables 

S11 

S12 

S21 

S22 

National 

IA Funding 

f f2 

f1 

Fpu-1 

Fpu-2 
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klia  First coefficient for the linear term of the linear expression 

klib  Second coefficient for the constant term of the linear expression 

kljiz  
Residual variable for funding level j 

Parameters 

kljip   Probability of success at funding level j 

kljf  $ value at funding level j 

j Summation index over the funding levels {1,..n} 

I Summation index over the states {1…m} 

The regression problem for each FPU-k, and Program Component-l, may be defined 
as: 

 

∑
=

nm

ji

kljizMin
,

1,

 
 (1)  

Subject to:   

( )
klikljklikljiklji bfapz +×−≥  ji,∀  (2)  

( )
klijklikljkliklji pbfaz −+×≤  ji,∀  (3)  

( ) jibfa klikljkli ,,0 ∀≥+×  ji,∀  (4)  

( ) 1
1

=+×∑
=

m

i

klikljkli bfa  
j∀  (5)  

 

Formulation Description 

The formulation described above seeks to find the best possible linear fit. To achieve 
this, the objective term in (1) minimizes the sum of absolute deviations. Constraints (2) 

and (3) linearize the absolute deviation term: ( )
klikljklikljiklji bfapz +×−=  . Constraint 

(4) ensures that the probability values are non-negative, and constraint (5) enforces that 
at a given funding level, the sum of the probabilities over the state space is 1. Also, it is 
worth noting here that one may alternatively set up the regression problem by using a 
convex quadratic obejctive (square of the deviations) as an appropriate distance metric.   
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The data needed for solving such a math program instance would come from the 
underlying FPU-level BN output data table with (m x n) probability data entries. 

5 Goal Programming (GP) Modeling Approach 

Goal Programming is an important area of multiple criteria optimization. The idea of 
goal programming is to establish a goal level of achievement for each criterion. GP is 
ideal for criteria with respect to which target (or threshold) values of achievement are 
of significance. GP involves conceptualization of objectives as Goals. Each objective 
is assigned weights and / or priorities for achievement of goals. The presence of 

deviational variables +
id  and −

id measure overachievement and underachievement 

from target (or threshold) levels it . The objective involves minimization of weighted-

sums of deviational variables to find solutions that best satisfy the goals. Usually, a 
point that satisfies all the goals is not feasible. Thus, we try to find a feasible point 
that achieves the goal “as closely as possible”. The way in which such points are 
found using priority and / or weighting structures defines goal programming. 

Goal Programming methodology deals with multiple objectives (goals) in two 
different ways, namely Preemptive Goal Programming, and Non-preemptive Goal 
Programming.  The next section illustrates the difference between these two ways of 
applying Goal Programming methodology from the perspectives of varying levels of 
complexity and richness of solution.  

5.1 Preemptive vs Non-preemptive Goal Programming 

In goal programming there are two basic models: Non-preemptive model 
(Archimedean model) and the preemptive model. To define each approach we first 
define some basic terminology 

5.1.1 Non-Preemptive Goal Programming 

In non-preemptive goal programming, we generate candidate solutions by computing 
points in S whose criterion vectors are closest, in weighted sense, to the utopian set 
in criterion space. Consider the GP 

 

{ }1

1 zxcgoal =              11 tz ≥  

{ }2

2 zxcgoal =              22 tz =  

{ }3

3 zxcgoal =              [ ]ul ttz 333 ,∈  

s.t.   Sx ∈  

The non-preemptive formulation of the above GP is 

           [ ]++−−−−++−− ++++ 3333222211min dwdwdwdwdw  

s.t.                  11

1
tdxc ≥+ −  

222

2
tddxc =+− −+  
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l
tdxc 33

3 ≥+ −  

µ
33

3
tdxc ≤− +  

all 0' ≥sd  

We observe that: 

1. The w’s in the objective function are positive penalty weights. 

2. Each goal gives rise to a goal constraint, except range goals that give rise to 
two. 

3. Only deviational variables associated with undesirable deviations need be 
employed in the formulation. 

4. The non-preemptive objective function is a weighted-sum of the undesirable 
deviational variables. 

5. Non-preemptive GP’s can be solved using conventional LP software. 

The goal constraints are soft constraints in that they do not restrict the original 
feasible region S. In effect, they augment the feasible region by casting S into higher 
dimensional space, thereby creating the augmented GP feasible region. 

 The w’s allow us to penalize undesirable deviations from goal with different 
degrees of severity. In fact, more elaborate means of penalizing deviations, from 
goal can be employed using piecewise linear programming. 

5.1.2 Preemptive Goal Programming 

In preemptive goal programming, the goals are grouped according to priorities. The 
goals at the highest priority level are considered to be infinitely more important that 
goals at the second priority level, and the goals at the second priority level are 
considered to be infinitely more important than goals at the third priority level, and so 
forth. Let us consider a preemptive GP: 

 

{ }1

1
zxcgoal =              11 tz ≤  

{ }2

2
zxcgoal =              22 tz ≥  

{ }3

3
zxcgoal =              33 tz =  

s.t.   Sx ∈  

We define the preemptive GP in the following lexicographic format: 

 ( ){ }−+−+ + 3321 ,min ddddlex  

11

1
tdxc ≤− −            

22

2
tdxc ≥+ −     

  333

2
tddxc ≥+− −+  
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  Sx ∈  

all 0' ≥sd  

To solve the above lex min problem using conventional LP software, as many as 
three optimization stages may be required. In the first stage, we solve 

{ }+

1min d  

s.t.  11

1
tdxc ≤− −  

Sx ∈  

01 ≥+
d  

If this problem has alternative optima, we form and then solve the second stage 
problem 

{ }−

2min d  

s.t.  ( )*

11

1 ++≤ dtxc  

       22

2 tdxc ≤+ −  

Sx ∈  

02 ≥−d  

where ( )∗+
1d  is the optimal value of +

1d  from stage one. If the second-stage problem 

has alternative optima, we form and then solve the third stage problem 

( ){ }−+ + 33min dd  

s.t.  ( )*

11

1 ++≤ dtxc  

       ( )*

22

2 −−≥ dtxc  

       333

2 tddxc ≥+− −+  

       Sx ∈  

       0, 33 ≥−+ dd  

where ( )*

2

−d  is the optimal value of −
2d  from stage two. Any solution to the third 

stage lexicographically minimizes the preemptive GP. 

 In general, we may not have to solve as many optimization stages as there are 
priority levels. We can cease our progression through the optimization stages as the 
optimization stage is encountered that has a unique solution. Thus, a less than 
desirable consequence of th preemptive approach is that lower order goals may not 
get a chance to influence the GP generated solution. 
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5.1.3 Sensitivity Issues 

In practice, goal programs typically have large numbers of deviational variables. With 
possibly different units of measure, assigning weights is often very difficult. 
Consequently, in non-preemptive GP, we initially try to apply a reasonable set of 
penalty weights with plans to do sensitivity experiments with other sets of weights to 
see if better solutions can be located. Many times the strategy works satisfactorily. 
Many times it does not. When it does not, this is what might happen. The initial set of 
weights produces an unsatisfactory solution. Then, some of the weights are shifted 
and the problem resolved. Sometimes, the new solution will be the same as the old 
because both sets of weights pertain to the same augmented GP flexible region 
vertex. Sometimes, even though we may fell that we have made intelligent changes 
in the weights, a poorer solution results. Sometimes, despite the fact that we may 
have made only slight changes in the weights, a drastically different solution results 
because we may have jumped to a vertex on the opposite side of a large goal-
efficient facet. The net effect is that often a user will come away from a non-
preemptive GP experience feeling frustrated about this or her ability to control the 
movement of the solution as the weights are varied.  

 In preemptive GP, users frequently address sensitivity concerns by rotating 
priorities. If there are r priority levels, there are r! different ways of rotating the 
priorities. Normally, a user will select a small number of these possibilities and the 
resolve the problem for each of them. The result is usually a group of some of the 
most different goal-efficient points in S. 

5.2 Goal Programming formulation of National Analysis Model 

In FPA, the objectives would include the EEPs. Decision variables would be fire 
program component funding levels for each FPU. Constraints would include 
various cost limits (budget appropriation), and other interagency program 
guidelines to be followed. 

We propose the technical problem underlying the national analysis to be multi-criteria 
(e.g. multiple EEP’s but with a known priority ordering) decision problem defined on 
BN representations of the cause-and-effect relationships available for the FPU’s in 
which: 

• There are multiple program components such as IA, Fuels, Prevention etc 
competing for available funding at the national level )( Cc ∈  

• There are multiple effectiveness-efficiency-performance metrics (e.g. IA 
success, WUI@Risk etc) that need to be managed in an equitable manner 

)( Mm∈ , with a target mT , overachievement mR  and underachievement mP  

• There are finitely many states )( mSs ∈  available for each effectiveness 

metric considered  

• The conditional probability distributions, { }( )CxF c

m ∈  (parameterized on the 

funding amount allocated to each program component, cx ) of the state 

random variables at chance nodes are known a priori through prior detailed 
FPU level analysis – this is an important assumption as these parameterized 
probability distributions help model various effectiveness metrics dynamically 
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to address two key features of fire management: risk mitigation and 
contingency planning 

 
The technical problem then is defined as: 
 
For a given priority ordering for 

{ }k

m EEPEEPEEPsEEPSs >>>∈ ...')( 2)1( , { } ( )** ,,,...2,1 ++=∈ kfkfm ddfindMk  by 

solving the k-th iteration preemptive goal program: 
 

Minimize (weighted deviation of k-th EEP):  ( )∑ ∈

−+ +=
FPUf kfkfkfkfk dPdRD   

Subject to:  

(goals): { }( ) ( )( ) mfmfmfcfcf

m TddxrCcxFEEP ≥−+∈ −+,,  FPUfMm ∈∈∀ ,   

 

(budget appropriation):  ∑ ≤
cf cf Bx  

 
(interagency guidelines):  … 
 

(preemptions): ( ) *

kFPUf kfkfkfkf DdPdR =+∑ ∈

−+  { } FPUfkm ∈−∈∀ ,1,...,2,1  

 ( )∑ ∈

+ +=
FPUf kfkfkfkfk dPdRD _  

After all |M| iterations are completed, the resulting solution { }( ) ( )
cfcf xrCcx ,, ∈ , 

FPUf ∈∀  is a complete listing of the funding allocations across all program 

components for each FPU and the associated national fire resource organization at 
the requested national budget level.   
 
Note that this solution is a result of the priority order input to the goal program. By 
enumerating other dominant priority orders for the EEP’s (these enumerations will be 
small in number (120 for 5 EEPs), and solving the GP for each priority order, one 
can compute the solution “basis” for further analysis. 

 

5.3 National Analysis Model: Goal Programming Approach 

  For building a goal program model for National Analysis, we assume two 
Fpu’s : Fpu-1 and Fpu-2. The national funding f needs to be split between fpu-1 

funding f1 and fpu-2 funding f2 such that Fff =+ 21 . For each fpu-k, we use two 

EEP measures: Sk1 (IA Success) and Sk2 (WUI@Risk).  In this section, we assume 
that the parameterized (closed-form) probability distributions for each EEP measure 
take on the form of an exponential distribution. Section 4 describes in detail the 
approach to generate parameterized (closed-form) probability distribution functions 
for each EEP measure from the output of the Fpu level Bayesian Network Model.  
The goal program for this case can be formulated as: 

 

Decision variables 
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e1  Underachievement of IA Success for Fpu’s 1 & 2 

e2
 Overachievement of IA Success for Fpu’s 1 & 2 

k1  Underachievement of WUI@Risk for Fpu’s 1 & 2 

k2  Overachievement of WUI@Risk for Fpu’s 1 & 2 

f1 Funding level for Fpu 1 

f2 Funding level for Fpu 2 

 

 

Parameters 

w1  penalty weight for Fpu 1 

w2
 penalty weight for Fpu 2 

F  Funding at National Level 

p1  Underachievement Penalty for IA Success 

p2 Overachievement Penalty for IA Success 

q1 Underachievement Penalty for WUI @ Risk 

q2 Overachievement Penalty for WUI @ Risk 

j Summation index over states of EEP metrics 

k The index identifying the k-th Fpu 

Before we are ready to define the goal program, we first derive the following 
expressions from the underlying BN data for FPU-k. The conditional probability and 
expectations have been computed using the distribution functions (linear in “f”) 
derived in Section 4. The resulting conditional probability and expectation is then 
defined as: 
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{ } ( )

{ } ( )

[ ] ( )

[ ] ( )∑

∑

∑

∑

=

=

=

=

+×==

+×==

+×=====≥

+×=====≥

1

2222

1

1111

222222

112111

|

|

}|{|

}|{|

i

ikikikkk

i

ikikikkk

ji

ikikkikkkjkk

ji

ikikkikkkjkk

bfasffSE

bfasffSE

bfaffsSPffsSP

bfaffsSPffsSP

 

We define the resulting national analysis goal program (FPA/NA/GP) as: 

Maximize ( ) ( )







+×++× ∑∑

== 1

222

1

111

i

ikikik

i

ikikik bfasbfas  

        Minimize>>> ( ) ( )








+×++× ∑∑

== ji

ikik

ji

ikik bfabfa 2211  

 

..ts Fff =+ 21  

      0, 21 ≥ff  

 

We formulate the above problem as Non-Preemptive and Preemptive goal program. 

5.3.1  Non-Preemptive Goal Program (FPA/NA/NGP) 

Maximize

( ) ( )

( ) ( )








+×++×∗

−







+×++×∗

∑∑

∑∑

==

==

ji

ikik

ji

ikik

i

ikikik

i

ikikik

bfabfaw

bfasbfasw

2211

1

222

1

1111

2

 

 

..ts Fff =+ 21  

      0, 21 ≥ff  

The above goal program will provide optimal allocations 1
*f  and 2

*f  

 

5.3.2 Preemptive Goal Program (FPA/NA/PGP) 

First Stage problem: 

 

Minimize 1D = 2211 *epep +∗  

..ts  



  

 

  

 21 

        ( ) ( ) 121

1

222

1

111 Teebfasbfas
i

ikikik

i

ikikik =−+







+×++× ∑∑

==

 

       ( ) ( ) 2212211 Tkkbfabfa
ji

ikik

ji

ikik =−+









+×++× ∑∑

==

 

       Fff =+ 21  

       0,,,,, 212121 ≥kkeeff  
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6 Recommended BN and GP Modeling Approaches in 
Solving the FPA Technical Problem 

6.1 Technical Architecture 

 
Figure11: Technical Architecture of Fpa 

 
Figure 11 represents the high level technical architecture of the Fpa system. The 
results of the Fpu level simulation run will be processed by the Statistical Service 
Component (SSC). The SSC will analyze the simulation outputs to create optimal 
decritized bins. The output of the SSC will form input to the Bayesian Network. 
These outputs will also be used by the Distribution Function Generator (DFG) to 
generate a closed form expression for the EEPs. The EEP expressions will then be 
used in the Goal Program to optimize over a set of funding alternatives using a 
priority ordered set of EEPs for all Fpus. 

6.2 FPU Analysis Reference Model: Bayesian Network Approach 

BN will be used to represent and understand variability and associated risks for each 
FPU. When an FPU’s simulations are complete, there will be dozens of combinations 
of alternatives, and dozens of simulated fire seasons, meaning thousands of 
modeled fire events. The system will process the statistics on these results and 
present the distributions in a Bayesian network. BNs allow a very rapid and rigorous 
analysis of the risk associated with different management choices. They also allow a 
variety of sensitivity analyses that can reveal where management can have the most 
influence, or alternatively, where lack of knowledge most degrades confidence in 
predictions. 
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Figure12: Bayesian network for FPU level fire management analysis 

Figure 9 shows the Bayes network for the FPU level analysis. In the graph, there are 
five types of nodes, including (1) funding related nodes (green) (2) combination 
alternative node (red) (3) EPPs nodes (yellow) (4) resource nodes (dark blue) and 
(5) utility nodes (blue) 

The simulation data will be used to estimate the conditional probability of the yellow 
nodes given their parents (blue nodes).  
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6.3 Transforming the BBN Outputs for Input to Goal Program 

The detailed FPU-level Bayesian Network analysis provides as output the (discrete) 
probability distributions for the EEPs, for each Initial Response (IR) and Fuels (FL) 

treatment alternative. kj
FL

kj
IR ff ,  represent the Initial Response and Fuels (IR/FL) 

costs associated with the jth IR/FL treatment alternative for the kth fpu.  

 

The table below describes the output probability distribution data for the l-th 

effectiveness measure (EEP) klS for the k-th Fpu. kjlip  represents the probability of  

the EEP measure klS being in the ith state while at the jth IR/FL treatment alternative. 

 

EEP-1: Average annual number of costly fires ( klS ) 

Annual # costly fires ( i ) % yrs in this range (
kjlip ) 

0 0.33 

1 0 

2 0.66 

>=3 0 

 

Decision variables 

FL

kla  Coefficient for the k-th Fpu, l-th EEP for Fuels 

IR

kla  Coefficient for the k-th Fpu, l-th EEP for IR 

klic  Residual variable k-th Fpu, l-th EEP and i-th State 

Parameters 

kjlip   Probability of success at treatment alternative j 

kj
FL

kj
IR ff ,  IR and FL costs at treatment alternative j 

j index for the program alternatives 

I Index for the states 

k Fpu 

 
Formulation Description 

One of the objectives is to optimize the kjlEEP : 



  

 

  

 25 

∑=
i

kjlii

kjl pmEEPE *][  

To be able to evaluate these objectives numerically over a wide range of funding 
alternatives, it is desirable to obtain a function of the form: 

klicfafaffp kli

IRIR

kl

FLFL

kl

IRFL

kli ∀++= ,),(  

in which, we parameterize the program alternative by using the funding components 
FL

f  and IR
f separately. 

 

Formulation 

Assuming a linear form, we set up the following regression problem to compute the 
coefficients: 

Min ∑ −++
kjli

klijkli

IR

kj

IR

kl

FL

kj

FL

kl pcfafa
2

 

Subject to: 

klcfafa kli

IR

kj

IR

kl

FL

kj

FL

kl
i

∀≥++∑ ,0)(  

klcfafa kli

IR

kj

IR

kl

FL

kj

FL

kl
i

∀=++∑ ,1)(   

However, we will resort to rigorous statistical analysis to learn the functional form of 
the desired probability distribution function which will be used in a subsequent 
decision problem to optimize an objective that is expressed in terms of this 
distribution function.  

6.4 National Analysis Model: Goal Programming Formulation 

In National Analysis, we are dealing with multiple objectives and hence the decision 
problem is cast as a goal programming (non-preemptive) problem formulated as 
follows: 

max [ ] ∑∑∑
∈′

′

′

∈

−
MINl

lkj

l

MAXl

kjl

l

kj

EEPEwEEPEw ][  

0≥++ kli

IR

kj

IR

kl

FL

kj

FL

kl cfafa          iljk ,,,∀  

1=++∑
i

kli

IR

kj

IR

kl

FL

kj

FL

kl cfafa  ljk ,,∀  

Bff
kj

IR

kj

FL

kj ≤+∑  

a

kj

IR

kja

FL

kja Bff ≤+∑    Agenciesa ∈∀  
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FL

kja

a

FL

kj ff ∑=  

IR

kja

a

IR

kj ff ∑=  

},{ Jjfkja ∈ is a SOS-1 for ka∀  - Only one alternative of }{ Jj ∈ needs to be 

selected  

UBIR

kja

IR

kja Bf ≤≤∑0  - Maximum budget level for IR program 

UBFL

kja

FL

kja Bf ≤≤∑0 - Maximum budget level for FL program 

6.5 Goal Programming solution approach 

The proposed Goal Programming solution approach can optimize over different 
funding alternatives for each priority ordered set of EEP’s without complete 
enumeration of the state-space (e.g., 5 EEPs with 4 states each, 9 FPU funding 
alternatives across 2 program components with 3 funding alternatives for each, and 
about 150 FPU’s => 843750 states!) Introduction of agency level funding decisions 
within an FPU introduces additional dimensionality to the decision space. 

7 Conclusions 

We analyzed the Bayesian Network Modeling and Goal Programming approach 
by defining and building a representative National Model by using two program 
components: Initial Attack and Fuels and two effectiveness-efficiency performance 
metrics : IA Success and WUI @Risk. In the BBN model, we defined utility nodes 
and used inference algorithms implemented by GeNIe to access the relative utility of 
the decisions. We also compared the non-preemptive and preemptive goal 
programming approaches and uncovered weighting and sensitivity issues. Finally, 
we proposed a hybrid approach that utilizes the best of BBN and Goal programming 
for building a National Model. 

7.1 Validation Approach 

One of the cornerstones of any successful model is its thorough validation. The 
validation of the proposed approach involves validating each sub system. Due to the 
component nature of the proposed approach, each subsystem can be validated by 
using a combination of expert system, real time system measurements and 
analytical validation model to ensure that the models are good representation of the 
real world scenario. 

8 Appendix 

8.1 Bayesian Approach to Probability and Statistics 

A Bayesian network (or a belief network) is a directed acyclic graph which 
represents independencies embodied in a given joint probability distribution over a 
set of variables V.   
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8.1.1 Definition of Bayesian networks 

A Bayesian networks is a directed graph, together with an associated set of 
probability tables. The graph consists of nodes and edges. The nodes represent the 
concerned variables, which can be either discrete or continuous. For example, the 
node “fire alarm” is discrete having values “true” or “false”, whereas the node 'system 
safety' might be continuous (such as the probability of failure on demand). The 
edges represent “causal” or directly influential relationships between variables. For 
example, the fire alarm is influenced by the system safety values and amount of 
smoke in the lobby.  

 

The graph representation is very intuitive; however, there are several common 
pitfalls which demand special attention. First, the absence of an edge between two 
nodes A and B does not suggest that A is independent of B. As shown in Figure 9, 
the values of A will affect that of C, which be passed on and used to determine the 
value of B. Therefore A and B are not independent; however, A is independent of B 
given C.  

 

 

 

Figure13: An example of conditional independence in Bayesian networks 

 

Second, there is no one-to-one mapping from the graphs to the independencies 
embodied in the data. For example, the factor graph (which is an "undirected" graph 
version of the BN with the same set of dependencies) is fully connected can represent 
all types of dependencies since all the variables are dependent of each other. In the real 
applications, we seek a graph that is able to include all the dependencies within the data 
while retain simplicity as much as possible.  

 

8.1.2 Learning  

Given a Bayesian network G = <V, E>, we can define the joint probability of all 
variables in the graph (represented by set V) as a joint product of the probability of 
each variable given its parents in graph G, i.e.   

P(V) = ∏ P(Vi | parents(Vi) ). 

Then our next question is how to define the conditional probability distributions 
for each variable. If we are given a set of data with the observations for all the 
variables, then P(Vi| parents(Vi)) can be calculated easily using the Bayes rule, i.e.  

P(Vi | parents (Vi) ) = P(Vi, parents (Vi))/ P(parents (Vi)), 

A C B 
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where P(Vi, parents(Vi)) and P(parents (Vi)) can be estimated using the maximal 
likelihood estimation of the data. For example  

P(Vi= vi,  parents (Vi)= parents(vi)  ) = 

 # of examples with Vi = vi and parents(Vi) = parents(vi) / total # of examples.   

However, it becomes much more complex if we can observe only the partial data, 
that is, there are some hidden variables we want to model in the graph. Then an EM 
approach or other iterative learning has to be applied [Heckerman, 1996]. We omit 
the detailed discussion.  

 

Notice that modeling the independencies between variables represented by the 
graph is an essential concept in the Bayesian network approach. Otherwise, we 
need to define a joint probability with a complexity that grows exponentially with the 
number of nodes.  

 

8.1.3 Inference 

After building a Bayesian network, our ultimate goal is to answer questions: given 
the observation of some variables, what is the probability of other variables. For 
example, given the fire alarm is on, what is the probability that there is a fire 
happening? These types of questions are called inference in Bayesian network 
terminology.  There are many inference algorithms, including exact inference and 
approximate inference.  

 

The elimination algorithm is the basic method for exact inference. The main idea is to 
efficiently marginalize out all the irrelevant variables using factored representation of 
the joint probability distribution. Consider the graph in Fig.1, the probability P(C) can 
be computed by 

P(B) =  ∑A∑C P(C|A)P(B|C)P(A) 

= ∑A(∑C P(C|A)P(B|C))P(A) 

= ∑A m1(A, B) P(A) 

= m2(B) 

 

The intermediate factors m1 and m2 can be seen as messages passing from the 
variables that have been integrated. When we want to compute several marginals at 
the same time, a dynamic programming can be applied to reuse some messages in 
the elimination algorithm. If the underlying graph is a tree, we can use sum-of-
product, or belief propagation, which is a generalization of the forward-backward 
algorithm in HMMs [Rabiner, 1989]. For a general graph, it has to be converted to 
into a clique tree by moralization and triangulation. After that, a local message 
passing algorithm can be applied, which could be either the sum-of-product algorithm 
or the junction tree algorithm, a variation designed for undirected models.   
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The computational complexity of the exact inference algorithms is exponential in the 
size of the largest cliques in the induced graph. For many cases, such as grids or 
factor graph, it is intractable to make exact inferences and therefore approximate 
algorithms, such as sampling, variational methods or loopy belief propagation, have 
to be applied. Sampling is a well-studied field in statistics and various sampling 
algorithms have been proposed. A very efficient approach for high dimensional data 
is Markov Chain Monte Carlo (MCMC), which includes Gibbs sampling and 
Metropolis-Hastings sampling as special cases. 

8.2 Goals and Utopian Sets 

A multiple objective problem may have four types of goal criteria, as portrayed in the 
Fig 10 

1. Greater than or equal to. 

2. Less then or equal to 

3. Equality 

4. Range 

The it are target values (a) on or above which, (b) on or below which, (c) at which, or 

(d) between which we wish to reside. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure14: Goal Criteria Types 
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A goal programming problem with, for instance, one of each type of goal criteria is 
expressed as  

{ }1

1 zxcgoal =              11 tz ≥  

{ }2

2 zxcgoal =              22 tz ≤  

{ }3

3 zxcgoal =              33 tz =  

{ }4

4 zxcgoal =              [ ]ul ttz 444 ,∈  

s.t.   Sx ∈  

 The information in parentheses on the left specifies the value of iz  to be 

achieved (if possible) in relation to stipulated it target values. 

Consider the GP 

{ }1

1 zxcgoal =   11 tz ≥  

{ }2

2 zxcgoal =   [ ]ul ttz 222 ,∈  

s.t.   Sx ∈  

whose decision space representation is given in figure 11. In this figure                  
1c  = (1, 1/2), 2c c2 = (1/2, 1), 1x = (4,1) and 2x = (0,5)., the cross-hatched area is 

the utopian set in decision space. This is the set of points in nR at which all goals are 

simultaneously satisfied. The criterion space representation of the GP is given in 

figure 12 where 1z =  (4 ½, 3) and 2z = (2 ½, 5), the cross-hatched area is the utopian 

set in criterion space. This is the set of criterion vectors in kR that simultaneously 

satisfy all goals. Since there are no points in figure 11 and 12 that feasibly satisfy all 
goals simultaneously, our goal programming endeavor is to find the point in S whose 
criterion vector “best” compares with the utopian set in criterion space. 
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Figure15: Decision Space representation 

 

Figure16: Criteria Space representation 
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