
RC24549 (W0805-030) May 6, 2008
Other (Bioinformatics)

IBM Research Report

“Localize”:  An Accurate Method for Predicting a
Protein's Sub-cellular Location

Aristotelis Tsirigos, Stanislav Polonsky, 
Kevin C. Miranda*, Isidore Rigoutsos

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598  USA

*Center for Systems Biology
Harvard Medical School

Boston, MA  02114  USA
 



 1 

 

 

“Localize”: An Accurate Method for Predicting  

a Protein’s Sub-cellular Location 

  

Aristotelis Tsirigos1,┼, Stanislav Polonsky1,┼, Kevin C. Miranda2, Isidore Rigoutsos1,* 

 

1
IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, U.S.A. 

2
Center for Systems Biology, Harvard Medical School, Boston, MA 02114, U.S.A. 

┼
 These authors have contributed equally to this work 

E-mail: atsirigo@us.ibm.com, polonsky@us.ibm.com, kmiranda@mgh.harvard.edu, rigoutso@us.ibm.com 

 

*
 Correspondence should be addressed to I.R. (rigoutso@us.ibm.com) 

 

 

 

 

Number of pages: 28 

Number of figures: 8 

Number of tables: 4 

Number of words: 5,600 approx. 



 

2 

ABSTRACT 

The computational prediction of a protein’s sub-cellular location directly from the amino 

acid sequence is a well-known problem in bioinformatics. Together with structural and 

functional protein annotation methods, it is a valuable tool in high-throughput 

sequencing projects. In this work, we introduce a new method for the prediction of a 

protein’s sub-cellular location that is pattern-based and relies on the analysis of the 

corresponding amino acid sequence. Our method uses a training set of amino acid 

sequences from which it generates both fixed- and variable-length amino acid patterns 

that it then uses to place unclassified proteins into one of twelve possible sub-cellular 

locations. Through a series of experiments, we demonstrate that the new method can 

achieve substantial improvements in average sub-cellular location accuracy and total 

accuracy over previously reported approaches. An implementation of the described 

method is available at: http://cbcsrv.watson.ibm.com/localize.html. 

 

 

INTRODUCTION  

Intracellular protein sorting is responsible for maintaining the correct structure and function of every 

cell within an organism. Organelles such as the nucleus, Golgi apparatus, endoplasmic reticulum (ER) 

and plasma membrane need to maintain a strict collection of resident proteins for optimal function. The 

importance of protein sorting is highlighted only when it breaks down and a disease state occurs [1, 2]. 

Protein trafficking is a highly-complex procedure involving various forms of cargo, carriers, destinations 

and routes. The entire process is highly dynamic and characterized by the constant movement of proteins 

throughout the cell. 

Current hypotheses maintain that protein trafficking is dependent on bulk flow movement through 

the cell in combination with active sorting signals and retention signals which are present within 

proteins [3]. Most proteins are able to reach their destination by using one or more of signals directing 

general bulk flow, active sorting or retention. For example, a newly synthesized cadherin protein uses a 

N-terminal signal sequence to enter the ER, bulk flow to transverse from the ER to the Golgi apparatus 

and finally a basolateral sorting signal to reach the plasma membrane. At the plasma membrane it can be 
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either retained through interaction with other cadherins, or undergo endocytosis through an as-yet-

undefined mechanism [4].  

The myriad of trafficking steps undertaken by E-cadherin exemplify the scale and difficulty of 

predicting a proteins sub-cellular localization. Experimental validation of the sub-cellular localization of 

an individual protein is currently a slow and labor-intensive process. Computational methods that can 

help speed-up the elucidation of the underlying sequence signals are thus very important.  

Predicting sub-cellular localization is a well known problem in computational biology and several 

methods have been proposed to date that address this task. We refer the interested reader to several 

review articles which have already covered this subject [5-7] rather extensively.  

The localization prediction methods can be broken down into three major categories. The first 

category relies on the use of previously-discovered biological signals, such as protein sorting and 

retention signals, in order to predict protein localization [8-18]. An important limitation of these 

methods is that they require the knowledge of such signals. Unfortunately, many of these signals 

continue to elude us as their identification requires time-consuming and expensive lab experiments. 

Consequently, the prediction of subcellular localization using this class of methods is possible for only a 

small fraction of all proteins of interest.  

The second category comprises methods that are based on sequence homologies, identification of 

protein domains, or other available functional annotations. Phylogenetic profiles using BLAST or PSI-

BLAST were proposed in [9, 19, 20], maximal patterns of InterPro domains in [21-24], SMART 

domains in [25], and functional annotations in [26-29]. 

The third category of methods does not make use of any such biological signals. Instead these 

methods rely on the observation that global sequence features, such as amino acid composition, can be 

specific to a sub-cellular location [30, 31]. Numerous tools belonging to this category have been 

developed in recent years, the most prominent of which are described in [20, 23, 24, 32-38]. 

In the work that we present below, we extend the third category by introducing a new, pattern-based 

method for predicting protein sub-cellular localization. The method, which is described in Section 2, 

combines global sequence properties (such as amino acid composition) with local sequence properties 

(represented by short, statistically-significant, variable-length patterns of amino acids). In Section 3, we 

evaluate the method’s performance and compare its performance to that achieved by an earlier method 

on the same dataset. Section 4 concludes our paper with a discussion and directions for future work in 

this area.  
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METHODS 

Overview of unsupervised pattern discovery 

Our method is based on the use of a collection of amino acid patterns that are discovered in an 

automated manner and cover the sequence space of the training set under consideration. Such signals 

have been shown to capture functional and structural signals [27-29]. 

Typically, an unsupervised pattern discovery tool takes a set D of protein sequences as input and 

discovers a comprehensive set of patterns that appear recurrently in different subsets of sequences. For 

the work described below, we have used the Teiresias pattern discovery algorithm [39, 40]; the 

algorithm can provably find all patterns p  in the input set D that satisfy the following properties: 

(1) each p  is composed of either literal characters, i.e. individual amino acids, or classes of amino 

acids (designated by their inclusion in brackets), possibly separated by a number of wild-cards 

characters (“dots”); a wild-card indicates that the corresponding position can be occupied by any 

amino acid.  

(2) each p comprises at least L  literal characters (or equivalence classes) in any span of W L≥  

positions. Then the pattern p is considered to be an ,L W  pattern. For example, the pattern 

A.C.[FY]..L is a <2,4> pattern, whereas patterns A…C.[FY]..L, A.C...[FY]..L and A.C.[FY]…L are 

<2,5> patterns. 

(3) each p  occurs at least K times in the set D. K is referred to as the “support” of pattern p. 

 

Teiresias works in two phases which are termed scanning and convolution. Scanning is performed in 

order to discover all <L,W> patterns with length at most W (“seed patterns”). These seed patterns are 

combined during convolution to form progressively longer patterns. The extension process is guided by 

the contents of the processed dataset and thus terminates naturally – the algorithm imposes no upper 

bounds on the length of the discovered patterns.  

 

Method A: Predicting sub-cellular location using fixed-length patterns 

First, we build a classifier for predicting protein sub-cellular locations using only the seed patterns 

that are generated by the scanning phase of Teiresias. The key idea is to explore the use of higher-order 
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amino acid patterns (cf. the amino acid pairs used in [34]) in an effort to improve accuracy while at the 

same time discover a simple one-classifier model to perform the task. This bypasses the need for 

elaborate voting schemes that are necessary when multiple classifier methods are used.  

The discovery step generated a total of about 5.5 million patterns that belong to one of the four 

different categories shown here:  

• L=1 and W=1 with chemical equivalences: this category comprises 27 patterns, one pattern for 

each of the 20 amino acids plus one for each of the 7 chemical equivalence classes shown in 

Table 1. It is also referred to as single amino acid composition. 

• L=2 and W=2 with chemical equivalences: this class comprises a total of 27
2
 = 729 patterns, and 

is also known as composition of amino acid pairs.  

• L=3 and W=5 with chemical equivalences: this category comprises all patterns containing 

exactly 3 letters (amino acids, or equivalence classes of amino acids) possibly separated by at 

most two wildcards, a total of 6·27
3
 = 118,098. 

• L=4 and W=6 with chemical equivalences: this category comprises all patterns containing 

exactly 4 letters (amino acids, or equivalence classes of amino acids) possibly separated by a 

total of at most two wildcards, a total of 10·27
4
 = 5,314,410. 

In Table 2 we show several examples of patterns from each category. 

We use these four types of patterns to decompose each input sequence effectively converting it into a 

feature vector: each feature corresponds to one of the discovered patterns and the feature’s value is equal 

to the number of times the pattern is found in the protein sequence. These feature values are 

subsequently normalized per unit length in order to treat short as well as long proteins on an equal basis. 

Also, given that shorter patterns/features are expected to occur much more frequently than longer ones, 

we linearly scale the feature values across proteins and for each feature separately, so that they range 

from 0 to 1. This last step removes the bias towards more frequent patterns and is necessary: otherwise, 

more frequent patterns would have been treated as more predictive that less frequent ones. In practice, 

there exist long patterns which, despite occurring only once in some sequences, they can actually be 

used to predict protein localization much more accurately than the frequency of single amino acids, 

because they turn out to be specific to a given sub-cellular location.  

After the preprocessing of the training and test feature vectors is complete, we train an SVM 

classifier [41, 42] using an RBF kernel and classify the test vectors according to the model obtained 

from the training phase. The highly optimized SVM package LibSVM by Chang and Lin was used to 
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train the SVM classifier and do the final testing: see http://www.csie.ntu.edu.tw/~cjlin/libsvm for the 

code and reference manuals for LibSVM. Figure 1 summarizes the training and testing processes.  

It is worth mentioning that for a classification problem that is characterized by millions of features, 

feature selection becomes an important preprocessing step. As advocated by LibSVM developers [43], 

we apply multi-class Fisher scoring [44] to evaluate the importance of individual features. We found that 

we can boost classification accuracy by selecting 25% of the top scoring features while significantly 

reducing classifier training and testing times. 

 

Method B: Predicting sub-cellular location using variable-length patterns 

The following observations highlight the importance of discovering variable-size patterns in the 

input set (training set). 

• patterns that are allowed to grow in length in an unrestricted manner will be as specific as 

possible for the given input dataset 

• long patterns can be highly significant even if they appear few times in the dataset 

• highly-significant, variable-length patterns can help identify important local similarities among 

sequences which are destined for the same sub-cellular location; on the other hand, computations 

of similarities among full-length sequences can lead to artificially high (or low) values since they 

ignore the small-by-comparison part of the sequence which is relevant for the classification task 

at hand.  

Figure 2 summarizes the training and testing process for Method B. In the first step, unsupervised 

pattern discovery is performed using both the scanning and the convolution phases of Teiresias in order 

to extract all patterns contained in the training set that are also maximal in composition and length. The 

parameters we used for this step were L=4 and W=6 with minimum support set to K=2 – no amino acid 

equivalences were taken into account during this step. In general, the total number of discovered 

patterns can be very high. Clearly, this number is affected by the choice of parameters and the use of 

amino acid equivalences (e.g. chemical, structural etc.). As one would intuitively expect, a larger pattern 

collection could potentially increase the final classification performance. However, in the presence of 

more patterns, the training and classification tasks would become harder to manage given that the 

computational resources in terms of memory, disk storage and processing power are finite.  
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During the second step, we compute z-scores for each discovered pattern as a function of its 

expected probability and its support in the database. Formally, the z-score zp of a pattern p is computed 

using the following formula: 
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where Np is the observed number of occurrences of the pattern in the given dataset, D is the size of the 

dataset (total number of amino acids), and Pr(p) is the expected probability of the pattern given the 

observed probabilities of single amino acids under the assumption of independent, identically distributed 

variables. Patterns that have z-scores lower than a threshold θ are discarded. 

The third step ensures that, among the highly-significant patterns, only those which give rise to the 

same sub-cellular location are kept: in other words, we keep only the patterns that are found in protein 

sequences of the same sub-cellular location (zero-entropy). We note here that since this is done using the 

training set only there is no guarantee that the same will hold true in the test set. However, this “guilty 

by association” approach has been time-honored and is very typical for this kind of methods: intuitively, 

we do expect this to be the case most of the time.  

With the completion of the third step, we now have a set of highly-significant patterns each one of 

which is associated with a specific sub-cellular location. We use these pattern sets as predicates that can 

predict the eventual sub-cellular location of the test sequences. Since there is no guarantee that these 

patterns will appear in a test sequence unchanged, we introduce what we refer to as a “pattern matching 

score” between a pattern and a protein sequence: this score is defined as the maximum fraction over all 

possible ungapped alignments of the total number of matched amino acids in the pattern/protein 

alignment divided by the total number of matched and unmatched amino acids – obviously, this score 

ranges between 0 and 1 inclusive.  

We are now ready to assign predictions to our test sequences. This is simply done by finding, for any 

given test sequence, the pattern with the highest z-score which aligns best with the test sequence (i.e. 

leads to the highest matching score). If the matching score is greater than or equal to a threshold α, then 

the test sequence is assigned to the location associated with the matching pattern, otherwise it remains 

unassigned (inability to predict with confidence). In other words, we try each pattern in turn, in order 

from the highest to the lowest z-score: when a pattern is found whose matching score is not lower than 
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α, we stop and assign the test sequence to the sub-cellular location of the pattern at hand. Clearly, more 

elaborate schemes could be applied, but such an endeavor is beyond the scope of this work; our goal is 

to demonstrate that variable-length patterns can in fact be used effectively to improve prediction 

accuracy. In the Results section, after evaluating Methods A and B separately, we also evaluate the final 

hybrid method “Localize” that is proposed in this paper which uses Method B in conjunction with 

Method A in order to deal with the test sequences that are left unclassified by Method B. First Method B 

is applied in order to classify a test sequence and, then, if none of the patterns that Method B has at its 

disposal have instances in the sequence at hand, Method A is applied to make the prediction. 

 

RESULTS 

In this section, we will analyze separately the performance of each one of the component methods (A 

and B – see above). Finally, we will discuss the performance of the hybrid method that uses both A and 

B as its sub-components. The hybrid method is the one to which we refer as “Localize” and we compare 

it with three different, previously reported methods. 

Method A: Predicting sub-cellular location using fixed-length patterns 

Despite the fact that a lot of research has been done on computationally predicting protein sub-

cellular locations, the area still lacks universally accepted reference datasets and performance measures. 

We thus chose to work with the dataset introduced in [34] which includes a large number of proteins 

classified into 12 sub-cellular location (i.e. categories). The location-specific datasets are derived from 

eukaryotic entries of Swiss-Prot database release 39.0 based on the content of SUB-CELLULAR 

LOCATION section of CC (comment) lines: the 12 sub-cellular locations that are covered include 

chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum (ER), Golgi apparatus, lysosome, 

mitochondria, nucleus, peroxisome, plasma membrane, and vacuole. The datasets are located at 

http://web.kuicr.kyoto-u.ac.jp/~park/Seqdata/. In this dataset, highly similar proteins of sequence 

similarity more than 80% percent were grouped together, and from each group of similar proteins only 

one sequence was selected. This is a much more stringent threshold than the 90% threshold usually 

employed by other techniques [20, 33, 37] and one that makes the classification task much harder. The 

number of entries in each category is indicated in the first column of Table 3. 

In order to estimate the prediction performance of our method we employed a 5-fold cross-validation 

test as in [19]. The idea of the test is to split the dataset into five approximately equal subsets. One of the 
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five subsets is used as a collection of test sequences whereas the remaining four subsets are joined 

together and form the training set. This process is repeated five times so that each of the five subsets in 

turn is used as a test collection.  

The final performance is measured on the five test sets and is defined separately for each sub-cellular 

location i as
i i i

P T n= , where 
i

T  is the number of sequences correctly ascribed to the i-th category (a.k.a. 

true positives) and 
i

n is the total number of sequences in this category. This last measure is often 

referred to as sensitivity.  

In addition, we define two cumulative, location-independent measures. The first one, location 

accuracy, is an average of 
i

P over all K locations and is defined as follows: 
1

K

ii
LP P K

=
=∑ . The second 

measure, total accuracy, is the fraction of correct predictions for the total of N sequences in the dataset 

and is defined as follows: 
1

K

ii
TP T N

=
=∑ . 

The two cumulative measures are complementary: TP  tracks performance mainly in categories with 

large numbers of sequences. On the contrary, LP  treats each category equally regardless of the 

category’s size. 

We set up an optimization grid in order to determine the optimal parameters β, c and γ of our SVM 

classifier: β is the percentage of top scoring features selected for training, c is used to control the 

complexity of the learned hyperplane, and, γ is a parameter of the RBF kernel. As shown in Figure 3, the 

test accuracy is computed for each parameter triplet (c,γ,β) using the 5-fold cross-validation process. 

Using this process, we determined that the maximum test accuracy was achieved when β=25%, c=64 

and γ=0.0001, and the resulting value for the total accuracy of our SVM classifier was 82.4%. This 

represents a very significant performance improvement over PLOC whose total accuracy is 78.2%. 

This performance improvement is particularly notable if one considers the following:  

a) we obtain it using a single classifier (cf. for example the 5 classifiers used by PLOC);  

b) there is a single value for the parameter γ of the RBF kernel (vs. use of a mixture of two different 

γ values by PLOC); 

and, most importantly,  

c) our approach obviates the need for the use of a voting scheme that combines the results from 

multiple classifiers.  
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Analogously, our achieved location accuracy performance is 62.1% which again represents a 

considerable improvement over PLOC’s performance of 57.9%. Table 3 details the results of our 

method for each category separately. 

 

Method B: Using variable-length patterns 

Figure 4 highlights the tradeoff between accuracy and coverage at various z-score threshold levels 

when Method B is used alone: as the threshold for pattern selection increases the number of sequences 

in the test set that will be covered by those patterns decreases, but the prediction accuracy does increase 

as a result. For example, at z-score threshold logθ=20, only 63% of the 7579 proteins are classified but 

the classification accuracy reaches the impressive level of 93.5%; however, if we attempt to cover more 

proteins by lowering the threshold to logθ=15, although almost all proteins are covered (96%), the 

classification accuracy drops sharply. 

These findings suggested that instead of trying to cover all sequences using the individual patterns of 

Method B, a hybrid method that combined the best characteristics from Method A and Method B would 

be a better choice. 

 

“Localize”: Hybrid Method B/A -- Using fixed- and variable-length patterns to further improve 

accuracy 

The hybrid scheme that we advocate works as follows. We first use Method B to classify a test 

sequence. If none of the patterns that Method B has at its disposal have instances in the sequence at 

hand, then Method A is brought to bear. 

The same training and testing approach used for Method A was applied in order to evaluate the 

hybrid Method B/A. A grid search was set up in order to determine the optimal z-score threshold θ and 

the pattern matching cutoff α for our Method B classifier, while, for Method A, we simply used the 

optimal parameters obtained from the previous optimization of Method A alone. The optimization 

process for determining the optimal parameters of α and θ is summarized in Figure 5. Ideally, we would 

have attempted a joint optimization over all 5 parameters of the two methods, which conceivably would 

have increased performance even further. However, this optimization over 5 parameters would have 

required a tremendous amount of computational resources.  
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This hybrid scheme works very well as can be seen from the results shown in Table 3. The hybrid 

Method B/A approach exhibits markedly better total (=84.4%) and location (=70.8%) prediction 

accuracies when compared to the corresponding PLOC values (78.2% and 57.9% respectively). These 

numbers reflect an improvement of 6.2% and 12.9% respectively. This is especially important for the 

location accuracy as it implies that better predictions can now be made for the under-represented 

categories. Indeed, we achieve an almost 3–fold improvement for the “Golgi apparatus” category and a 

2–fold improvement for the “peroxisome” and “vacuole” categories when compared to PLOC. 

Analogous performance improvements are achieved for all remaining location categories as can be seen 

in Figure 6. 

Finally, in order to demonstrate that discovering statistically significant patterns is rather different 

than simple homology searches, we compared our final method with a method which performs 

localization prediction of an uncharacterized protein by assigning it to the localization of the closest 

BLAST hit in the rest of the database. Using the same 5-fold cross-validation we compared the two 

methods and the results are shown in Figure 7, in which it can be seen clearly that our method 

outperforms the BLAST-based search method by a huge margin. The main conclusion here is that, after 

removing highly similar proteins, simple homology searches result in proteins with different 

localizations.  

 

Evaluation using a lower similarity threshold 

In order to further ensure that our method improves the accuracy of protein localization prediction, we 

evaluated its performance on an even less “redundant” dataset, consisting of a set of proteins with 

maximum pairwise similarity no more that 50% and we compared our results to the ones obtained using 

the fuzzy k-nearest neighbors method in [36]. The results for the 11 sub-cellular localization used in [36] 

are shown in Table 4 and in Figure 8, and demonstrate an improvement of 10.5% in total accuracy and 

8.3% in location accuracy compared to the fuzzy k-nearest neighbors method. 

 

 

CONCLUSION 

We have presented a new method that allows us to confidently predict sub-cellular protein locations 

directly from a protein’s amino acid sequence. It is based on the unsupervised discovery of fixed-length 
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as well as variable-length patterns. Our method results in a significantly-improved ability to predict a 

protein’s eventual location directly from amino acid sequence. When compared with the state-of-the-art 

amino-acid-composition-based tool PLOC, we demonstrate improvements of total accuracy by 6.2% and 

of location accuracy by 12.9% respectively. 

Despite significant computational advances over the years, the problem of sub-cellular protein 

localization is still far from solved for eukaryotic organisms. And, even though we have demonstrated 

that our method achieves significant prediction gains, we believe that it is only prudent for practitioners 

to use the output from all available prediction tools before drawing any conclusions. 

Our future work will concentrate on the analysis of factors which limit the performance of the 

various methods. In this regard, one important improvement, we believe, is likely to result from the use 

of organism-specific datasets. A significantly harder variation of this problem would require that one 

address the case of proteins with multiple locations and that one predict all intermediate such locations. 
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FIGURE LEGENDS 

 

Figure 1: Training/testing for method based on fixed-length pattern discovery (Method A). 

Figure 2: Training/testing for method based on variable-length pattern discovery (Method B). 

Figure 3: 5-fold cross-validation for Method A. 

Figure 4: Tradeoff between accuracy and coverage using Method B as standalone. 

Figure 5: 5-fold cross-validation for hybrid Method B/A. 

Figure 6: Comparison of our method with PLOC [34]. 

Figure 7: Comparison of our method with simple best-hit using BLAST. 

Figure 8: Comparison of our method with fuzzy k-NN method [36]. 
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Figure 1: Training/testing for method based on fixed-length pattern 

discovery (Method A). 



 

18 

 

 

 

 

 

SEQUENCES 

(TESTING) 

PATTERNS 

SEQUENCES 

(TRAINING) 

pattern discovery 

L=4/W=6/K=2 

HIGH-ZSCORE 

PATTERNS 

filter out patterns 

with z-score<θ 

FINAL 

PATTERNS 

choose patterns 

with entropy=0 

pattern matching 

score ≥ α 

PREDICTED 

LABELS 

B 

parameters 

α, θ 

Figure 2: Training/testing for method based on variable-length pattern discovery 
(Method B). 
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Figure 3: 5-fold cross-validation for Method A. 

 

INPUT: 7579 protein sequences and their known locations 

PARTITION input data into 5 folds 

CHOOSE parameters (c,γ,β) from optimization grid 

  FOR fold j = 1 to 5 

  Obtain predictions using Method A (Figure 1) on fold j with parameters (c,γ,β) 

  END FOR 

  Compute total accuracy based on the predictions from all 5 folds 

END CHOOSE 

Select the parameters (c,γ,β) that yield the maximum accuracy 
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Figure 4: Tradeoff between accuracy and coverage using Method B as standalone. 

Accuracy and coverage: Method B
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Figure 5: 5-fold cross-validation for hybrid Method B/A. 

 

INPUT: 7579 protein sequences and their known locations 

PARTITION input data into 5 folds 

CHOOSE parameters (α,θ) from optimization grid 

  FOR fold j = 1 to 5 

    Obtain predictions using Method B (Figure 2) on fold j with parameters (α,θ) 

    Obtain predictions for unclassified instances using Method A 

  END FOR 

  Compute total accuracy based on the predictions from all 5 folds 

END CHOOSE 

Select the parameters (α,θ) that yield the maximum accuracy 
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Figure 6: Comparison of our method with PLOC [34].  

Accuracy of protein localization prediction: Localize vs. PLOC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ch
lo

ro
pl

as
t

cy
to

pl
as

m

cy
to

sk
el

et
on er

go
lg

i

ly
so

so
m

e

m
ito

ch
on

dr
ia

nu
cl

eu
s

pe
ro

xi
so

m
e

pl
as

m
a

se
cr

et
ed

va
cu

ol
e

TO
TA

L A
C
C
U

R
A

C
Y

LO
C
A

TIO
N

 A
C
C
U

R
A

C
Y

protein subcellular location

a
cc

u
ra

cy

PLOC

Localize

 

 

 

 

 

 

 

 

 



 

23 

 

 

Figure 7: Comparison of our method with simple best-hit using BLAST. 

Accuracy of protein localization prediction: Localize vs. simple BLAST
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Figure 8: Comparison of our method with fuzzy k-NN method [36]. 

Accuracy of protein localization prediction: Localize vs. fuzzy k-NN
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Table 1: Chemical equivalence classes for amino acids. 

 

Equivalence class members Symbol 

A, G [AG] 

D, E [DE] 

F, Y [FY] 

K, R [KR] 

I, L, M, V [ILMV] 

N, Q [NQ] 

S, T [ST] 
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Table 2: Examples of patterns. 

 

Category Examples 

L=1/W=1 

A 

Q 

[AG] 

[ILMV] 

L=2/W=2 

AE 

ST 

[DE]A 

T[ILMV] 

[AG][NQ] 

[KR][ILMV] 

L=3/W=5 

ADY  

AD.Y  

A.DY  

A..DY  

A.D.Y  

AD..Y 

[AG][DE][FY] 

[AG]..D[ILMV] 

L=4/W=6 

ADYV  

AD.V.Y  

[AG].[DE].[FY]A 
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Table 3: Comparison of prediction accuracy (sensitivity) for the 12 sub-cellular locations. The 

PLOC data is taken from [34]. 

 

Location (no. of entries) 
Hybrid 

Method B/A 
Method A PLOC 

Chloroplast (671) 81.7% 79.0% 72.0% 

Cytoplasm (1245) 79.4% 77.9% 72.0% 

Cytoskeleton (41) 75.0% 72.5% 59.0% 

ER (114) 71.1% 58.8% 47.0% 

Golgi apparatus (48) 44.7% 14.9% 15.0% 

Lysosome (93) 68.8% 52.7% 62.0% 

Mitochondria (727) 63.5% 60.7% 57.0% 

Nucleus (1932) 92.5% 91.3% 90.0% 

Peroxisome (125) 48.8% 36.0% 25.0% 

Plasma membrane (1677) 94.0% 94.1% 92.0% 

Secreted (862) 89.0% 87.6% 78.0% 

Vacuole (54) 40.7% 20.4% 25.0% 

Total accuracy, TP 84.4% 82.3% 78.2% 

Location accuracy, LP 70.8% 62.1% 57.9% 
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Table 4: Comparison of prediction accuracy (sensitivity) for the 11 sub-cellular locations. The 

fuzzy k-NN data is taken from [36]. 

 

Location (no. of entries) 
Hybrid 

Method B/A 
fuzzy k-NN 

Chloroplast (225) 47.1% 32.4% 

Cytoplasm (622) 53.9% 35.4% 

Cytoskeleton (7) 28.6% 28.6% 

ER (45) 17.8% 11.1% 

Extracellular (915) 83.9% 81.6% 

Golgi apparatus (26) 0.0% 15.4% 

Lysosome (44) 45.5% 20.5% 

Mitochondria (424) 64.4% 36.6% 

Nucleus (1185) 78.0% 71.5% 

Peroxisome (47) 23.4% 14.9% 

Vacuole (29) 3.4% 6.9% 

Total accuracy, TP 68.6% 58.1% 

Location accuracy, LP 40.5% 32.3% 

 

 

 

 


