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Abstract. As web applications offload more application processing into the 
browser, there is growing interest in disconnecting browsers from servers. In a 
disconnected browser, applications are responsible for caching and managing 
application state without access to server resources. In this paper, we present 
CANSYNC, a lightweight data layer that executes on both the browser and 
server to manage data checkpointing and synchronization tasks for a 
disconnected web application. CANSYNC provides change logging and 
undo/redo features for browser-based application state management, as well as 
a customizable synchronization engine for reconciling browser state with the 
server.   The CANSYNC API is accessible in Javascript on the client and does 
not require the installation of browser extensions. CANSYNC server-side 
components can be accessed using HTTP calls.  We describe the design and 
implementation of CANSYNC in the context of a prototype bookmark sharing 
application. 

1   Introduction 

Safely and seamlessly disconnecting clients from server-based resources has been an 
area of research in many areas including file systems [17], databases [7], and web 
services [25].  Developers are increasingly interested in enhancing the availability of 
web applications by providing a disconnected mode of operation for code executing 
in the browser.  At first glance, disconnecting a web application from the network can 
seem contradictory; one touted benefit of a web application over its desktop 
counterpart is the centralization of administration and resources on a server, where 
clients only need a browser and a network connection to run the application.  
However, as users become more mobile, having a network connection is difficult to 
guarantee. Even with intermittent connectivity, a disconnected mode for an 
application can be beneficial; aggressively placing application logic and data in the 
browser can increase application responsiveness, make the application more fault-
tolerant, and mask an application from QoS variations in network service.  

Currently, disconnecting a browser is achievable through Google Gears [12], an 
open-source, cross-platform browser extension that provides four basic building 
blocks that developers can leverage to implement a disconnected mode for their 
applications: a local database for persistence, a local proxy to redirect application 



calls to local resources, a resource manager to replicate server resources to the 
browser, and a worker pool that enables a close approximation of multi-threading for 
a Javascript application for the purpose of keeping the browser UI responsive.  
Google Gears is designed to incrementally improve the browsers ability to disconnect 
from the server and so by design it does not provide everything a developer needs; 
notably absent are facilities to help the application manage and reconcile its replicated 
application state with that on the server.   

Managing application state within the basic browser programming model can be 
difficult to implement. While there are proposals to create separate data storage APIs 
for the browser [9], the current browser's heritage as a document renderer has resulted 
in an ad hoc programming model where each individual visual element may manage 
its own data. Untangling data from the application UI is difficult as it is fundamental 
to the design of the browser’s HTML-based Document Object Model (DOM) [8].  
Although this HTML DOM is not optimized to manage non-visual application state, 
developers use it as a catch-all container on the client for presentation, application 
logic, and data.   

In this paper, we present a framework that improves a browser's ability to manage 
application state and helps facilitate disconnection for browser-based applications. It 
is likely that Google Gears, or some future variant that provides similar capabilities, 
will provide the basic building blocks to enable disconnection; we extend this work 
by providing a thin data services layer that is split between the client and server and 
address two areas we believe are fundamental to application state management in the 
browser: 

 
• a mechanism to checkpoint local application state that enables features like 

undo/redo, suspend/resume, version management, simplified audit trails,  and 
improved fault tolerance for a web application.  

• a customizable synchronization engine that implements different synchronization 
modes (e.g. fast vs. slow synchronization) and executes application-specific 
policies for synchronizing a local copy of application state with that on the server.  
 
In this paper we present the Checkpointing ANd SYNChronization (CANSYNC) 

data layer, which provides checkpointing and synchronization as services accessible 
to application programmers as Javascript libraries that are easily integrated into 
application code. As part of the design of CANSYNC, we look at a user-level widget 
model that provides visual metaphors for accessing the less esoteric aspects of 
CANSYNC. The use of these widgets is optional; both the checkpointing and data 
synchronization services in CANSYNC have public Javascript APIs for client-based 
components, and an HTTP-based protocol for accessing server-based components. 

The remainder of this paper is as follows: in Section 2, we motivate data-centric 
disconnection and describe an example application that uses CANSYNC; in Section 
3, we provide a design overview of CANSYNC in relation to the Model-View-
Controller design pattern; in Section 4 we present details regarding the widget 
programming model in CANSYNC and the implementation of the CANSYNC 
checkpointing and data synchronization services; in Section 5 we discuss related 
work; we conclude with a discussion of some of the challenges of state management 
framework like CANSYNC and describe future work in Section 6. 



2   Example Application that Uses CANSYNC 

In this section, we discus a data centric view of disconnection and present an example of an 
application that primarily uses locally cached data. 

2.1   Data Centric View of Disconnection 

Disconnecting an application relies on aggressive caching. A browser application is 
typically one or more HTML pages that have dependent files such as style sheets, 
external source files, and media files. In general, disconnection involves caching these 
pages and their dependent files. It may also involve replicating portions of the server-
side execution environment needed by these pages onto the client.  Replicating the 
latter can be complex, so one simplifying assumption is that all application logic 
needed during disconnection is already in the HTML pages or dependent files, and 
any feature in the application that requires server-side code can be safely disabled. 

Automatically scanning and downloading an HTML page and its dependent files is 
relatively straightforward [17].  It is more difficult to determine the application state 
needed on the client if it is managed on the server through some opaque means, e.g. in 
a database. Replicating an entire data store onto the client is not usually feasible. In 
general, the web application page will contain a snapshot of the data needed for its 
initial view; if subsequent calls to a server-side database are needed for additional 
views, then the application may fail to execute.  As an example, Google Maps [13] 
displays a scrollable map, which locally caches a subset of map images needed for the 
currently displayed view. If Google Maps were disconnect-able, we would require 
knowledge about additional map images to cache since the user may wish to consult 
maps beyond the initial view during disconnection. Much research has been done in 
predictive caching, for example in file systems [16] and browser caches [14].  For a 
browser-based application, it would be useful for application developers to have the 
ability to explicitly declare the data needed to be cached.  This can be done in parallel 
with page-level replication.  

In this paper, we take a data-centric view of disconnection, where we assume that 
the initial page-level caching is already done, e.g. by a developer using the managed 
resource module in Google Gears to specify what files on a server need to be 
replicated to the client for disconnection. Instead, we focus on the post-initialization 
phase of disconnection, where the browser manages a local replica of non-visual data. 
In this model, the client works primarily with locally cached data, and separate data 
centric services manage the data, e.g. keep the locally cached data synchronized with 
the server. We constrain ourselves to solutions that can work in base configurations of 
browsers, though we utilize installable browser extensions, such as the embedded 
SQlite in Google Gears, if they are available.  

Our goal is to provide programmers with browser-specific facilities to specify, 
manage, and synchronize application state. We take a lower-level view of data 
synchronization and create a synchronization framework based on basic concepts 
derived from other data centric approaches, such as SyncML [20]. 



2.2   Flinger Bookmarking Application 

Flinger is a prototype browser-based, collaborative web application developed as a 
test-bed for the data-centric design in CANSYNC.  In Flinger, users create and 
exchange collections of semantically related bookmarks via a browser-based interface 
and a Flinger server.  For example, a user could be researching a possible stock 
purchase. During the research process, she bookmarks sites that have relevant 
information about the stock. Flinger allows the user to group these bookmarks into a 
collection, tag them, and then publish the collection to a Flinger server to share with 
other users. Users can browse the published collections on the Flinger server and 
download the collections they would like loaded into their browser.  

Rather than channeling all update operations on collections to the Flinger server, 
Flinger replicates data to the browser. Users work with local copies of bookmark 
collections and only contact the server to propagate changes. This potentially reduces 
the overall load on the server, but allows the local copies of collections to diverge. 
This is analogous to the Asynchronous Javascript and XML (AJAX) [11] design 
pattern, which relies on asynchronous messaging and locally executed Javascript code 
to create a browser application with a richer, more responsive interface. Flinger 
inherently favors a disconnected mode of operation where users can update cached 
copies of collections without contacting the Flinger server. 

 

Fig. 1. Screenshot of the prototype Flinger bookmarking application 

 



Figure 1 is a screenshot of the main window of the Flinger application.  One the 
right hand side of the window, Flinger displays a list of the available collections on 
the Flinger server.  The list includes the collection's name, a short description of the 
content, and a version number.  Next to the collection's name is a checkbox. When the 
checkbox is checked, Flinger replicates the collection from the server to the browser.  
Flinger renders the collection into a table located in the tabbed windowpane to the left 
of the collection list.  In Figure 1, the client has checked off two lists, which are 
replicated locally. 

2.3   CANSYNC in Flinger 

Figure 1 highlights two visual widgets below the table, a slider bar and a 
synchronization button, which provide visual metaphors for the checkpointing and 
data synchronization services in CANSYNC. The table is fully editable; the user can 
select a cell in the table and double-click it to enter the table edit mode. In edit mode, 
the user can change the value of a table cell and then un-select the cell (by clicking 
away from the cell or pressing the return key on the keyboard) to commit the change. 
The table is tied to an in-memory datastore that contains a string representation of the 
table contents using the Javascript Object Notation format (JSON) [10].  Users can 
bypass the table and edit this string directly in Javascript, which will similarly commit 
the change and also trigger the table to update its display to the value represented by 
the updated JSON string. 

The user can access CANSYNC’s checkpointing feature via the slider bar. When a 
user makes a change to the content of the table, CANSYNC automatically creates a 
new entry in a change history for the table. By moving the slider to the left, the user 
restores the table’s data to a previous checkpoint in the history, which triggers a 
redraw of the table to that version.  Moving the slider to the right, the table redraws to 
a newer version. 

The user can access CANSYNC’s synchronization feature by pressing the 
synchronization button.  When the user synchronizes, CANSYNC propagates all local 
changes to the Flinger server. In this example, these local changes are the log of 
changes recorded by CANSYNC’s checkpointing service. The server reacts by 
updating its copy of the collection and recording the changes in a log. It also 
generates a message back to the client that contains any changes made to the server's 
copy since the last time the client synchronized. Client-side code in CANSYNC 
processes these updates in the browser and updates the local collection accordingly. 

CANSYNC synchronization executes a Flinger-specified policy to resolve update 
conflicts. This policy is based on “last write wins” semantics. Under this policy, the 
Flinger server will always commit the updates it receives from the client. The server 
will only forward updates to the client made since the last synchronization with that 
client if they do not conflict with the most recently submitted updates from the client.  
This is sufficient for an application like Flinger, which can function with weakly 
consistent replicas and has no hard requirement for eventual consistency of all clients. 
However, CANSYNC allows the application to create any custom synchronization 
policy using the change provider synchronization API (see section 4.2.2). 



We note that there is no special disconnected mode in Flinger.  Because Flinger 
always works with local copies, it only requires a network collection to initially cache 
bookmark collections from the server. To select which collections to cache, the user 
selects the collection from the collection list.  Flinger replicates the selected 
collections automatically.  When the user reconnects to the network, she can simply 
press the synchronization button to synchronize her local copy with that on the server. 

Clearly, other applications will have differing requirements than Flinger regarding 
adaptation to disconnection, reconciliation of replicas with conflicting updates, and 
the policy for selecting items to replicate to the browser. Part of the design philosophy 
of CANSYNC is to allow applications to heavily customize the checkpoint and 
synchronization services to meet their requirements. Application developers can 
exploit application-specific features of the content to optimize caching and 
reconciliation mechanisms. 

3   CANSYNC Design as MVC Data Services Layer 

The Model-View-Controller (MVC) design pattern separates an application into 
model, view, and controller components as a means to create more robust and 
maintainable code [3]. In MVC, the model can be thought of as application data, the 
view is the user interface for interacting with the model, and the controller processes 
user events from the view to update both the model and view, as needed. This pattern 
is often implicitly followed by traditional web applications.  In these applications, the 
browser is the view, and the server implements both the model and controller.  

Web applications are increasingly moving more Model and Controller parts to the 
browser, which is pushing the original design of the browser as a document renderer 
to its limits.  Emerging client programming toolkits are beginning to define a data 
layer to manage these the new responsibilities of browser-based code.  For example, 
the Dojo Toolkit [9] is a popular Javascript library that, in addition to providing a 
palette of enhanced user interface (UI) widgets, defines an MVC programming model 
that specifies standard storage and data retrieval APIs for code executing in a 
browser. By separating an application in the browser into separate model, view and 
controller components, data can be managed independently of the browser Document 
Object Model (DOM) or application UI code. Applications that handle large data sets 
would benefit from optimized data representations in the browser, such as the planned 
integration of SQLite into upcoming versions Mozilla Firefox [26]. Independent data 
management makes browser UI processing and style sheet logic re-usable across the 
changes in data. 

3.1   Disconnection and Browser MVC Models 

Disconnection toolkits introduce MVC into the browser because they rely on caching 
data into a local store. For example, in the Google Gears approach, the application UI 
communicates with a data switch, which can direct data calls to local or remote data 
resources.  This isolates application UI code from separately stored data. CANSYNC 



extends the features of the local data store by allowing application programmers to 
create multiple versions of stored data organized as a history of checkpoints. This can 
be exposed as an API in the data switch, which allows an application to specify which 
version of data it would like to access. 

Dojo has defined its own disconnection API, the Dojo Offline Toolkit (DOT) [18], 
which uses Google Gears but adds some functionality above the basic Google Gears 
building blocks. DOT provides facilities for recording user-level action logs 
containing application operations that were performed while the application was 
offline. In DOT, action logs can be translated to HTTP calls that the user would have 
sent if she had been online.  

CANSYNC extends DOT by providing a more comprehensive framework to 
implement data synchronization for an application. CANSYNC spans both client and 
server and defines a synchronization communication protocol between the two that 
can be used by a wide range of applications.  In CANSYNC, applications can define 
custom synchronization policies using the CANSYNC API that isolates the policy 
from the CANSYNC synchronization engine. CANSYNC’s data-centric 
synchronization provides facilities for performing store-level synchronization, as 
opposed to the user-level action logs in DOT. 

3.2   CANSYNC Data Layer 

CANSYNC is designed as a relatively lightweight data layer that sits between 
application logic in the browser, and the lower-level data access layer on both the 
client (for disconnection) and server.  CANSYNC purposely attempts to minimize the 
introduction of new data abstractions.  As such, CANSYNC adopts a programming 
model that allows developers to write data handling functions in standard Javascript 
and just instantiate a limited set of CANSYNC defined Javascript objects to access 
CANSYNC services.  CANSYNC also extends the data API specified by the Dojo 
Toolkit to provide a richer API for data checkpointing and synchronization. 

Figure 2 shows the positioning of CANSYNC as part of a web application. On the 
left side of the figure, CANSYNC consists of client components written in Javascript 

 
 

Fig. 2.  The CANSYNC Data layer on client and server 



that optionally can use the SQLite database included in Google Gears.  CANSYNC is 
developed as an extension to Dojo 1.0 though it provides both a Dojo API and a 
custom non-Dojo API for application scripts. 

CANSYNC provides programmatic means for an application developer to separate 
the management of non-visual data from presentation elements. For example, the 
Flinger application replicates a bookmark collection represented as a JSON string. 
The application transfers the management of this string to CANSYNC. Internally, 
CANSYNC persists this JSON data into a local (or remote) store.  

We refer to the deployment model of CANSYNC as an instance of model-based 
replication.  In model-based replication, the client can replicate both data and data 
services from the server.  The data services implement the core functions of 
CANSYNC.  Clients can enable CANSYNC by accessing the features via a model 
API without the need to install browser extensions such as Mozilla Firefox plug-ins. 

CANSYNC communicates with its peer components on the server-side using 
HTTP with JSON as a data exchange format. In the current version, CANSYNC 
server-side components are implemented in PHP, Java and Groovy. As part of our on-
going development, we have a PHP implementation of CANSYNC that provides 
support for clients on mobile devices. 

4   CANSYNC Implementation and Programming Model 

We have implemented the checkpointing and data synchronization services in 
CANSYNC.  Figure 3 is an overview of the architecture of CANSYNC.  In the figure, 
CANSYNC provides client and server components to enable the checkpointing and 
synchronization services. The client is executing a Javascript application, which uses 

 

 
 

Fig. 3. Architectural Overview of CANSYNC 



some non-visual data. The application can transfer management of this data to 
CANSYNC via the timeline control or the sync button control widgets.  These 
widgets act as front ends to the different service components, described in more detail 
in this section.  On the client, these widgets are implemented in Javascript and the 
Dojo Toolkit [9].  

The server hosts the necessary synchronization libraries as well as a remote 
checkpoint store.  The latter is useful for clients that may not require disconnection 
and need an off-board place to store checkpoints. The client and server communicate 
using an HTTP/JSON-based API. CANSYNC includes a reference implementation of 
the synchronization service, which uses JSON formatted data on both client and 
server side. This reference implementation allows a client to synchronize two JSON 
objects.  Flinger uses this reference implementation. 

CANSYNC has a widget-based API and a lower-level Javascript API based on 
extensions to Dojo. Figure 4 is example of client code that uses the CANSYNC 
widget API.  The current client footprint of the checkpointing service in CANSYNC 
is ~58kb of Javascript code.  The synchronization service is ~80kb of Javascript code.  
Each service can use the Dojo packaging scheme to select pieces of each service to 
reduce the overall footprint. 

4.1   CANSYNC Checkpointing 

The checkpointing service in CANSYNC is both a client-only and client-server 
service that provides an application with the ability to log changes to application state, 
create checkpoints of that state, and retrieve the state using key-based queries or a 
checkpoint history timeline abstraction. Using the checkpointing service, an 

 
Fig. 4. Client code example using SMW2.0 



application can enable a simple undo and redo feature that can be persistent across 
application and browser sessions. The checkpointed state can be stored locally or use 
a server-based checkpoint store 

The checkpoint service consists of three components: 1) timeline control widget, 2) 
change logger, and 3) a persistence API.  Each component can be used independently 
of the other so applications can customize them as needed. We describe the widget 
API following sections. Note that the checkpoint service also has a low-level API for 
directly accessing CANSYNC checkpointing in Javascript based on extensions to the 
Dojo Data specification.  For brevity we do not cover the low-level API in this paper. 

 4.1.1   Timeline Control Widget API 
The timeline control is an HTML widget that represents a change history for a 

particular piece of application data. The timeline control organizes the change history 
along timeline, and provides the application with the necessary controls to navigate 
this timeline.  

In CANSYNC, the timeline control provides a simple, 1 dimensional history.  As 
part of our research, we plan to investigate more complex history schemes, such as 
tree schemes that allow histories with multiple branches. 

Figure 5 shows an example timeline that describes the update history of an object 
and how this maps to the timeline control abstractions.  In the figure, the timeline has 
a “now” object, which is the latest version of the data, and a history of checkpoints. 
As the user moves the slider bar, she moves a cursor between earlier and later 
checkpoints. The “now” object is always the value of the cursor. Using the timeline 
control, the application state can be thought of as the “now” object, with past and 
potential updates available for restoration.  When the application restores a 
checkpoint, this checkpoint is copied and the copy is appended as the latest entry in 
the timeline. The “now” object then points to that entry. 

In Figure 4, the application instantiates a timeline control with a reference to the 
parameters jsonStr and sliderRoot, which are the source data and the DOM 
element in the document, which will render the slider bar, respectively.  The timeline 

 

 

Fig. 5. Close-up of timeline control with editing window 



control initially assigns the “now” object as this string and has an empty history 
timeline. 

The timeline control plus JSON-formatted data is the model for the checkpoint 
service. Note that the combination of the timeline control and the synchronization 
libraries, described in Section 4.2, provide the necessary consistency logic to enable 
disconnection and reconciliation. In CANSYNC, the timeline control should be used 
to coordinate access to the data. This will ensure that different elements that rely on 
the data are always referring to the same version of the data. 

For coordination, the timeline control provides checkout() and checkin() 
functions to access the data. When checkout is called, the timeline control returns the 
“now” object in the timeline.  Internally, it hydrates the original JSON string into a 
Javascript object hierarchy and returns that to the application. In the figure, the 
application retrieves the data from checkout() and then updates the data using 
standard Javascript code. 

When the application wishes to make commit the updates, it uses the checkin 
function. The checkin() function will do two things: 1) if the timeline control is 
configured to detect changes, it will scan the updated object and compare it to the 
original object using an internal change logger object.  The logger will append any 
detected updates to a log. 2) the new object is serialized and replaces the original 
object. 

The checkout() and checkin() functions can be customized to generate events 
to inform elements that the data has been updated. The timeline control has an 
addListener() function to subscribe to these events.  

The timeline control provides checkpoint() and restoreCheckpoint() 
functions to create and retrieve application state. When the application calls 
checkpoint(), the timeline control creates a new entry in the timeline using its 
“now” object.  The application can provide additional parameters to the checkpoint to 
enable different modes of navigating the timeline. For example, the application can 
pass in a label “key1” which will be used to uniquely identify that checkpoint.  It also 
passes in key words such as “bookmark.” Key words are tags on the checkpoint and 
can be used to search for checkpoints using key word searches. 

The restoreCheckpoint() function retrieves a checkpoint in the timeline and 
replaces the current “now” object with the retrieved checkpoint. The application can 
access a stored checkpoint in several ways.  First, the application can use the unique 
key of the checkpoint if it has one.  It can also identify a checkpoint by naming its 
position in the timeline using an index number where 0 is the earliest checkpoint. 
Finally, it can use the cursor controls to assign the “now” object to that checkpoint.  
In the cursor controls, a call to getNext() or getPrevious() will move the cursor 
one step forward or backward in the timeline, respectively. This will restore the 
checkpoint at that position.  If there is no getNext() or getPrevious(), as is the 
case when the cursor is at the extreme ends of the timeline, the “now” object does not 
change and the cursor does not move. 

The timeline control also offers window-based access to checkpoints in the 
timeline.  In this mode, the application specifies the starting and ending positions of 
the window to the getWindow() function. This will return an array representing the 
checkpoints that fall within the specified window.  This is useful for prefetching data 



to increase the responsiveness of the timeline control since the checkpoint history can 
be stored on a network-based store (see Section 4.1.3). 

The time control has optional visual elements that can be displayed and used to 
access the checkpoint history. Figure 5 shows the slider bar and how the internal 
functions are mapped to the control. In the figure, the “+” button can be used to show 
the underlying JSON string that represents the “now” object. This timeline control 
displays this string in an editable textarea. The user can change the value of this string 
in this textarea.  

 4.1.2   Checkpoint Change Logger 
The timeline control contains a checkpoint logger so the application does not have 

to directly access the change logger API. The checkpoint change logger is a client-
side component that is responsible for detecting and logging changes to locally 
cached JSON data.  Logging of updates is fundamental to enabling disconnection, and 
also useful for implementing versioning and undo/redo features.  The change logger 
implements an automated CRUD-level, operation-transfer logging capability to detect 
changes to JSON objects.  In CANSYNC, the checkpoint history is internally 
recorded as a log of CRUD-level update operations over a base version of the 
application state. CANSYNC also has a customizable checkpoint logger based on the 
Dojo API that can record application defined operations.  For brevity, we cover only 
the automated checkpoint logger in this paper. 

Figure 6 shows the log items created by the automated checkpoint logger for JSON 
objects. In CANSYNC, the change logger provides a diff() function that attempts 
to detect the difference between the original and updated state. The diff() function 
will take two Javascript object hierarchies and perform a depth-first comparison of the 
objects. This is optimized for cases when the updates represent incremental changes 
to application data without schema changes, for example, when the application wishes 
to detect the difference between the entries in two versions of a form.  In general, the 
scan is reliable if the topology between the original and updated objects are the same, 
or if additions of subtrees to the topology are always appended as the last child of the 
parent object; the current implementation relies on path information to uniquely 
identify objects and object properties.  By only appending as the last child, i.e. the tail 
of an array, this ensures that path identifiers do not dynamically change.  Although 
not currently part of the implementation, we will extend the diff() function to 
detect deletes. In object models like JSON, explicit delete of properties is not 
supported. One solution is to mark properties with a special deletion mark (known as 
tombstoning), which can then be detected and used to perform the delete using some 
other process.   In addition to delete, we will also support a “REPLACE” operation, 

 

 

Fig. 6. A JSON log entry. 



which represents a drastic change in a JSON object hierarchy such as a schema 
change, or an update to every property in the JSON hierarchy. 

 4.1.3   Checkpoint Persistence API 
The timeline control can persist the checkpoint history using the persistence API.  

The storage API provides timeline abstractions for retrieving the checkpoint history, 
and is responsible for interpreting the updates in the log in order to restore the 
application state from a log of update operations. 

The persistence API provides hash table semantics for retrieving checkpoints by 
keys, and also implements the cursor functions of the timeline control such as 
getNext() and getPrevious().  It also implements the getWindow() function. 

When the timeline control is instantiated, the application can specify whether the 
checkpoint history is persisted locally, or on a remote checkpoint store.  For the latter, 
CANSYNC provides a Javascript RESTStore object that communicates with server-
based objects to persist the checkpoint history.  As the name implies, access to the 
store is based on a REST API so the use of the RESTStore API is optional.  
Applications can choose to directly communicate with the store using HTTP. 

Clearly, to support disconnection, the client may wish to store the checkpoint 
history locally. CANSYNC provides a LocalStore Javascript object.  The interface to 
LocalStore is the same as the RESTStore but all persistence if done locally.  The 
current implementation of LocalStore uses the SQLite database included with Google 
Gears with the expectation that future versions of Mozilla Firefox will embed SQLite 
as part of the base configuration of the browser.  We will move to this version in 
future versions of the LocalStore. 

 
Fig.7. Finite State Machine for the Synchronization service 



 4.2   CANSYNC Synchronization 

In this section, we describe the data synchronization service in CANSYNC. It 
consists of a lightweight, general purpose sync engine providing client-side and 
server-side components that can be customized to implement application-specific 
synchronization policies. Like the checkpoint service, it provides applications with 
client-side APIs that enable the synchronization features. 

4.2.1 Synchronization Engine 
The sync engine extends the synchronization capabilities of the Dojo Offline 

toolkit by providing a richer set of synchronization options. The synchronization 
semantics of the engine can be represented as a Finite State Machine (FSM) that 
internally progresses from state to state via HTTP calls.  In the following sections, we 
first describe the basic abstractions used by the synchronization engine, followed by a 
description of the client-side components and finally the corresponding server-side 
components. 

The synchronization service borrows many high-level concepts from the Open 
Mobile Alliance Data Synchronization standard (OMA DS) [20], although it is not an 
implementation of that standard.  The synchronization service takes advantage of 
some of the features of the HTTP protocol to simplify the engine implementation: it 
does not provide security features, but relies on an external implementation of the 
basicAuth protocol of HTTP for authentication and on HTTPS  for encrypted 
connections.  

 4.2.2   Synchronization Finite State Machine 

The client and server components of the sync engine support the synchronization 
of client-side replicated data with server-side source data according to agreed upon 
parameters. Multiple clients may share the server-side source data. The client-side  
replicas are subsets of the source data on the server.   

A synchronization cycle between such pair of source data and a replica is 
implemented as an FSM. The FSM is driven by the HTTP messages exchanged 
between the client and the server. This process guarantees the timely completion of 
the synchronization cycle, once initiated.   

Figure 7 shows the four main phases of a synchronization cycle: READY, 
NEGOTIATE, DATA EXCHANGE, and COMPLETE. 

The cycle enters the READY phase after the client registers with the server.  
During registration, the client sends some initial parameters such as a unique user id 
and the version number of its client software.  It may optionally also pass a max id 
size, max object size and an expected max timeout for the client session. The server 
performs initialization of the new client.  A client registers itself only once with the 
server. If authentication is enabled, the client may be required to login. Once 
registration is complete, the client can initiate multiple synchronization cycles with 
the server for a specific piece of data.  

The synchronization cycle enters the NEGOTIATION phase when the client sends 
an HTTP OPTIONS call to the URL suffix “/negotiate.” In the negotiation state, the 



client identifies the entities to synchronize and the desired synchronization 
characteristics: namely the sync ‘type’, i.e. mono or  bi-directional update transfers; 
the sync ‘mode’, either  ‘fast’ or ‘slow’, and the sync ‘effect’, which may be set 
‘actual’ or ‘inform’. In a slow sync, the client and server may exchange their entire 
state – this can be used for the first synchronization or if the client and server cannot 
determine their last synchronization point. In a fast synchronization, the client and 
server exchange just their updates from the last synchronization. 

If the sync effect is set to actual, then both client and server commit updates based 
on the application-specific reconciliation policies.  The ‘inform’ sync effect allows 
the client to conscientiously diverge its data from that on the server. In such case, 
neither client nor server updates its data. Instead, the server informs the client of the 
potential consequences of synchronization. The client may use the information to 
display the data differences in the browser, for example.  

The next phase in the synchronization cycle is the DATA EXCHANGE phase, 
which is started when the client issues an HTTP PUT to the URL suffix 
“/dataExchange.”  In this phase, updates from the client and /or server are propagated 
according to the synchronization parameters agreed upon. In a bi-directional sync, the 
client updates are first propagated to the server where the server invokes the 
application-specific update reconciliation policies for the updates. The server 
compiles individual status messages for each update and then sends them to the client. 
The server also sends its own updates to the client in the same response. 

The finals phase in the cycle is the COMPLETION phase, which is reached when 
the client issues an HTTP POST to the URL suffix “/completion.”  This state is 
reached when all updates and corresponding status messages have been exchanged. 
The synchronization state machine returns to the ready state.  Subsequent 
synchronization cycles of the client's replica and the server source data may be 
initiated with different sync parameters. 

In the figure, there are additional transitions based on server responses to the client 
requests. Under normal operation, the server should respond with an HTTP status 
code that indicates server acknowledgment.  These can be simple HTTP status 200 or 
204 codes, or may be additional codes that indicate acknowledgment but also carry 
additional information.  For example, the server may respond with status code 409 
during the data exchange phase, which represents that a conflict has occurred.  If the 
server responds with a failure status code, the sync cycle is aborted and the 
synchronization cycle returns to the ready state to restart the session.  For example, 
failure transitions occur if the client and server somehow get out of step during a 
synchronization session.  If the server is in the negotiate phase and the client tries to 
move to the complete phase, the sync cycle restarts with the server and client 
returning to the ready phase.  

To keep track of updates, both the client and server rely on markers indicating 
when the client and server last synchronized successfully. The synchronization 
service lets the application specify the nature of these markers. In the reference 
implementation in CANSYNC (and used in Flinger), it is a millisecond resolution 
timestamp acting as a version number.  During the negotiation phase of a 
synchronization cycle, the server compares its last marker to that sent by the client to 
determine the sync mode and identify how much data to exchange in order to be 
synchronized again. 



 4.2.2   Client-side Components 
The CANSYNC architectural overview in Figure 3 shows the client-side 

components of the synchronization service.  In the figure, the client components are 
the Sync Control Button, Sync Manager, Sync Session, Sync Context, and Change 
Provider. 

The Sync Control Button is a widget that application developers can embed in their 
applications.  The widget captures the most important parameters for managing data 
synchronization. The client can instantiate a sync control button with a Sync Context, 
which contains the parameters that specify that synchronization type, mode, effect, 
and other needed information. When the user clicks the synchronization button, it will 
call the client-side synchronization calls in the correct order, and return events 
informing the client about the current status of the synchronization cycle. Use of this 
widget is optional, and application developers can always choose to access the 
synchronization API directly via the Sync Manager and Sync Session components. 
Figure 4 shows example code using the component API. 

The Sync Manager handles the client registration with server, and also manages the 
client's Sync Session objects. A sync session represents a resource pair and associated 
sync parameters. The client may have multiple Sync Sessions as long as the session’s 
resource pairs do not overlap.  

A Sync Session implements the core functionality of an individual synchronization 
cycle between the two given data resources. In the figure, the application instantiates 
a Sync Session object and passes as arguments the identifiers for the client and server 
resources, the type, mode and effect of the synchronization requested. In addition, the 
application must also pass its client-side Change Provider object instance and the 
name of its server-side Change Provider class for the Sync Session. 

The synchronization engine requires the developer to implement a 
ChangeProvider interface on both the client and server.  This interface allows 
developers to provide custom update reconciliation policies between client and server 
resources.  CANSYNC provides a reference implementation of the ChangeProvider 
interface that assumes the data is JSON on both the client and the server-side. The 
reference implementation relies on the checkpoint logger to keep an update log on the 
browser.  

Figure 8 shows the Java specification of the ChangeProvider interface. The 
ChangeProvider on the client is in Javascript, though it has an equivalent interface. 
For each update in a set of updates, the synchronization invokes applyChange() on 
the ChangeProvider. Here, the application developer implements the reconciliation 
policy for the application, and also connects the synchronization engine to the 
application's data store. The ChangeProvider also specifies the informChange() 

           
  public interface ChangeProvider { 

                 public JSONArray getChanges(SyncContext si); 
                 public JSONObject applyChange(SyncContext si, JSONbject update); 
                 public JSONObject informChange(SyncContext si, JSONbject update); 
                 public String generateNextAnchor(SyncContext si); 
                 public boolean hasChanged(SyncContext si); 
                 public boolean handleStatus(SyncContext si,Object Status); 
          } 

Fig. 8. Change Provider Interface 

     



method, where the application developer can simulate the application of the update 
but not actually commit any change to the underlying store. 

Although not in the current implementation, we plan to have visual widgets that 
provide feedback to the user regarding the consistency state of the locally cached data 
based on the status returned by informChange(). For example, a table could display 
different background colors for individual cells where the color indicates if that cell 
has an update available on the server. 

 4.2.3   Server-side Components 
The server side components implement the server responsibilities for the FSM. 

Like for the client-side, the application developer implements a ChangeProvider 
interface to describe application-specific reconciliation policies. This object is 
invoked by the engine on behalf of the application. 

5   Related Work 

The challenge of disconnecting an application is an instance of optimistic replication. 
Saito and Shapiro provide a recent and comprehensive survey of this area [23]. Coda 
[17] and Ficus [22] are examples of pioneering work done for optimistically 
replicating file systems. Bayou [24] is a much cited work on peer-to-peer replication.  
Bayou used epidemic protocols to propagate changes. Research in databases has 
looked at synchronizing relational stores, for example [7]. 

CANSYNC provides web-specific APIs for enabling checkpointing and 
synchronization applications in a browser. CANSNC is most related to browser 
disconnection frameworks like Google Gears [12], which provide basic building 
blocks for disconnecting browser based applications. CANSYNC differs from Google 
Gears by focusing on data services for replicated data in the browser that are not 
available in current frameworks. For example, Google Gears does not provide 
synchronization capabilities for developers. CANSYNC allows developers to utilize a 
generic synchronization engine they can customize for their applications. Google 
Gears also supports simple versioning of replicated components using its managed 
resource module; however, this is specifically for managing the download of 
application components and does not enable undo/redo for users or allow 
checkpointing of browser state.  

Research in disconnecting web applications has focused on novel mechanisms to 
predict what components should be projected from the server to the client. Terry and 
Ramasubramanian [25] have looked at disconnecting web applications that 
communicate using web services protocols like SOAP. Chandra, et.al looks at issues 
disconnecting web services using mobile code [6]. CANSYNC is synergistic with this 
work by providing a systems-level perspective on how developers can incorporate 
these mechanisms into web applications using a lightweight framework. 

CANSYNC extends our earlier work [5] that looked at MVC. The MVC design 
pattern is first described by Burbeck [3], and later in many papers regarding 
application design. The application of this pattern to web application design include 
[1][4]. Fluid Computing [2] also advocated an MVC approach to providing 



replication services to mobile devices.  Fluid Computing uses DOM-based data model 
as their unit of replication, and utilizes an epidemic protocol for change propagation.  

Joyce is a novel system for enabling a rich history of undo/redo for desktop 
applications [19].  We are inspired by this work and hope to provide simple 
mechanisms that enable a general undo/redo model for browser-based applications. 
This is potentially useful in allowing different abstractions for utilizing the navigation 
features in a browser for a web application; for example, the back and forward buttons 
that are standard on all browsers can be used to navigate the checkpoint timeline in 
CANSYNC. 

6   Discussion and Future Work 

Data replication for web applications is used widely on the server-side to enhance 
availability and scalability. CANSYNC focuses on replica management for user-
facing components of an application.  CANSYNC looks at reducing the burden of 
using a data layer on the developer, minimizing the footprint for installation 
(CANSYNC is downloaded with an HTML page), and providing a customizable 
architecture to meet application needs. In previous work [5], we presented Ripple-X, a 
declarative approach to separate view from data, which was a precursor to the 
checkpointing service in CANSYNC. In this approach we created a data specific 
namespace using the XML Binding Language (XBL) feature in Mozilla Firefox.  This 
allowed users to use a special datapage tag in their web page that acted as a container 
for non-visual data represented by XML fragments.  The XML fragments could be 
created declaratively or programmatically and placed in the datapage using a 
Javascript API.  As part of this work, we investigated model-based replication by 
automatically wrapping the non-visual XML fragments in a data dom object that 
provided the checkpointing service for that data.  From the developer perspective, this 
allowed them to access additional checkpointing and persistence features on DOM 
elements. 

CANSYNC provides a core engine for synchronization and a reference 
implementation based on synchronizing JSON-based data rather than XML, but does 
not directly address optimal policies for reconciliation. In general, optimizing 
reconciliation relies on exploiting knowledge about the data being synchronized.  
CANSYNC allows the developer to customize the synchronization engine by 
encoding this knowledge in the ChangeProvider interface. However, there is a long 
history of work in optimistic replication for areas like distributed file systems and 
distributed databases that could be applied to CANSYNC.  

One possible direction for CANSYNC would be to couple a checkpoint history 
with the synchronization engine to allow checkpoint-based rollbacks to resolve update 
conflicts. In this approach, if the server detects a conflict, the server can send the 
client a conflict document that specifies the nature of the conflict. The client could 
then search its history of checkpoints to find the latest checkpoint that would not 
produce the conflict.  The user would be presented with an option to resolve the 
conflict by systematically choosing a checkpoint that requires little or no modification 
to synchronize successfully with the server. This could also be done without the users 



participation by finding a checkpoint that does not produce a conflict, and then 
merging that checkpoint with the latest checkpoint to produce a minimally changed 
version of the data that can be synchronized with the server. Obviously, automatically 
resolving conflicts can be disorienting to the user. Judicious application of automated 
policies plus proper feedback to the user through the UI may be the best approach. 

CANSYNC (like Google Gears) advocates a framework approach, which allows 
applications to be retrofitted with features that enable state management features. For 
CANSYNC, this is required because application developers must specify application-
specific reconciliation strategies for synchronization, and CANSYNC provides UI 
elements that encapsulate the CANSYNC service API. However, it is compelling to 
imagine a facility that would allow even existing applications to disconnect from the 
network with minimal changes.  This mechanism would have to exist outside of the 
browser, and have the ability to mask any application from the status of the network 
connection.  

In general, providing “disconnection-in-a-box” via a proxy is a complex problem 
given the open-ended nature of web application protocols. Constraining the problem 
to a subset of possible client-server interactions may simplify the problem.  For 
example, there is interest in industry in making data on servers available as syndicated 
feeds such as RSS and ATOM.  These syndicated feeds provide more structure to the 
messages between client and server and provide hints on cacheable items. Like 
distributed file systems, where the unit of replication is a file, the unit of replication in 
a syndicated feed could be a feed entry. 

Security as an on-going issue for disconnected web-based applications.  
CANSYNC assumes simple authentication and authorization can be handled at the 
HTTP-layer.  The Dojo Offline Toolkit  allows users to encrypt data stored in the 
local database.  However, none of these approaches address larger issues surrounding 
user mashups and replication of a users' data on a multi-tiered web application. We 
hope to look at these issues as part of future research. 
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