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Abstract— We have developed a highly reliable InfiniBand
host attached block storage management and virtualization
system that allows use of off-the-shelf fibrechannel RAID
controllers on the back end. The system is based on the
existing IBM TotalStorage SAN Volume Controller (SVC)
product, and therefore offers performance, a wide array of
storage virtualization features, and support for many ex-
isting storage controllers. We provide an overview of the
driver design as well as performance results. Read perfor-
mance from SVC cache reaches 2 GB/s in a minimal two-
node cluster configuration for large I/O requests. 1

I. Introduction

InfiniBand is a high-bandwidth, low-latency open sys-
tems interconnect. It provides fast message passing be-
tween hosts as well as remote direct memory access
(RDMA).

InfiniBand is pervasive in high-performance computing
(HPC) environments such as the Top 500 supercomputers
list [1] where higher latencies of other network intercon-
nects and the CPU overhead of data copying in protocols
such as TCP/IP are prohibitive. Roughly a quarter of the
Top 500 supercomputers rely on InfiniBand as the com-
munication fabric. Increasingly, InfiniBand is being used
in Grid Computing [2], clustered database systems [3] and
in the financial sector for applications such as algorithmic
stock trading [4], [5], [6].

In addition to host-to-host communication, InfiniBand
can also be used to connect hosts to storage devices us-
ing the ANCI/INCITS standardized SCSI RDMA Proto-
col (SRP) [7]. Using the same InfiniBand fabric for both
communication and storage simplifies server configuration
by reducing the required number of PCI card slots and the
associated cabling from host systems, especially in highly
dense blade server environments.

InfiniBand storage is not as well developed as Fibrechan-
nel storage, leaving few commercial IB storage options.
We have tried to address the shortage of options by ex-
tending one of IBM’s storage products, the TotalStorage
San Volume Controller (SVC) to support InfiniBand in
addition to Fibrechannel. The result is a highly reliable,
InfiniBand-capable storage management and virtualization
system with a rich set of features, that allows use of off-
the-shelf fibrechannel RAID controllers as the underlying

1Note: this paper describes a research prototype. It is not an IBM
product announcement.

storage. Main benefit of our approach is that users of Infini-
Band clusters can now attach, through SVC, to an existing
FC SAN fabric and as well as having a choice of plethora of
FC storage controllers that SVC product already supports
today.

Section II provides an overview of the San Volume Con-
troller product. Section III gives a high-level description
of the IB driver implementation. Section IV shows the life
of an I/O request through the driver. Section V describes
driver synchronization and resource management. Finally,
section VI gives performance results.

II. San Volume Controller

IBM TotalStorage San Volume Controller (SVC) is a
storage management and virtualization system built on
clustered Pentium-based servers [8]. SVC provides a cen-
tralized storage pool, block I/O access through virtual disks
(vdisks), fast write-cache, copy services including point in
time copy, remote copy and transparent migration, quality
of service metering and reporting, and use of off-the-shelf
RAID controllers. Deployment of SVC in an enterprise
environment enhances manageability and improves storage
utilization by providing centralized management and pool-
ing of storage resources.

SVC provides high reliability by using UPS-backed server
nodes running in I/O pairs. The paired nodes provide fast
write caching by communicating their modified data blocks
to each other and returning status back to the host as soon
as both nodes have saved a copy of the modified data in
their respective caches. If either node should fail before the
modified blocks have been committed to disk, the other
node will ensure the data is written. In the event of a
power failure where the external storage devices may go
offline before SVC can commit the modified blocks, each
SVC node will save a copy of the modified cache blocks to
a small local disk, running under UPS power. These blocks
will then be committed to the external storage when the
system is brought back on-line.

SVC system is scalable. Up to 8 SVC nodes form an
SVC cluster. Each host connects to a redundant pair of
SVC nodes in the cluster. All the physical storage attached
to the back-end of the SVC cluster is pooled for efficient
sharing of the storage bytes and performance. For exam-
ple, the virtual disks that SVC exports to the hosts may be
striped across multiple storage controllers at the back-end,
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therefore providing performance not possible with a sin-
gle storage controller. Thus, SVC performance far exceeds
the performance of other storage devices in existence. In
SPC-2 industry benchmarks SVC throughput is twice the
throughput of the next best performing storage controller,
reported as of Apr. 2008 [10].
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Fig. 1. Standard SVC Fibrechannel Topology

Logically, SVC stands between the hosts and the stor-
age devices. Figure 1 illustrates the standard fibrechannel
configuration using a fibrechannel SAN. Here, hosts and
storage devices connect to SVC through a common SAN;
however, the storage devices are isolated from the hosts us-
ing fibrechannel zoning. This protects the SVC-managed
storage from direct access by hosts.
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Fig. 2. SVC with IB Topology

In our modified SVC, the SVC nodes have a mixture
of fibrechannel and InfiniBand ports. We added a PCIe
Mellanox 4X InfiniBand host channel adapter to each SVC

node in addition to the existing FC adapter. Figure 2 shows
a configuration where all hosts connect to SVC via the In-
finiBand fabric. The back-end is still fibrechannel, allowing
the ordinary RAID controllers as the back-end storage. Fi-
brechannel target functionality in the modified SVC is still
intact; so a mixture of InfiniBand and Fibrechannel hosts is
permitted. It’s possible for hosts to share a virtual disk in-
dependent of the interconnect used between host and SVC.

III. Implementation Overview

The SVC code, including its device drivers, run primar-
ily at user-level. Main reasons for this design choice was
performance and simplified development. In the case of
the fibrechannel driver, a small kernel module maps the fi-
brechannel adapter’s PCI registers into user-space, where
the driver can control the FC adapter without incurring
system call overhead. I/O completions as well as the other
functions of SVC are handled by a small number of polling
threads.

We developed an InfiniBand driver which also controls
its adapter’s from user-space, but instead of accessing PCI
registers, it uses the standardized InfiniBand user-level
verbs API. This API communicates with the IB adapter
via shared memory queues and thus also avoids system call
overhead, but has the benefit of not being specific to a
particular IB adapter model.

Much work was done in the IB driver for performance
and efficient use of resources. The driver has a completely
asynchronous and re-entrant design, permitting a high-
level of I/O parallelism while fitting well into SVC’s thread-
ing model.

The driver is highly modular, consisting of five cooperat-
ing state machines, each implementing a different portion
of the SCSI RDMA protocol. Breaking the logic out in this
way, we were able to implement the target mode protocol
fully with robust error handling, without putting unman-
ageable complexity into any one component.

Resource management and synchronization between the
state machines is handled by an asynchronous semaphore
mechanism, described later. In the next two sections we
describe our IB driver design in detail.

IV. Driver State Machines

Several instances of five state machines implement the
logic of the SVC IB driver. The five state machines con-
trol, respectively, SRP channel establishment and disestab-
lishment, management of the SCSI I-T nexus, SCSI com-
mand and task management requests, buffer descriptor ta-
ble fetches and DMA transfers. These state machines use
the asynchronous semaphore mechanism described below
to synchronize with each other and to control access to
common resources. For brevity, we’ll only describe the re-
quest and DMA state machines here.

A. Request State Machine

The request state machine, shown in Fig. 3, manages the
life of each SRP SCSI command or task management re-
quest. The driver stores the state associated with a request
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Fig. 3. Request State Machine

in a request structure, which is allocated from a fixed-size
pool of 2000 structures per IB port.

All requests begin in the FREE state. When an IB port
is brought on-line, each of the port’s requests receives a
START event, taking it to the RECV BUFFER WAIT
state. Here, the request state machine tries to allocate an
IB receive buffer.

There are fewer receive buffers than requests avail-
able per port, therefore some of the requests remain in
RECV BUFFER WAIT waiting for a buffer, while oth-
ers post their newly-allocated receive buffers to the Infini-
Band shared receive queue and continue onto the RECV
WAIT state. Requests remain in RECV WAIT until a mes-
sage from a remote host is received into the corresponding
buffer.

When a message arrives, the receive logic looks up the
IB queue pair number from the message header to iden-
tify the the SRP channel, checks that the message is well-
formed and classifies it based on the message type. SCSI
commands and most task management requests bring the
request state to SUBMIT WAIT where the request is in-
serted into a tag hash table (used for abort processing) and
submitted to the SVC code. Abort task requests and mis-
cellaneous SRP requests such as initiator logout are han-
dled by the driver directly and take different paths in the
state machine.

For SCSI commands that transfer data, the request state
machine initiates a fetch of the buffer descriptor table
(BDT) in parallel with submitting the command to SVC.
The buffer descriptor table fetch is controlled by another
state machine (not shown). Usually, buffer descriptors
are included in-line with commands, and in this case, all

the BDT state machine has to do is allocate a buffer to
hold the descriptor entries and copy them from the receive
buffer. But if necessary, the BDT state machine will initi-
ate RDMA’s to the host to fetch any part of the descriptor
table not included with the request.

Once a command has been submitted to SVC, the re-
quest enters the PARTIALS WAIT state, where it remains
until the BDT state machine has copied any partial (in-
line) buffer descriptors from the receive buffer. After par-
tial descriptors have been copied out, the receive buffer is
freed where it can be used by another request. After the
receive buffer is freed, the request enters the ACTIVE state
where it waits for the SVC common code to direct DMA
transfers and the final status transfer. DMA operations are
controlled by the DMA state machine, described below.

Once the common SVC code has returned status for the
execution of the SCSI command, the the request enters
DMA DRAIN WAIT where it waits for RDMA’s associated
with the request to complete. The next series of states are
used to allocate resources for the SRP response message.
This involves reserving a slot in the IB send queue, allocat-
ing a send buffer, reserving a slot in the completion queue
and posting the response message. Once the response is
posted, the request enters BDT WAIT where it releases
the buffer descriptor table and returns to FREE where the
process starts again.

The remaining request states: deferred abort target
command (DATC), SEND HOLD WAIT, ASYNC HOLD
WAIT and ASYNC WAIT are used to handle errors and to
synchronize with SVC when processing abort task requests.
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Fig. 4. DMA State Machine
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B. DMA State Machine

Figure 4 shows the DMA state machine, which controls
data transfers between hosts and SVC. When a DMA op-
eration is requested, the IB driver allocates a DMA control
structure. From the initial IDLE state, a DMA enters BDT
WAIT where it synchronizes with the buffer descriptor ta-
ble state machine. It then enters its main loop where it
initiates RDMA read or write operations to the host. This
is slightly tricky in that both SVC and the host provide
scatter-gather lists for the transfer, making it sometimes
necessary to submit several RDMA operations to complete
a single DMA operation. As resources permit, the driver
executes these RDMA operations in parallel.

Within the main DMA loop, there are two states: SQR
wait and CQR wait. In SQR WAIT, the driver reserves
a space in the IB send queue, taking care not to exceed
the negotiated number of concurrent RDMA reads that
the host’s channel adapter can accept. In the CQR WAIT
state, the driver reserves a slot in the IB completion queue.
Once both table slots have been reserved, the DMA state
machine submits an RDMA operation and loops until all
RDMA’s have been started.

Once all RDMA operations have been submitted, the
DMA state machine enters XFER WAIT where it waits
for the RDMA’s to complete. It finally executes a callback
to notify the requester of the completion and returns to the
IDLE state. In the case of a zero-length DMA request or
the receipt of an abort before RDMA’s could be started,
the DMA state machine enters ASYNC WAIT instead of
XFER WAIT where it uses the sched async mechanism (de-
scribed below) to generate a context for the completion
callback.

V. Driver Synchronization

At the core of the InfiniBand driver is a counting and
queuing semaphore mechanism that, instead of blocking,
schedules an asynchronous callback when the semaphore
count is too low to satisfy a P (down) operation [9]. This
mechanism is used to control access to limited driver re-
sources, to synchronize between the state machines and to
schedule asynchronous callbacks outside of the caller’s con-
text for deadlock avoidance. Moreover, the mechanism has
a cancel operation, making it possible to interrupt the wait
in case an error or arrival of new information obviates the
need for the resource. Using a single, generalized mecha-
nism for driver synchronization greatly simplifies exception
handling.

The semaphore count and queue are implemented by a
wait channel. When the wait channel is initialized, it’s
given the initial semaphore count and an associated run
queue.

void sched wait channel init(wait channel *wcp ,
run queue *rqp , uint32 t count )

The P operation is provided by the sched wait and
sched wait n functions. If the count is positive, sched wait
decrements the count by one and returns true; otherwise,
it saves the given callback function and argument into the

caller-supplied wait entry, enqueues the wait entry onto its
internal queue and returns false.

The sched wait n function is a more general interface. If
the semaphore count is at least n, it decrements the count
by n and returns true; otherwise, it leaves the semaphore
count unchanged, saves the requested n value, enqueues
the wait entry and returns false.

int sched wait(wait channel *wcp , wait entry *wep ,

callback *fn , void *arg )
int sched wait n(wait channel *wcp , uint32 t n ,

wait entry *wep , callback *fn , void *arg )

Alternatively, the semaphore count can be decremented by
conditional interfaces, sched try and sched try n. These
work exactly as sched wait and sched wait n, except that if
the semaphore count is insufficient, they simply fail without
scheduling a callback.

int sched try(wait channel *wcp )
int sched try n(wait channel *wcp , uint32 t n )

There are also two regular and two conditional forms of
the V (up) operation. The regular forms, sched signal wait
and sched signal wait n, increase the semaphore count by
one or n, respectively, and move any waiters satisfied by
the new count from the wait channel queue to the run
queue. As waiters are removed, the semaphore count is
decremented by the amount that was specified in the cor-
responding wait call.

void sched signal(wait channel *wcp )

void sched signal n(wait channel *wcp , uint32 t n )

The conditional forms, sched signal first and sched signal all,
only have an effect if there are queued waiters. If there are
queued waiters, sched signal first moves the first waiter to
the run queue, leaving the semaphore count unchanged.
Similarly, sched signal all function moves all queued wait-
ers to the run queue, leaving the count unchanged.

int sched signal first(wait channel *wcp )
void sched signal all(wait channel *wcp )

A special function, sched async, enqueues a request directly
to the run queue. This can be used to schedule an imme-
diate callback outside of the calling context.

int sched async(run queue *rqp , wait entry *wep ,

callback *fn , void *arg )

A pending wait entry can be cancelled by a call to
wait cancel. This function restores any changes the re-
quest has made to the semaphore count (possibly awaken-
ing other waiters) and returns true on success. It returns
false if the wait entry is neither on the wait channel nor
the run queue, i.e. is already being executed.

int wait cancel(wait entry *wep )

Finally, a call to sched run removes all wait entries from
the run queue and executes their callback functions. If
these callbacks schedule more work onto the run queue,
sched run loops internally (up to a limit of a few iterations)
and processes the new entries, thereby avoiding the intro-
duction of unnecessary context switches when the comple-
tion of one event triggers the start of another.
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We call sched run from the driver’s polling thread af-
ter it has processed completions from the IB completion
queue. Therefore, in a single poll, the driver handles all
pending IB completions and starts all new work that can
be started without having to wait for the polling thread to
be rescheduled.

int sched run(run queue *rqp )

How the semaphore count is initialized and which P and
V functions are used depends on the application of the
semaphore. Following are some examples:

To implement a simple mutex, the semaphore count
is initialized to 1. The semaphore is acquired using
sched wait and released using sched signal. If several re-
questers try to to acquire the semaphore at the same time,
one will be successful while the others will be queued.
When the first requester releases the semaphore, the count
increases by one which releases the next in line.

To limit access to a pool of n resources, the count
is initialized to n. Resources are reserved by a call to
sched wait n and released by a call to sched signal n. This
usage provides first come first served fairness by releasing
waiters in order and, only when sufficient resources have
been freed to satisfy their requested counts.

In order to hold a single requester until an event oc-
curs, the count is initialized to 0. The requester waits via
sched wait and the event is signalled by sched signal. If the
requester waits before the event occurs, it will be queued
and then released by the event. If the event occurs first,
the semaphore count will become 1 allowing the requester
to decrement the count without waiting.

In order to hold zero or more requesters at a barrier
until an event occurs, the count is initialized to 0. The
requesters wait via sched wait and the event is signalled
by sched signal all. In this case requesters must check if
the event has already occurred and call sched wait under
a lock in order to guarantee that they do not miss the
event. Because sched wait never actually blocks the calling
thread, it’s safe to hold the lock through the sched wait
call.

VI. Performance Results

We evaluate the performance using three different mea-
sures: I/O throughput, average number of SCSI comple-
tions per second and I/O latency as seen by a single re-
quester.

Our benchmarking environment consists of the follow-
ing: the client machines generating the I/O workload con-
sist of up to 8 IBM model LS21 blade servers each hav-
ing two sockets of 2.4 GHz AMD Opteron 2216-HE and a
Mellanox MT25208 InfiniBand host channel adapter. The
client blade servers are running SuSE SLES 10 2.6.18.8-xen
Linux. The client IB adapters connect to the SVC clus-
ter through a number of highly-interconnected InfiniBand
switches. Our SVC cluster prototype consists of two IBM
System-X Model 3650 servers each with 16 GB of RAM
and a Mellanox 4X InfiniBand host channel adapter.

Note that we measured only the front-end performance
of our SVC prototype, namely the 100 percent SVC cache
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hit scenario. In our prototype, the InfiniBand interface ex-
ists only in the SVC front-end. Therefore, the back-end
performance of our prototype would have been the same as
the SVC product. Note also that since SVC is a storage
virtualization engine which sits inline between hosts and
the multiple storage controllers possibly from multiple ven-
dors in the back-end. As such the back-end performance
of SVC is very much dependent on the number of storage
controllers and disk drives in the back-end and therefore
not reported here; see the published benchmark results for
those [10].

Figs. 5 and 6 show read and write throughput and num-
ber of I/O operations per second, respectively, as a function
of I/O size. Here, 8 hosts are each queuing 16 simultaneous
requests to the two SVC nodes, so I/O latency is masked
by pipelining.

Toward the left-hand side of these figures, the system is
limited by I/O rate, peaking at about 144,000 read oper-
ations per second 2 Toward the right-hand side, reads are

2Given zero-byte read and write operations (i.e. no RDMA phase),
the SVC nodes process more than 200,000 requests per second.
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limited by InfiniBand bandwidth. In both cases, writes are
slower as the SVC nodes commit the data to both nodes
caches before returning status back to the driver.

Figure 7 shows the I/O latency for a single node issuing
requests serially, i.e. no command queuing. In this test,
small reads complete in about 30 microseconds. This figure
is much different from the reciprocal of the average I/O rate
above where pipelining effects greatly improve the overall
I/O rate.
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