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Abstract

We describe an algorithm that transforms a given input colormap to
one that is more perceptually uniform (i.e.equal steps in data value
are equally perceivable). We have incorporated the algorithm into

alava " application. First, the application measures a given user’s
perception function for a given monitor and colormap. Then, it
computes a “normalized” colormap which preserves the color or-
dering of the original map but modifies the positions of the colors
so that the resulting colormap will be much more perceptually uni-
form. We present results for both commonly used colormaps and
personal, “made-up” colormaps, and show the improvement that is
achieved in each case. The normalized maps tend to preserve lu-
minance linearity, within the confines of the characteristics of the
input colormap. Overall discrimination is best when the original
colormap incorporates both hue and luminance variation.

CR Categories:  1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

Keywords: visualization, perception, colormaps

1 Introduction

In many applications of scientific visualization, colormaps are used
to represent continuous variables. Applications use both standard,
common colormaps (such as the rainbow and grayscale colormaps),
as well as colormaps designed for a particular purpose. However,
many colormaps currently in popular use do not satisfy properties
which would make them appropriate for the accurate interpretation
of data, as outlined by Trumbo[11], whose first two principles, for
example, are those of Order (“if the levels of a statistical variable
are ordered, then the colors chosen to represent them should be
perceived as preserving the order”) and Separation (“important dif-
ferences in the levels of a statistical variable should be represented
by colors clearly perceived as different”). In particular, [6, 7] dis-
cuss the fact that for many maps, equal steps in data value do not
produce equal perceptual differences. This can lead to misinter-
pretation of data; small differences in data value may look larger
than they truly are, or large differences may be masked. One solu-
tion is to use known perceptually uniform colormaps. For example,
luminance maps (grayscale maps and their relatives) tend to be rea-
sonably perceptually uniform [10, 2], and are commonly used in
medical imaging, for example, where discrimination of fine detail
is extremely important for proper interpretation.

Previous work (e.g. [5], [8]) discuss theoretical frameworks for
constructing colormaps which satisfy particular criteria, generally
using perceptual color spaces to select colors. However, such ap-
proaches require calibrated displays, which are not always easily
available. Also, for better or worse, grayscale and other luminance
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maps tend to be unpopular in scientific visualization. They lack
bright colors, and thus are not very visually appealing, and it is dif-
ficult to estimate actual data values by eye, even given a colorbar
to go with the image. The rainbow colormap is nearly ubiquitous
in scientific visualization, and is typically the default map. It is at-
tractive, colorful, with easy to discriminate “regions” of the data
which can then be associated with specific data values given a col-
orbar key (low values with blue, medium-low with cyan, medium
with green, etc.). The problem with the rainbow colormap is that
the minimum perceivable increment varies widely over the range of
the map, as shown by [1], who found that in the green region of the
map (between about 40% and 60% of the colormap range), the nec-
essary increment to be perceivable is more than 10 times as large as
it is in the red and blue regions of the map. Thus changes in data
value in this region are masked by the perceptual non-unifomity of
the colormap.

The solution we propose is to allow users their choice of col-
ormap, including the rainbow map, but give them a mechanism for
improving it. We do this by measuring the perceptual discrimi-
nation function for the given colormap, then adjusting the map to
make the perception function flat.

We note that choice of a colormap must depend on the applica-
tion; for example, [6, 2] showed that the optimal colormap depends
on whether large scale trends or small details are more important
to detect, and [9] discusses the detection of clusters in data. The
method we use is aimed at enabling users to detect small changes
in data value (details). The maps we consider are designed to rep-
resent continuous variables, thus are smooth.

2 Measurement of the Perception Func-
tion: Experimental Setup

Our goal was to design an experiment which would straightfor-
wardly and quickly measure the perception function for a given
user, a given monitor, and a given colormap. We were particularly
interested in measuring perception akin to looking for small details
against a background. To accomplish this, we first created a refer-
ence data set of size NxM pixels. The data set has values equal to
i/N in the horizontal dimension, and i/N in the vertical dimension,
where i is the horizontal pixel number. Thus the function varies
from 0 to 1 in x, and for a given x is constant in y (see Figure 1). In
practice, we set N equal to 500 pixels and M equal to 100 pixels. To
this reference data set is added a small data offset, square in shape,
at some location in x and y. The size of the square was 15 pixels.

We created a Java' program which would color both the refer-
ence data set and the test data set using the colormap under consid-
eration. We designed a very simple input format for the colormap,
with positions (or data values) specified between 0 and 1, and cor-
responding color values specified as an RGB triplet. The positions
and colors are found in two files, the names of which are specified
on the command line to the application. The two images are pre-
sented one above the other to the user, with the test set randomly
chosen to be either on the top or bottom. The location of the test
patch starts at the left side and moves toward the right as each per-
ceptual threshold is measured. Thus the user knows approximately
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Figure 1: Example of test pattern presented to a user, using the
standard rainbow colormap. In this example, the offset patch can
be seen in the bottom image, in the blue region near the left.

where to search for the pattern. We found this to result in more
reproducible results, as the user was not forced to search over the
entire space of the test pattern.

We implemented an adaptive staircase method of measuring the
minimum discriminable offset from the background. We measured
this offset at 15 different values in the colormap. We begin with a
relatively large offset of 20% of the entire range added to the back-
ground data value. The user has 5 seconds to indicate, using arrow
keys, whether the test image, containing the test offset pattern, is on
the top or bottom. If the user either does not respond in 5 seconds,
or responds incorrectly, that test offset as a function of horizontal
location is marked as “incorrect.” Two incorrect responses at the
same offset result in a “bounce,” and the next test offset at that lo-
cation will be larger. A short beep is sounded when the time limit
expires to alert the user that a new pair of images is being pre-
sented. If the user responds correctly within the time allotted, the
same offset is presented a second time, in a random image. Two
correct responses will result in the next offset at that location being
smaller. (This mitigates the effect of “lucky guessing.”) The loca-
tions of three “bounces” (reversals in direction of the tested offset)
are averaged to provide an estimate of the threshold for that point in
the colormap. An example of the test and reference pattern for the
standard rainbow colormap is shown in Figure 1; in this case the test
image is on the bottom, and the offset patch can be seen in the blue
region near the left of this test image. This image is taken early in
the test process, when the offset is still quite easy to detect. A small
mark at the top of the image indicates the region in which the mark
will be found. This was found to lessen the difficulty that users had
in locating the region of the patch, particularly in the central region
of the map. Each trial, for an entire colormap, takes approximately
10 minutes to perform.

3 Results

There are three orthogonal issues which we were interested in in-
vestigating in these experiments:

e How successful can we be at improving a colormap (espe-
cially the defacto default rainbow colormap) for a given user
on a given monitor? That is, how flat is the perception func-
tion for the improved colormap?

e Given different starting colormaps, are there differences in
how well the improved maps perform? That is, are the nor-
malized maps significantly better for some starting colormaps
than others?

e How much variation is there in the normalized colormaps for
different users and different monitors?

The following sections will discuss each of these in turn.
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Figure 2: Minimum perceivable increment vs. relative location in
colormap as measured for the standard rainbow colormap for a sin-
gle user using a crt monitor. Four trials were performed; each trial
is shown.

3.1 Deriving a normalized colormap

The first step is to derive an normalized colormap from the measure-
ment of the perception function for a given user on a given monitor.
Figure 2 shows the measured perception function for a single user.
To show the variation for a single user from trial to trial, four trials
are shown. This test was conducted on an IBM P201 cathode ray
tube monitor for the standard rainbow colormap (i.e.,which varies
uniformly in hue in a hue-saturation-value colorspace).

Our goal is to modify the colormap so that this perception func-
tion is as uniform as possible. We do not want to change the col-
ors in the map, or their ordering relative to one another; we rather
want to change the data values to which each color is assigned. We
designate the measured function of Figure 2 f(z), where z is the
relative position in the colormap, and f(x) is the just-perceivable
offset. Thus we know that pairs of colors in the colormap, at « and
z + f(z), are “just barely distinguishable.” We want to derive a
transforming function of z, g(x), such that g(x) and g(z + f(x))
are at a constant spacing; if this is the case, then just barely distin-
guishable colors will be at a constant spacing.

Thus,
gz + f(z)) —g(x) =C
where C is some constant. As an approximation, we can write

g(x) + f(x)g'(x) — g(z) = C
or

g (@) ==

v C
g(y)=/ @

We choose C such that the endpoints of the colormap are 0 and 1,
respectively.

We apply this procedure to the measured perception function to
derive a new colormap. We then repeat the experiment using the
new map to measure the perception function of the normalized col-
ormap. Given the reproducibility of the perception function mea-
surements shown in Figure 2, we performed this process for only
the first trial. The result is shown in Figure 3. We see that the new
measured perception function is significantly flatter than the origi-
nal, which is shown for comparison. We also applied this colormap
to a topographic data set, and compared it with the original rain-
bow colormap. The results are shown in Figures 4 and 5. You can

thus
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Figure 3: Minimum perceivable increment vs. relative location for
the normalized colormap (using the measurements of the first trial
in Figure 2). For comparison, the original perception function is
shown as well.

Figure 4: Standard rainbow colormap applied to a topographic data
set.

see that the result of the poor discrimination for the original rain-
bow colormap in the central, green, region has lead to the colormap
being significantly compressed in this region. While results for a
single data set can only be anectdotal, we see enhanced detail in the
low end of the scale, as well as better discrimination in the central,
formerly green, region.

One important question is whether the measurement of positive
data offsets against the background is equivalent to the measure-
ment of negative data offsets. That is, whether the discrimination d
at a position p when positive offsets are used, would be measured as
the same value at position p + d when negative offsets are used. We
performed two simple experiments to test this hypothesis. The first
was to invert the rainbow colormap, so that it runs from red to blue
instead of from blue to red, and then measure the discrimination
function using the procedure previously described. To compare the
results to those measured for the standard rainbow colormap, it was
necessary to adjust the positions (x values) by the function 1—p—d,
where p is the position in the inverted colormap and d is the discrim-
ination value measured at that point. The second experiment was
to modify the experimental procedure to produce negative steps in

Figure 5: Normalized rainbow colormap computed from the first
trial of Figure 2 applied to the same topographic data set as in Fig-
ure 4. Note the enhanced detail in the blue region and the reduction
in prominence of the green region.

value for the test image, and use the standard rainbow colormap.
In this case we again must modify the x values using the function
p — d before plotting. The results of these two experiments are
shown in Figure 6, where we see excellent agreement between all
three experiments for the rainbow colormap. To compare the ef-
fect on the resulting colormap, refer to Figure 7, where we compare
the eventual position of each color (indexed from 0 to 100) in the
normalized colormap.

3.2 Quality of optimized colormaps

The techniques of section 3.1 can be applied to any colormap. As
an example, we measured the perception function for the standard
grayscale map, which varies linearly in intensity from the minimum
to the maximum data value. We then normalized it, with the result
shown in Figure 8, which also includes the results of the normal-
ization of the rainbow map (using the first trial shown in Figure 2).
Note that the standard grayscale map has relatively poor discrim-
ination in the low end of the scale, but is relatively flat over most
of the range. The equalization process brought down the discrim-
ination function in the low end of the scale, as desired. You may
note, however, that the level of the discrimination function for the
normalized rainbow map is, in general, lower than that of the nor-
malized grayscale.

To investigate the performance of this algorithm at improving
other colormaps, we also applied it to two non-standard, personally
created, colormaps. The first of these included both hue variation
and luminance variation (see Figure 9), and was intentionally man-
ufactured to have a region of little variation in color. The second
map (see Figure 10) was monotonic (but not linear) in luminance,
with some hue variation. Our algorithm performed well at improv-
ing the perception function for both of these colormaps as well. The
results of applying these colormaps to the topographic data set are
shown in Figures 11-16.

To quantify the “quality” of a colormap we define two measures:
uniformity and precision. Uniformity measures whether equal steps
in value are equally perceivable. We define uniformity u as the stan-
dard deviation of f(z); we want this value to be small. Precision
measures whether small steps in value are perceivable. We define
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Figure 6: Test of the hypothesis that a negative offset is perceived
equivalently to a positive offset. We compare the measured per-
ceptual discrimination function for the standard rainbow colormap,
and inverted rainbow colormap, and the standard rainbow colormap
measured using negative rather than positive offsets.
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Figure 7: Location of each color in the normalized colormap vs.the
index of the color in the original colormap, for the rainbow and
inverted rainbow colormaps. (The relative positions (y values in this
plot) have been subtracted from 1 for the inverted rainbow colormap
for a useful comparison.)
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Figure 8: Minimum perceivable increment vs. relative location in
colormap as measured for the standard grayscale colormap for a
single user using a crt monitor. A normalized colormap was then
constructed using these measurements, and the results for this map
are shown. For comparison, the results for the normalized rainbow
colormap are shown as well.
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Figure 9: Minimum perceivable increment vs. relative location for
a non-standard, personally created colormap. Measurements of the
perception function for both the original and the normalized col-
ormaps are shown. The actual colormaps themselves can be seen in
Figures 13 and 14.
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Figure 10: Minimum perceivable increment vs. relative location for
a 2nd non-standard, personally created colormap. Measurements
of the perception function for both the original and the normalized
colormaps are shown. The actual colormaps themselves can be seen
in Figures 15 and 16.



Figure 11: Standard grayscale colormap applied to a topographic Figure 13: Individually created (non-standard) colormap applied
data set. to a topographic data set.

Figure 12: Normalized grayscale colormap applied to the same

topographic data set as in Figure 11. Note the enhanced detail in Figure 14:  Normalized version of the colormap of Figure 13 ap-
the low data value region. plied to the same topographic data set.



Figure 15: A second individually created (non-standard) colormap
applied to a topographic data set.

Figure 16: Normalized version of the colormap of Figure 15 ap-
plied to the same topographic data set.

colormap precision p | uniformity «
original rainbow 0.014 0.021
normalized rainbow 0.006 0.006
original grayscale 0.010 0.013
normalized grayscale 0.008 0.008
original “personal” 0.021 0.038
normalized “personal” 0.008 0.008
original “2nd personal” 0.014 0.015
normalized “2nd personal” 0.009 0.008

Table 1: Measurements of the precision p (mean) and uniformity
u (standard deviation) of the discrimination function for original
and normalized colormaps. Note that the results for the normalized
rainbow colormap are better than for any other colormap consid-
ered, and that in each case the measurements for the normalized
maps are an improvement over the original map.

precision p as the mean of f(z). We also want this value to be
small. The results for all of the colormaps investigated here are
shown in Table 1. We see that as might be expected, the precision,
and particularly the uniformity, of the standard rainbow map are
poor; however see also see that the precision and uniformity of the
normalized rainbow map are better than all of the colormaps inves-
tigated, both original and normalized. That is, detail may be more
easily and accurately seen with the normalized rainbow map than
with any of the other maps. We see two possible explanations for
this result. One possibility is that the hue differences in the rainbow
colormap allow an additional channel for discriminating differences
in addition to the luminance variation. The second possibility is that
the luminance increases and decreases of the rainbow colormap [1]
allow easier detection, as luminance is the primary way in which
small details can be seen, and hue allows data with the same lumi-
nance but different values to be discriminated.

3.3 Luminance profiles of colormaps

Of interest are the luminance profiles of the normalized colormaps,
and how they compare to the luminance profiles of the original col-
ormaps. These may give some guidance to the underlying mech-
anism of “good” colormaps. Figures 17-20 show the luminance
profiles of each of the colormaps discussed thus far. These maps
were computed using the formula outlined in [4]. It is interesting
to note that in each case, the luminance profile of the normalized
map is much closer to linear than that of the original map. In the
case of the rainbow colormap, for which a monotonically increas-
ing function is impossible by nature of the colormap, we see that
the normalized map has roughly linear increases and decreases of
luminance, and that the slopes of the function are roughly constant.
This would imply that linear luminance is in fact highly desirable
for perceptually uniform colormaps, and that the rainbow colormap
is able to depart from monotonicity due to the semantics of hue vari-
ation, which allow colors of equal luminance to be distinguished.

Another issue to consider is the eventual consumer of a normal-
ized colormap, and whether any further adjustments to colors are
made before images are produced. For example, the Data Explorer
software visualization system [3] applies by default a gamma cor-
rection of 2 for most computer architectures, to attempt to correct
for non-linearities in the monitor output. Thus if a colormap was
to be used with Data Explorer or another product which performs
gamma correction, the experiment should be done using the same
gamma correction. This adjustment is incorporated as an option in
the experiment program discussed here.
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Figure 17: Luminance profiles for the original and the normalized
rainbow colormap.
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Figure 18: Luminance profiles for the original and the normalized
grayscale colormap.
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Figure 19: Luminance profiles for the original and the normalized
non-standard, personally created colormap.

T
2nd personal ——
normalized 2nd personal =--x---

Luminance

0 0.2 0.4 06 038 1
Fractional Position in Colormap

Figure 20: Luminance profiles for the original and the normalized
2nd personally created, non-standard colormap.
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Figure 21: Minimum perceivable increment vs. relative location
in colormap as measured for the standard rainbow colormap for a
single user using an lcd monitor. Three trials were performed; each
trial is shown. In addition, the first trial as measured for the crt
monitor is shown for comparison.

3.4 \Variation in perception between users and
monitors

Another topic of interest is how much variation exists between the
perception function as measured for different monitors, and for dif-
ferent users. Figure 21 shows the results for a Thinkpad LCD mon-
itor for the rainbow colormap. The experiment was repeated three
times to test the reproducibility for a single user and a single moni-
tor. As Figure 21 shows, reproducibility was excellent.

For comparison, the first trial as measured for the same user on
the CRT monitor is shown as well. There is no significant differ-
ence between the measurements for the LCD monitor and the CRT
monitor, suggesting that a single normalized colormap would be
appropriate for either monitor, at least for this user and this pair of
monitors. Variation across several CRT monitors is shown in Fig-
ure 22. We see that while the overall behavior is consistent, one
of the CRT monitors had significantly better discrimination in the
central, green region than did the others. It would thus be prudent
to measure the perception function for a given monitor to derive the
optimal colormap for it.

To investigate the variation between users, we also measured the
perception function for the rainbow colormap for several other users
on the same CRT monitor as used in Figure 2. The results of this
experiment are shown in Figure 23. As can be seen, results are
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Figure 22: Perception function for three different CRT monitors.

T T
subject 1
subject 2 ~------
subject 3 -+~
subject 4
subject 5 ——--

Minimum Perceivable Offset

: n . . . . ; !
0 0.1 02 03 0.4 05 06 08 09 1
Fractional Position in Colormap

Figure 23: Perception functions for several users measured on a crt
for the standard rainbow colormap.

quite consistent. Each user’s perception function was then used to
construct a normalized rainbow colormap for that user, and the user
was tested again. The results are shown in Figure 24. Again, the
procedure we describe here did a good job of creating a much more
perceptually uniform map. Given the uniform results obtained for
a given map on a given monitor, it seems reasonable that one could
create a perceptual uniform colormap that would provide good re-
sults for most people using it.

4 Conclusions

We have described an algorithm which can be used to derive a nor-
malized colormap given measurements of a user’s perception func-
tion. The normalized map will exhibit much more uniform behav-
ior, and thus be more perceptually accurate. This algorithm can be
used to improve any given input colormap. We have found that for a
given monitor and colormap, different users have very similar mea-
sured perception functions, indicating that a single normalized map
may be used for any user of that monitor. In general, measurements
for a given standard colormap (for example, the rainbow colormap)
are similar across different monitors, indicating that a “reference”
version of the map could be published which would exhibit better
behavior than the default; however for optimal results one may wish
to create a normalized colormap specifically for a given monitor, as
results do vary somewhat.

Our results also show that luminance linearity is desirable for
perceptual uniformity, and that the normalized versions of the col-
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Figure 24: Perception functions for the same users as shown in
Figure 23, each using the normalized colormap derived from their
measurements shown in that figure.

ormaps investigated here are in general much more linear in lumi-
nance than the original maps, within the limits set by the overall lu-
minance behavior of the colormap. We also found that the rainbow
colormap, once normalized, allows better discrimination of subtle
detail than any other map investigated. We postulate that this is be-
cause more inherent luminance variation is achievable using a map
which encodes using both hue and luminance.
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