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Abstract In IT Service Delivery, alignment of service 
infrastructures to continuously changing business requirements 
is a primary cost driver, all the more as most severe service 
disruptions can be attributed to poor change impact and risk 
assessment. In nowadays service-oriented business environments, 
services are shared amongst multiple higher-level or composite 
services, while the highest composition level finally forms the 
business processes. Changing services or service definitions in 
such an environment includes exceptionally high risk and 
complexity, as various business processes might depend on a 
service. In this paper we propose a model for analyzing the 
business impact of operational risks resulting from change 
related service downtimes of uncertain duration, as the impact on 
dependent, running or expected business processes is analyzed 
and transferred into financial losses. The proposed solution 
automatically considers the dependency chain up to the 
decomposition mapping of affected business processes. Based on 
the analytical model, we derive decision models in terms of 
deterministic and probabilistic mathematical programming 
formulation allowing for scheduling single or multiple correlated 
changes efficiently. Preliminary experiments are described to 
illustrate the efficiency of the proposed models. Using these 
decisions models, organizations can schedule service specification 
changes with the lowest expected impact on the business. 

Change Management, Service Transition Management, 
Change Scheduling, Service-oriented Architectures, Business 
Impact Analysis, Business-Driven IT Management  

I.  INTRODUCTION 
In recent years, IT service management (ITSM) has 

received much attention as enterprises understand that 
operating their IT infrastructure is a large part of their overall 
operating costs. Today’s businesses operate in dynamic 
environments with the need to continuously adapt to changing 
customer expectations, market trends, technical enhancements 
or changes to legislation. These changes entail changes to IT 
services and business processes to drive alignment of IT with 
business requirements. According to current surveys 
uncontrolled changes including flawed risk and impact analysis 
cause more than 80% of business-critical service disruptions 
[1].  

Publicly available best-practices ITSM frameworks such as 
the IT infrastructure Library (ITIL) define reference change 

management processes including several activities like change 
initiation, where a Request for Change (RFC) describing the 
required change is submitted, change filtering, priority 
allocation, categorization, planning, testing, fulfillment and 
review. Mayor changes must be analyzed and approved, from a 
technical as well as from a business point of view before they 
get scheduled [2]. We focus on the impact of changes on the 
business and on how to schedule changes with minimum 
associated risks and costs. 

As modern IT service infrastructures are continuously 
transformed towards virtualized resource pools and service-
oriented architectures, infrastructural resources are shared 
among basic or atomic services, which are then shared by a 
multitude of composite services and so on. The highest 
composition level finally forms the business processes. In such 
an environment, it gets increasingly difficult to determine 
where services associated with specific business process 
functions are executing, and to analyze the business impact 
associated with changes to or outages of specific services. 

Changing one or several services in such an environment 
involves exceptionally high risk and complexity, as there is a 
multitude of interdependencies und uncertainties to manage, 
and the impact of failures is likely to be business-critical as 
many business processes might depend on this service. 
Therefore, efficient and reliable change management aiming at 
continuous service delivery by automatically considering the 
dependency chains is essential. 

Consider the following example, illustrated in Fig. 1: a 
business process application provides a ‘business process as a 
service’. Typically, a business process application manages 
several business processes. The application itself is hosted on 
one or more physical resources and has dependencies to other 
applications (or services) and infrastructure components. 
Estimating the impact of an application failure is – without 
detailed knowledge of the dependency chains - a fairly 
manageable problem. The left scenario shows a pictorial of a 
Tivoli CCMDB discovery [3], where application A is 
connected to application B. Downtime of Application B means 
an impact on Application A. Now, the right pictorial shows the 
same applications but Application A is hosting two processes. 
The actual dependency between Applications A and B is 



through process A but not process B. Hence, if Application B 
fails, process B remains unaffected.  

 

Figure 1.  Business Process Application Dependencies 

In many cases, a service needs to be taken offline to fulfill a 
change (e.g. rebooting a server). Usually, the time span 
required to fulfill a change (and associated service downtime) 
is of uncertain length. Unexpected failovers might also occur 
due to changes, with uncertain repair time. The longer a service 
is unavailable, the more business process instances will be 
delayed or disrupted. This results in either implicit costs as 
business suffers, or explicit costs due to service level 
agreement (SLA) violations and entailed penalties. 

How many instances of a particular process are affected 
highly depends on the business process demand while fulfilling 
the change. However, the process demand is generally not 
known beforehand but has to be approximated by means of 
forecasting techniques.  

The focus of this paper is to determine and minimize 
change related risk in service oriented business environments 
by introducing decisions models allowing organizations for 
scheduling service changes with the lowest expected financial 
loss, or cost. We propose models for analyzing the business 
impact of change related service downtimes of uncertain 
length, as the impact on dependent, active business processes is 
analyzed and transferred into financial losses. The proposed 
solution automatically considers the dependency chain up to 
the decomposition mapping of affected business processes. 
Based on these analytical models, we derive decision models in 
terms of deterministic and probabilistic mathematical 
programming formulations allowing for scheduling single or 
multiple correlated changes efficiently, i.e., with the lowest 
expected cost. First Experiments and sensitivity analyses are 
described to illustrate the efficiency of the proposed models.  

This outline of this paper is structured as follows: in 
Section 2 we review related work in this field. In Sections 3 we 
discuss in detail techniques on how to estimate and quantify 
operational risks of service transitions. Subsequently, in 
Section 4 we introduce a basic deterministic decision model 
and probabilistic extensions to determine efficient change 
schedules in different business scenarios. We further provide 
model extensions to take into account change correlations and 
other sources of risks, like change deadline or change window 
violation risks. In Section 5, we describe the setup of our 
preliminary experiments conducted to make first efficiency 
statements of the models and present our experimental 
outcomes. Finally, in Section 6, we summarize and conclude. 

II. RELATED WORK 
In this section we review previous work and guidelines in 

IT change risk analysis and management related to the work 
described in this paper. 

The definition of risk itself varies broadly according to the 
specific domain one looks at. The most general definition of 
risk is ‘uncertainty of outcome’ [4]. In our case, the outcome is 
change related cost in a sense of financial loss. To analyze risk 
impact, i.e., resulting costs for the business, we draw on a two-
stage approach; first scanning for possible outcomes and 
quantifying this outcomes in terms of monetary consequences, 
and second, weighting these outcomes by their probabilities. 
This approach is generally known as probabilistic risk analysis 
as introduced in [5]. 

In IT change management, most approaches found allow 
for risk analyses that are not directly transferable to business or 
financial impact or provide general guidance to change 
management considering associated risk.  

Publicly available best-practices ITSM frameworks and 
standards such as the IT infrastructure Library (ITIL) [6] or 
Control Objectives for Information, and related Technology 
(COBIT) [7] provide guidance on how to perform service 
management tasks and are validated across a diverse set of 
environments and situations. As of the importance of managing 
service changes or transitions efficiently, particular with 
respect to associated risks, this topic has recently become a 
mayor focus herein. For example, the Office of Governmental 
Commerce (OGC) dedicated in the newly published ITIL 
version 3.0 (May 2007) an own book on how to manage 
service transitions efficiently, with special regards to associated 
risks [4]. However, ITIL and related best-practices frameworks 
provide high-level guidance for performing a service 
management task like managing a change, but do not provide 
guidance in how to do the actual change management 
implementation, e.g., on how to determine and quantify change 
related risks and costs for a particular business environment.  

Some commercial tools and dashboard applications are 
available that claim to assist in managing changes, although not 
enough details are available that can be used to evaluate and 
compare the involved methods [8, 9, 10, 11].  

Several papers have presented approaches to qualitatively 
evaluate risk, for example [12], but do not provide quantitative 
risk analysis with regard to business impact.  

Keller and Hellerstein present the CHAnge Management 
with Planning and Scheduling (CHAMPS) system to automate 
steps in the execution of changes. The authors propose decision 
models to solve different scheduling problems like maximizing 
the number of changes, minimizing overall downtime, or 
minimizing the costs associated with change related downtime. 
The authors assume knowledge of the cost functions for 
performing a change job at time t, while we focus on how to 
derive cost functions from change related downtime risks to the 
business processes [13].  

Rebouças, Sauvé, Moura, Bartolini and Trastour address 
the problem of scheduling changes in a way to minimize the 
financial loss imposed by SLA violations when the 



implementation of changes is exceeds change deadlines. The 
authors explicitly consider uncertainty in change durations. 
[14]. 

Our work serves to filling the gap in work addressing the 
formal quantification of service change risk to active and 
depending business processes, enabling the scheduling of 
service changes with minimum total expected costs.  

III. SERVICE TRANSISTIONS AND ASSOCIATED RISK ON 
BUSINESS PROCESSES  

The goal of service transition management is to plan and 
control service changes and deploying changed service releases 
into the production environment successfully, i.e., with 
minimum negative impact to the business. We assume that a 
service is down during the change fulfillment period. As 
described in Section 1, service transition in service-oriented 
architectures is coupled with exceptionally high risk and 
complexity, as there are multiple interdependencies und 
uncertainties and many business processes might depend on a 
service. To estimate the risk of services changes to the business 
(processes), a clear picture and a formal description of the 
business process and service dependency structure is 
mandatory.  

We will now introduce a notation that is used throughout 
this paper to formalize process and service dependencies. Let I 
be the total number of different types of business processes i 
(i=1, …, I), requested stochastically following a demand 
distribution or profile Di. In other words, there are I different 
business process definitions existing, instantiated on request. A 
second layer service definition j (j=1, …, J) describes an 
aggregated or composite service on the layer below the 
business process layer (i.e., the first layer). Furthermore, an 
assignment variable uij indicates that a business process i 
implements service j in step uij. Steps of a business process i 
are enumerated by ni (ni=1, … Nj). We set uij=0 if a business 
process i definition does not embody service j. In the same 
manner we model the dependencies of lower-level services. 
We enumerate the service descriptions on the next lower 
aggregation level by k (k=1, …, K) and assign these third-level 
services by setting ujk correspondingly to the step nj (nj=1, … 
Nj) in the j service flow definition. Likewise, we set ujk=0 if k is 
not implemented by j. Fig. 2 illustrates the resulting 
dependency structure.  

Using this dependency model, one can automatically derive 
which higher-lever services and business processes are affected 
by a specific service downtime.  

However, to estimate the business impact of a change, 
additional information is required, like how many instances of 
business processes are affected, and how many service level 
agreements of these processes are expected to be violated.  
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Figure 2.  Three Layer Service Dependency Model 

The amount of affected business process instances clearly 
depends on the business process demand at and before the time 
a change is fulfilled. Business forecasting techniques are the 
means of choice to estimate the demand for a certain business 
process during a particular period of time. With Di as a 
business process i’s demand distribution profile (i.e., the 
demand distributions profile of all considered time slots t, Dit, 
demand forecasts dit are possible for a certain time slot t (for 
example by setting dit to Dit’s mean value).  

To keep our decision model computable, we divide time 
into small discrete time slots, wherein we assume demand of a 
fixed level. The costs of business process disruptions or delays 
are usually negotiated beforehand and defined in SLAs. An 
SLA typically includes a process’ maximum response or 
execution time Li and the definition of (monetary) penalties pi 
to pay on SLA violations. Depending on a SLA, penalties are 
to paid per maximum response time violation, if the number of 
service level violations during a certain time span exceeds a 
defined threshold value, or other individual agreements. 
Simply multiplying the number of process instances expected 
during the duration of a change with the penalties would 
overestimate change related costs, as not all running business 
process instances will be disrupted or delayed. For example, 
business process instances which already passed the step 
implementing the service that is going to be changed will not 
be affected at all, nor is there an impact on running processes 
instances which will execute the changed service after the 
change is fulfilled and the service is available again. 
Furthermore, business processes and services might be queued. 
If the time buffer, i.e., the difference between the maximum 
execution time and the normal or usual execution time is large 
enough, there is a chance to still execute affected processes 
instances in a SLA compliant way. 

In the following, a process is described to estimate the 
amount of SLA violations if queuing is not possible.  
Afterwards we look at infrastructures where queuing processes 
and services is a valid option. Firstly, we presume perfect 
knowledge of future aggregated business process demand per 
time slot and change related downtime. Later in this section, 
we take into account the uncertainty in demand and service 
downtime.  



A. SLA violations without queuing 
Consider a request for change (RFC) for service j, where j 

will be unavailable for a duration Δtj
down after the start time tj of 

the change. The task is to estimate dijt
penalty, the number of SLA 

violations of depending business process instances. Given this 
number for each affected business process, the estimated costs 
of changing j in t, cjt are 

                                      p
ijt

i
ijt dpc ∑=                                  (1) 

To predict dijt 
p we proceed as follows: all service instances 

executing j during time period [tj; tj+Δtj
down]) are disrupted. 

From a planning perspective, we assume equal arrival rates of 
business process request (principle of indifference) as there is 
only aggregated knowledge of service demand per time slot 
available. This assumption is tight as long as the forecasting 
time periods are kept small. Of interest is the demand for a 
business process i not only during the change downtime Δtj

down 
but also before tj as running process instances, starting before tj 
might reach j during [tj, tj+Δtj

down]. Depending on the step in 
which a business process i implements service j, business 
process instances starting after tj-Li might be affected if jfis 
executed in the last process step (uij =Ni). If j is executed in the 
next to last step (uij = Ni-1), only process instances starting after 
tj - Li + LN(i) are affected, etc. On the other side, if i implements 
j in step Ni and the total execution duration of preceding 
process steps exceeds j’s downtime, instances starting during 
[tj, tj+Δtj

down] are not impacted by the current change. To 
approximate the demand for a business processes i which 
might have j execution overlapping with [tj, tj+Δtj

down], dijt 
p, we 

consider therefore business processes demand during  
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where j’ is a service executed in a process i steps preceding j’s 
implementation step and j’’ is a service executed in steps after 
j’s implementation step.  

An alternative way to approximate dijt 
p, with no further 

knowledge of the concrete step a process i implements a 
service j is described in the following: assuming an equal 
demand distribution around tj, the percentage of i business 
process instances executing j during in [tj, tj+Δtj

down] is (on 
average)  

i

j

L
L                                            (3) 

where Lj is the execution duration of j, and Li is the overall 
process execution duration. The probability that a running 
process instance (executing a step preceding uij) will reach j in 
[tj, tj+Δtj

down] is  

i

down
j

L
tΔ                                       (4) 

Therewith, the expected total costs of SLA violations 
caused by changing j in tj are 
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B. SLA violations with queuing 
We will now look at the estimated costs of changing j in 

time slot t if queuing (or buffering) is allowed. Here, not all 
business process instances executing j overlapping with [tj, 
tj+Δtj

down] are disrupted as instances can re-execute j after the 
change is fulfilled. If an SLA is violated depends on a process’ 
time buffer bi (bi =  Li,max – Li), where Li,max is the maximum 
execution time of a process, and Li is the normal or usual 
execution time of a process. Again, the probability of a process 
instance currently executing j is shown in (3). If bi ≤ Δtj

down, all 
considered process i instances will exceed the maximum 
response time. If bi > Δtj

down + Lj, no service instance is 
disrupted. If Δtj

down < bi < Δtj
down + Lj,  

there is a change of a rollback and re-execution without SLA 
violation if the time buffer exceeds the amount of time already 
spend executing j before tj plus j’s downtime Δtj

down . This 
probability is shown in (5)  
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The probability that a running process instance (executing 
preceding steps) will reach j in [tj, tj+Δtj

down] is shown in (4). If 
bi > Δtj

down, all services are delivered successfully. If bi < 
Δtj

down, the average rate of successful delivered business 
process instances is:    

)()( down
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C. Non-Linear Business Processes and Service Flows 
The estimations of expected change related penalties as 

introduced in the previous section assume linear business 
processes and service flows with a predetermined sequence of 
service executions. In practice, business processes might take 
different branches or service flow paths based on certain 
conditions, where one branch might include a service to be 
changed while others do not. Hence, business process 
forecasting ignoring such conditional branches overestimates 
the number of SLA violations and costs. A finer-grained 
demand forecast is required for each possible branch. This 
forecast can be derived by analyzing the history of the different 
executed branches in the same way the total demand for linear 



processes is derived by business forecasting methods. We 
model each branch as own business process as shown in Fig. 3.  

Using this statistical means, one can model forked business 
processes. Processes including iterative sequences like loops 
can be demodulated in the same manner, by defining each 
possible flow as an own process and by assigning probabilities 
derived from statistical analyses of log data. 

IV. CHANGE SCHEDULING DECISION MODELS 
We will first introduce a basic change scheduling decision 

model for shared services underlying a number of restrictive 
assumptions like perfect knowledge of business process 
demand per time slot and deterministic change related 
downtimes of services. Afterwards, we will propose model 
variants considering uncertainty in business process demand 
and stochastic service downtime. Based on these model 
formulations, a couple of extensions are introduced to consider 
other types of operational risks and costs associated with 
service transitions and we will address the problem of handling 
correlated changes. 

A.  Basic Deterministic Model 
We will now introduce a deterministic mathematical 

programming model (DMP) to solve the problem of finding the 
schedule for a set of uncorrelated changes JRFC with minimum 
overall service level violation costs in environment without 
queuing. Business process demand per time slot t, dit, the 
downtime of a service after the change start time, Δtj

down, and 
execution durations of services, Lj, and whole business 
processes Li, are approximated by using their mean values. A 
penalty is paid per SLA violation. 

We introduce a binary decision variable xj,t∈ {0,1}
 
 

indicating whether j’s change is started in tj or not. 

The objective functions to minimize the total sum of 
penalties resulting from changes in service infrastructures 
without queuing is 
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Figure 3.  Non-Linear Business Processes and Service Flows 

 

We set the beginning of our change planning period to t=0 
and assume to obtain JRFC before t=0 (Note that in practice, 
changes will be requested on a continuous time base rather than 
bundled. The usual way to proceed is to re-calculate the 
optimization problem each time a new RFC is submitted. More 
advanced methods might forecast aggregated RFC ‘demand’ if 
changes are submitted in regular sequences). As we divided 
time into discrete time slots, time related parameters are 
positive integer variables (tj, Δtj

down, bi, Li, Lj ∈ Z0
+) and 

penalties and demand parameter are positive real values (dit, pi 
∈ R0

+). 

As further constraints we introduce change related 
deadlines tj

d. Depending on the severity of a change, there is 
generally a priority associated with a change, defining a 
deadline when a change needs to be implemented. This 
constraint can be formulated as 

RFCtj
ttt

Jjx
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down

jj
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<Δ+

,1,                      (9) 

Note that a change deadline is originally defined as a period 
Δtj

d  after tj
RFC, the time the RFC for j arrives. As we define 

tj,
RFC = 0, setting the deadline to tj

d instead of tj
RFC + Δtj

d suffices 
in our case.  

B. Stochastic Change Scheduling Model 
So far, we used deterministic approximations for expected 

demand, service downtime and service execution durations.  

One should expect that ignoring the probabilistic nature of 
demand, downtime and execution time has a negative impact 
on the decision making. Suppose a service j change, and a 
depending business process i with extremely high penalties to 
pay on service level violations. The average change related 
downtime of j is 10 but varies broadly, and the decision is 
either to start the change in t=0 or in t=50. The demand for i is 
expected to be slightly lower during t=0 – 9 than during t=50 – 
59 but increases rapidly from t=10 on, while demand is 
expected to be of constant level after t=59. The deterministic 
model would certainly select t=0 while a stochastic model 
explicitly taking into account uncertainty of downtime would 
select t=50, which would clearly be the better decision.  

However, putting too much stochastic information into a 
decision model makes it – at least for medium and large 
problem sizes – intractable due to the large number of resulting 
decision variables and limits therefore its practical 
applicability. 

Therefore, we draw on a stochastic programming 
formulation with simple recourse as introduced by Birge and 
Louveaux to consider the stochastic nature of the variables 
while keeping the model computable [15, 16].  

This is illustrated using a change related downtime 
probability distribution as shown in Fig. XZ (grey line). We 
separate the distribution into N sequential discrete sections n (n 
=1, …, N). The cumulated probability (integral) of a section is 
then interpreted as the downtime probability of a time slot in 
the section, while we suppose the downtime can only take 



these discrete downtime values: Δtj
down∈ {Δtj,1

down Δtj,2
down, …, 

Δtj,N
down}. The resulting objective function can be formulated as 
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The right part of the objective function computes the costs 
that would be resulted if the downtime would have been 
exactly Δtj,n

down; the term on the left is a correction for the 
uncertainty in downtime (a weight). 

Likewise, we model the other stochastic variables like 
business process demand during a time slot or the execution 
time of a service. Note that usually the parameters or even the 
type of distributions will depend on which time slot you 
consider. 

C. Change Fulfillment Deadlines and Waiting Costs 
As already mentioned, a change needs to be fulfilled in a 

maximum change fulfillment time Δtj
d, after a change request is 

submitted. As discussed previously in this paper, the urgency 
depends on the priority of a change. In the basic deterministic 
model formulation we assumed that this deadline is mandatory.  

Considering the uncertainty in the time needed to perform 
the service change (we assume the service to be down during 
change activities) it can no longer be guaranteed to fulfill a 
change before the agreed change deadline; only a probability 
can be assigned to fulfilling the change in time. Therefore, the 
restriction that a change needs to be fulfilled before tj

d of the 
change deadline needs to be relaxed to 

RFCtj
t

Jjx ∈∀=∑ ,1,
                            (11) 

Exceeding a change deadline might entail a predefined 
penalty and extra payments for each additional time slot 
needed to fulfill the change. The later a change is started, the 
higher the expected costs of a deadline violation will be, since 
the probability of completing change implementation before 
the deadline will decrease continuously. 
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Figure 4.  Probilistic Modelling with Simple Recourse 

 
 

 

 

 

Let the fixed penalty on change deadline violation be α, and 
the additional costs per time slot a deadline is exceeding be β. 
Herewith, the expected overall deadline violation cost function 
which need to be added to the objective function as formulated 
in our decision model is   
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Note that for reasons of brevity we provide formulas with 
only the service downtime modeled stochastically while other 
random variables are approximated by their mean values.  

Furthermore, the moment an RFC is submitted, there may 
already be a need felt for the change to be implemented as the 
business may suffer until the change has been successfully 
fulfilled; for example, this may be due to a service being 
unavailable as would happen if the change request was initiated 
as a result of an incident, or there may be other negative impact 
causes, like lost opportunities such as would occur for a change 
meant to bring up a new required service. With γ as the implicit 
costs of waiting one more timeslot for a change to be fulfilled, 
the total waiting costs can be formulated as 

tj
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jj
t
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D. Allowed Change Windows 
Furthermore, the fulfillment time of a change might be 

restricted to a number of allowed change window time slots, 
e.g. at weekends or during nights. Violating a change window 
restriction might have serious impact on the business, as that 
would mean a service is down in times this service is 
frequently required. Therefore, penalties might result from 
exceeding a change window l (l=1, …, L). Let Tcj (Tcj = {tcj1

start, 
…, tcj1

end },  … {tcjL
start, …, tcjL

end } be the set of allowed change 
windows. As change related downtime might be of uncertain 
length, there is an increasing risk of violating the change 
window constraints the later a change is started. Withδ as the 
costs per time slot a change window is exceeded, and the 
restriction that a change has to start (at least) inside a change 
window (tj ∈ Tcj), the part that has to be added to the objective 
function as formulated in our decision model is 

 

tj
t

j
end

jl
end

jl
down

jj xttttt ,))):min((,0max(min∑ >−Δ+δ (14) 

E. Correlated Changes 
The basic model formulation handles multiple independent 

changes. To schedule changes in a mandatory order, a 
constraint for each dependency has to be added to the decision 
model formulation. Firstly, changes might need to be started in 
a certain sequence (tj < tj+1 < tj+2 < …) or a change must be 
fulfilled before the next change may get scheduled (tj +Δtj

down < 
tj+1 +Δtj+1

down < …). The constraints in our mathematical model 



formulation are therefore xit < x(j+1)t < t(j+2)t, or  xjt +Δtj
down < 

x(j+1)t +Δtj+1
down < tj+2, respectively.  

Besides mandatory change scheduling orders, changes 
might be correlated for example in terms of a reduction of 
aggregated downtime when executing changes together 
(imagine two changes to a server operating system, both 
requiring a reboot. The overall change duration might be 
reduced by applying these changes together, but this may result 
in higher risk in terms of higher downtime variance 
(incompatibilities, etc.).  

While arbitrary statistical values can be chosen, in our 
example we focus on mean (M) and variance (V) deviation. 
Therefore, we consider two changes to j and j+1 are correlated 
if either 

M(Δtj
down(t)+Δtj+1

down(t)) ≠ M(Δtj
down(t)+Δtj+1

down(t+Δt)) and/or  

V(Δtj
down(t)+Δtj+1

down(t)) ≠ V(Δtj
down(t)+Δtj+1

down(t+Δt)) 

We treat each change item combination with significant 
deviant aggregated statistical mean and/or variance values as 
one single change. The decision to make is to either schedule 
all included single changes separately or to schedule the novel 
‘aggregated’ change. This XOR constraint can be formulated 
as follows (if the question is to either change j and j+1 
separately, or, alternatively the aggregated change (j, j+1) 

22 ),1,(),1(, =++ ++∑ tjjtjtj
t

xxx                  (15) 

Furthermore, the change deadline for (j, j+1) is set to min 
(tj,RFC + Δtj

d, tj+1,RFC + Δtj+1
d).  

F. Change Re-Scheduling 
The decision model selects the time slot with the lowest 
expected overall costs based on business process demand 
forecasting. However, when approaching to tj, further 
knowledge is available of process demand and process states 
(progress). This knowledge can be used to reschedule the 
change start time tj. For example, if in (tj-1) more business 
process instances are running than expected, or a higher 
percentage of running instances is currently executing service j, 
there is a decision to make on whether to retain tj or to wait 
several timeslots where. However, increasing delay costs and a 
higher probability to violate change window restrictions have 
to be taken into account when making such a decision. Note 
that demand forecasting for processes might be adapted by 
using short term prognoses if current demand differs 
significantly from demand expected beforehand. Furthermore, 
business process request arrivals might be modeled as Poison 
Process to consider the uncertainty regarding the exact arrival 
rates and arrival times, with Pλ(i)(r=k) as the probability of k 
incoming service i requests in t. As we did with downtime 
uncertainty, we model the impact of different possible arrival 
rates weighted by their probabilities.  

V. EXPERIMENTAL ANALYSIS 
In this section, we analyze and discuss the efficiency of the 

scheduling models proposed in this paper. In our preliminary 

experimental evaluations we compared variants of our models 
to the optimal solutions (be scanning the total solution space), 
with total change related costs under different service 
infrastructures, demand scenarios, and downtime distributions 
used as a benchmark. Firstly, the experimental set-up that we 
used for our experiments is described. Secondly, we report the 
results of our experiments and discuss their outcome. 

A. Experimental Set-Up 
We analyzed 12 different service infrastructure scenarios 

under different business process demand profiles. The 
durations of each experiment was set to 300 time slots t (t= 0, 
…, 299). The change deadline was set to tj

d=275 with fixed 
costs of $20 for violating this restriction and additional $2 per 
exceeded times slot. In our first evaluations, change windows, 
and waiting costs were not considered. To allow for sensitivity 
analysis how variations in the output of our models can be 
apportioned to variations of j’s downtime distribution, we 
repeated each experiment until our results were significant 
(experimental item, average all outcomes) for each downtime 
distribution. We analyzed 8 different downtime distributions 
with increasing variance. To configure and automate our 
experiments and to analyze our experimental outcomes a 
simulation tool has been developed (see Fig. 5).  The figure 
shows a visualization of an example service infrastructure 
scenario used in our experiments with two business processes, 
a linear and a forked process. 
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Figure 5.  Example Business Process Demand Scenario 

An example business process demand scenario is shown in 
Fig. 6. The graph shows the mean demand level M per time 
slot. We adapted the demand level after each time slot to 
generate a demand profile following these curves. During a 
time slot, we generated demand following a (M, 0.20M) 
normal probability distribution (uniformly distributed).  
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Figure 6.  Analyzed Scenario  



B. Experimental Results 
Experimental results show that the probabilistic decision 

model with a simple resource of the service downtime 
distributions (applying the objective function as shown in 
equation (10)) found the optimal solution for all experimental 
items. In experiments with low service downtime variance (less 
than 15% of the mean downtime duration), the deterministic 
model selected the change start time slot with minimum costs. 
Except one demand scenario with almost flat process demand 
levels, the deterministic never found the optimal solution in 
scenarios with one of the two highest downtime variances. Fig. 
7 presents the cost savings by using either the deterministic or 
the probabilistic scheduling model. The bars show the change 
related costs when using one of the two decision model 
variants relative to the average costs over all scenarios (with a 
certain downtime variance level) when the change start time 
was selected randomly. 
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Figure 7.  Aggregated Experimental Results 

VI. CONCLUSION AND OUTLOOK 
The contribution of this work is the introduction and first 

experimental evaluation of models for analyzing the business 
impact of service changes in service-oriented architectures. We 
analyzed change related operational risks on active business 
processes and techniques to transfer these risks into financial 
metrics, or costs.  

As far as we know, no previous work exists that formally 
quantifies the risk of changing services in SOA environments 
to the business (processes), or that derives decision models 
which allow organizations to schedule service changes with 
minimum total expected costs. 

In our experimental analyses we evaluated the efficiency of 
our models compared to the optimal and average solution, with 
total change related costs under different demand scenarios and 
downtime distributions used as a benchmark. We conducted 
preliminary numerical experiments with various business 
process demand scenarios and different downtime distributions 
and made initial efficiency statements. Experimental results 
show that the proposed probabilistic model derived the optimal 
solution in all of our experiments. 

Future working plans are more exhaustive sets of 
experiments with different, possibly real-world, business 
scenarios. We intend to additionally explore the impact of 
rescheduling change times when approaching the planned 
change start time, the impact of uncertain service execution 
durations, and the impact of latency and change window 
violation costs. We also plan to test the models in the field as a 
decision support tool for change scheduling in selected 
businesses. Note that, when applying the models to certain 
businesses, the individual context has to be considered and 
adequate parameters and costs functions have to be determined. 
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