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ABSTRACT
Creating secure software systems remains a challenge for
most developers, even for those who are conscientious about
following security best practices. Software development has
evolved to incorporate complex software frameworks, mid-
dleware and components developed by multiple parties. We
have seen the rise of tools for testing the security of applica-
tions, including so called“black box”testing and“white box”
testing. Some of these include static analysis technologies,
and run-time testing to verify specific security properties, as
well as conformance to “best practices” The lack of integra-
tion of these security tools creates a significant burden on
most developers, many of whom lack formal training in se-
cure software development and deployment practices. They
are often less motivated to secure their software than secu-
rity professionals.

To address the challenges of creating secure Java applica-
tions we created a tool called SWORD4J that integrates a
suite of security analysis tools into the Java Developement
Tool in the Eclipse Integrated Developement Environment.
We believe that SWORD4J is more usable than standalone
security tools because it greatly simplifies many time con-
suming tasks required to develop secure software compo-
nents. significantly reducing the time to perform security
analysis tasks. In this paper we also argue that secure Open
Services Gateway initiative (OSGi) component development
has characteristics that are common to many software envi-
ronments, including Web application developement.

General Terms
TBD
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security analysis, static analysis, integrated developement
environment, development tools, ease of use, software devel-
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1. INTRODUCTION
Software developers have long been challenged to create

reliable applications, from requirements, through testing and
deployment [11]. Reimer, et al. [36] observed that large Web
applications are difficult to reliably create, partly as a result
of the use of large and growing number of application frame-
works to be used in their development. Creation of secure
applications and systems adds an additional set of respon-
sibilities for developers that go above and beyond the basic
functional requirements of these systems.

Many of the security issues facing software developers are
well known, although each programming language and op-
erating environment has its own unique security challenges.
For example, C and C++ developers must address buffer
overflow and string formatting vulnerabilities, among other
security vulnerabilities. PHP and other scripting language
developers are concerned about file inclusion vulnerabilities
and command injections. Java developers must be vigilant
about checking for a variety of forms of tainted data vulnera-
bilities. Even when the applications are correctly developed,
the systems need to be properly configured when the appli-
cations are deployed. In addition, the run-time platforms
and application code must perform appropriate authentica-
tion and authorization when providing access to protected
resources. These vulnerabilities, among many others, have
been well documented (e.g., [5, 13], and there are many
sources of security “best practices”). For most software de-
velopers, finding, understanding, and following security best
practices can be an overwhelming task. This is especially
true when multiple tools must be acquired and used.

The main contribution of this paper is that a set of well
integrated security analysis technologies into software devel-
opment and testing environment can substantially reduce
the difficulty and cost (time) to create secure software, thus
making security analysis tools more usable. We argue that,
because of the complexity of the tasks involved, using a set
of security analysis tools that are not well integrated into
the development environment will be insufficient to get ad-
equate developer productivity on security analysis tasks.

While we will be discussing the development of secure Java
applications based on the OSGi framework for component-
based application development and deployment [6, 2] written
in Java, most of the principles outlined in this paper apply
to many other commonly used programming languages and
run-time environments such as the Web.

The remainder of this paper is organized as follows. Sec-
tion 2 will describe specific security challenges facing Java



component developers. We will motivate the intuition as to
why many of these security tasks are currently very challeng-
ing for software developers. Section 3 describes our earlier
work on security analysis tools. Section 4 describes how
our security tooling, SWORD4J1, addresses the challenges
outlined in the previous section in a fashion that reduces
the number of steps required to address the security re-
lated development tasks, as well as reduce the cognitive load
placed on the software developer. Section 5 discusses how
SWORD4J addresses security issues outlined in section 2.
Section 6 relates how the development tasks for OSGi are
common to secure Web application development. Section 7
reviews related work. We conclude with some remarks on
future work.

2. SECURITY CHALLENGES
We now describe a set of representative tasks developers

need to perform to secure Java applications or software com-
ponents when developing for the OSGi framework [6]. The
development scenario is as follows, broken down into sub-
tasks, and labelled (in parenthesis) for subsequent reference
in this paper.

Consider a programmer who has been given an assign-
ment to develop a software library (or component) for use in
embedded devices. After completing the development and
unit testing of the software, the developer is subsequently
asked to make their component reusable. Now this compo-
nent needs to be made “secure” from potentially malicious
attackers.

(A) Being somewhat new to Java and OSGi development,
the programmer needs to learn Java and OSGi security. This
knowledge can be acquired through books, searching the
Web for ”best practices”, and asking colleagues to teach them
the relevant information. There are many security Java top-
ics: code-based access control and permissions, cryptogra-
phy, bytecode verifier, type safety, class loading, component-
based software (e.g., OSGi, Java EE), etc. Searches of the
Web will turn up other security best practices that ought to
be followed (e.g., [7]).

The challenge for the programmer is in identifying the
subset of Java security and best practices that are specific
for the target programming model and run-time (Java and
OSGi). Much of the information available is more general,
which can result in wasted time and frustration for the de-
veloper. For example, application developers will not need
to know much about bytecode verifiers and cryptography.

(B) Since this project is built to be used with the OSGi
framework, the programmer will need to fully understand
Java SE permissions and its stack based access control algo-
rithm [23, 31]. The programmer needs to be able to create
Java authorization policies based on Java permissions, and
understand how to assign authorization policies based on a
CodeSource.2 Best security pactices dictate that an autho-
rization policy not be overly permissive, otherwise it would
be a violation of the Principle of Least Privilege [38]. This
activity will also require understanding how code signing
works, where the signatures are stored, and the operational
implications of modifying the JAR files after the code has

1http://www.alphaworks.ibm.com/tech/sword4j
2The location, or origin, of the code, typically represented
as a URL, and/or the digital signature(s) associated with
the code.

been signed.3

The developer will also need to learn how to debug the
Java authorization policy. This includes learning how to in-
spect the results of an uncaught SecurityException, which
generates a run-time stack trace. The privileged operation is
typically composed of three parts: (1) The Permission sub-
class that represents the privileged operation that failed and
caused the SecurityException, (2) the target of the opera-
tion (the protected resource), and (3) the operation on the
target4. The developer then needs to identify which stack
frame (i.e., the method, its class and the CodeSource for
that class) not authorized for a privileged operation. Some-
times, source code inspection is needed to fully appreciate
the nature and extend of the privileged operation in order
to properly define an appropriate authorization policy.

(C) The developer must figure out how to enable Java SE
authorization in the run-time platform. This step is unique
to each run-time environment, requiring further investiga-
tion on the part of the developer. For example, for stan-
dalone Java, the SecurityManager can be installed via a
command-line option or done programmatically. For other
environments, there many be command-line options that are
different from those for a standalone Java runtime, enabled
through configuration file entries, or performed program-
matically. Also, there may be a specific SecurityManager

subclass that is required for the platform. The OSGi imple-
mentation for the Eclipse platform has its own Security-

Manager that is enabled by launching with a command-line
option to use the OSGi SecurityManager.

(D) Once Java authorization is enabled in the Java run-
time, test cases are needed to cover most paths through
the application in order to determine the Java authorization
policy. Test case generation and code coverage tools may be
needed to ensure a sufficient set of test cases.

(E) The test cases are run until they all succeed with-
out failing due to SecurityExceptions. As described above,
when a SecurityException occurs, the developer inspects
the stack trace to determine which codebase was missing
an authorization. The source code then needs to be con-
sulted to determine whether a Java authorization needs to
be added to the security policy.

(F) Adding appropriate Java authorization policy entries
can be challenging for the programmer, especially when the
policy is stored and its format (syntax) varies by platform.
Policy may be stored in a flat file (as in the reference imple-
mentation of the Java SDK) or other repository, such as the
component JAR files (OSGi). While the semantics of the
policies are the same in both cases, the syntax differs.

(G) The above testing and policy update process is re-
peated until there is an authorization policy that will en-
able the test cases to run without SecurityExceptions be-
ing thrown at run-time.

(H) Similar to updating the Java authorization policy,
as described above, there is a need to make some of the
code “privileged” [23, 31]. Privileged code is needed when
a component is to perform an operation that requires au-
thorization, but the component developer does not want the
code calling the component to also require that authoriza-

3The code will run, but may not have authorizations that
were specified in the authorization policy.
4E.g., java.io.FilePermission
"/tmp/log.txt","read,write"



tion.5 An example is a file-based logging routine used to
audit calls to a privileged operation. The caller should not
require authorization to access the file, although the caller
should be allowed to call the logging routine, which in turn
is able to write the audit records to the file.

(I) Because untrusted software components will call the
developer’s component, there is a need to check for tainted
data being passed into it from the untrusted components.
The developer must trace the tainted data by manually per-
form a control- and data-flow analysis, including figuring
out program slices [45] to identify which data values need
to be sanitized before being used by privileged operations.
The developer must discriminate the various types of privi-
leged operations (commands, file inclusions, SQL calls, etc.)
and identify the target operation-specific sanitizing func-
tions that need to be called on the tainted data before it
is used. The rules for sanitizing data can be relatively com-
plex, depending on target privileged operation. The devel-
oper will need to find best practices that describe how to
appropriately sanitize the data before it is used. As was
described above for authorizations, the code will need to be
retested after code is made privileged and sanitizing func-
tions are added. New test cases may be needed to verify
that the sanitizing functions are working as expected.

(J) Refactoring of the code is required to add a call to
AccessController.doPrivileged() once the developer has
determined that adding privileged code is reasonable and
safe. The privileged operation needs to be wrapped in a
PrivilegedAction instance. Often this is done by creat-
ing an anonymous inner class that is a subclass of Privi-

legedAction. The refactoring of the code can be tedious,
especially if there are multiple values that need to be passed
into the privileged operation.

(K) Because the component under development is to be
deployed in a hostile operating environment, additional se-
curity coding rules must be followed. For example, in Java,
two concurrently running applications in the same JVM are
typically isolated by loading them via different Java Class-

Loaders. This allows each application to execute in separate
name spaces, thus providing code isolation. However, be-
cause of the way that the Java runtime is constructed, there
remain multiple ways to share state. From a security per-
spective, shared state needs to either be immutable, or have
appropriate access control to restrict access or changes to
the state. When the components are executed in the same
name space (same ClassLoader), the immutability rules also
apply. Determining immutability of an object proceeds as
follows.

First, accessability rules for class members (fields and
methods) need to be checked.6 Next, for each type (e.g., a
class) used by the component, determine whether the fields
are value-immutable or state immutable. Fields are value
immutable if the field is declared to be final. However, if
the field is inaccessible to other components, and its value
can not be updated after it is initialized, then it may be
value immutable.

5Privileged operations include, among other things, net-
working, file and database operations, all of which require
elevated privileges.
6While the limited set of access modifiers, public, private
and default, are seemingly simple, the accessability rules
turn out not to be obvious. Details are outside the scope of
this paper.

The programmer needs to determine whether a type (class)
is state mutable (the state of an instance is mutable). Unlike
C++, Java does not have a const declaration. So the de-
veloper must determine whether the state of an object refer-
enced by a class or instance field can be changed, irrespective
of whether the field is declared to be final. For example,
final StringBuffer s = new StringBuffer(); declares a
value immutable field s since it is declared to be final, and
this restriction is enforced by the Java runtime. However,
the StringBuffer object referenced by s is mutable since in-
stances of StringBuffer are mutable – they can be updated
by several methods, including the append() method. In con-
trast, instances of the class String are immutable since there
are no mutating operations on the state of String instances.
The mutability analysis process repeats for each class and
instance field in the developer’s component, as well as for
all classes the component is dependent upon.

Computing mutability is a complex and arduous process
involving computing data flows and program slices. A more
detailed description of mutability analysis for Java can be
found in [34].

(L) The developer also needs to check their code for com-
pliance with other security best practices. Examples include:

• Searching for all uses of ClassLoader instances to make
sure that secure Java loading rules are not violated
(e.g., [17]). All security sensitive methods in Class-

Loaders must be inaccessible to untrustworthy code.

• Security-sensitive fields in all classes (passwords, cryto-
graphic material, fields with personal identifying infor-
mation, etc.) must be inaccessible to untrusted code.

• Making sure that security sensitive fields cannot be
serialized without being encrypted in a way that would
allow untrustworthy code to decrypt the values.

(M) Security-sensitive information needs to be protected
by calls to the Java authorization system, using Java 2 per-
missions that are approriate for the resources. Complete me-
diation [38] must be validated to be consistent on all paths
to the protected accesses (e.g., [46]).

(N) Once the code has been checked for security security
vulnerabilities, and follows best practices, it is time to dis-
tribute the code. For Java, this involves code signing [31].
As a result, a number of questions arise for the developer:

• Is code signing necessary?

• Must a certificate for code signing be purchased from
a certificate authority?

• Can self-signed certificates be used? What are their
limitations?

• Once a certificate is acquired (or generated), where are
they stored? How are they managed?

• How do you go about signing code? Where are the
signatures stored? When/how are they verified?

Once these issues are resolved, the developer can sign the
code and prepare it for distribution.

(O) Most of the above steps need to be repeated as the
component, and the code it depends upon, are updated, or
if security best practices change.



The above steps are representative of the work involved in
securing a software component. The work is time consum-
ing, repetitive, and very detail oriented, with a large number
of opportunities for error. We have been developing tools to
handle these security tasks in a more reliable, and less time
consuming fashion.

3. EARLIER EXPERIENCES
We have tried a number of different strategies and de-

veloped tools to address many of the issues outlined in the
previous section. Each time we investigated a new Java secu-
rity challenge, we created new tools and techniques to reduce
the time required for the analysis as well as the possibility
of making errors.

3.1 Early tooling attempts
Early analyses was performed on the Java Development

Kit, starting with JDK 1.1.4, and performing multiple anal-
yses on the run-time classes, through JDK 1.2.0. Initially
these analyses were done get a better understanding of gaps
in the Java isolation model when running concurrent appli-
cations (Web browsers) in a single Java run-time. Much of
the analysis was performed through manual code inspection
of the source code using a text editor. Later analyses used
simple text-based reports that identified non-final fields.
But most of the analysis work was still performed with a
text editor and manually keeping notes on mutable and im-
mutable classes and fields. Analysis of each subsequent JDK
release would require about three weeks of work.

To analyze larger code bases, we needed to create tools to
reduce the burden on the programmers. Our next round of
Java security analysis automated mutability analysis [34].
This work was done in the context of high performance
transaction processing [18]. The program model for this
work required strict isolation, with the exception of sharing
common code and immutable state. Updates to static fields
would result in significant performance degradation, secu-
rity faults (transaction isolation) and violate programming
model restrictions (no shared state across transactions ex-
cept through the database). Our analysis searched for cases
where static fields were mutable – both value and state mu-
table. The tool generated HTML reports, but investigation
of the issues still required separate navigating throught the
source code.

Several products had a need to run with Java SE CodeS-

ource authorization enabled. The typical pattern of devel-
opment was to write the code, enable a SecurityManager,
and then observe the stack traces from the SecurityExcep-

tions to see which code or policies needed to be updated.
For larger products, this approach was not practical due to
the quantity of code. We created an access rights analy-
sis tool [26] and a secure code placement tool [30] to make
security policy and identify privileged code refactoring op-
portunities. Text and HTML reports were generated, but
investigation of the issues still required separate navigating
throught the source code. Code refactoring for privileged
code placement was also performed manually.

The analysis results from our tools were conservative. In
particular, the underlying static analysis was path and flow
insensitive, so there were false positives. In addition, since
some of the code being analyzed was written to be used for
multiple purposes (e.g., client and server), there were some
paths through the code that were known to be unused by

the target applications being analyzed. As a result, the de-
velopers wanted to see control flow paths through the code
that resulted in the tools’ recommendations. For these, we
generated HTML reports that would allow source code navi-
ation through a Web browser. HTML navigation through
the source code greatly improved programmer productivity.
However, updates to the code still needed to be done through
a separate editor.

Our next round of security analysis tooling was done in
the context of Eclipse plug-in developers. One of the authors
(Ted) used the aforementioned tooling to add privileged code
and construct authorization policies for one Eclipse Rich
Client Platform (Eclipse RCP) [2] plug-in. This activity
took six weeks of dedicated work, which was, coincidentally,
the same amount of time between milestone for the Eclipse
project.

Eclipse RCP contains many plug-ins, and some of the se-
curity analysis would need to be serialized because of plug-in
dependencies (plug-in one depends on plug-in two, etc.). To
make the process repeatable and affordable, we needed to
drastically reduce the time needed to do the security anal-
yses. Our goal was to reduce the analysis and remediation
time by at least one order of magnitude compared to prior
techniques we had tried.

The Eclipse community is comprised of Java development
experts who are not necessarily security savy. From the
Eclipse developers perspective, any tooling needed to be
fully integrated into their development environment — the
Eclipse Java Developement Toolkit (JDT) [1] — as well as
integrated into their build process.

4. SWORD4J
SWORD4J was designed and developed to address the

challenge of making security readily consumable by ordinary
programmers without requiring them to become security ex-
perts. SWORD4J simplifies the process of security enabling
Java code by providing both guided development [12] and ex-
pert use modes of operation. All security enablement tasks
are performed completely within the context of the Eclipse
[2] integrated develpment environment (IDE). The integra-
tion of the security tools within the IDE reduce the cognitive
load on the developer that would otherwise be introduced
by constantly switching contexts between a wide variety of
outputs, commands, graphical user interfaces (GUIs), and
external documentation.

4.1 Guided development
As described in Section 2, there are many security-related

tasks to be addressed by a programmer. It is often diffi-
cult for programmers to know which security topics to learn
and how to apply that knowledge to their code. Those who
are new to security can easily feel overwhelmed by the whole
process. Even for those developers who have previously been
through the process of securing their application, the guide
provides a reminder of the set of tasks that need to be per-
formed, and can automatically initiate the automated code
analysis needed for some of the security tasks.

Guided development is supported by Cheat Sheets, an
educate-as-you-go approach to security enablement. The
Cheat Sheets provide an ordered set of tasks to follow based
upon the type of application they are developing (e.g., plain
Java, OSGi). Each Cheat Sheet provides both textual doc-
umentation, and automation that invokes the appropriate



analysis at each step in the security enablement process. In
addition, SWORD4J has video screen captures of demon-
strations of key features of the tool.

A developer typically chooses the Cheat Sheet which best
matches the projects’ stage in the development lifecycle. For
example:

Table 1: Cheat sheet selection matrix
Project type Cheat Sheet to select

New Developing a security enabled
Eclipse plug-in

Pre-existing Security-enabling a Java application
using source code analysis

Third Party Component security enabling a Java application
using deep static analysis

There are differences in the sets of tasks to be performed
based upon the type of analysis being performed and the
type of project being analysis. The following gives a gener-
alized overview of the guided security enablement process:

Code authorization tasks

• Review and update the required authorization (for
OSGi and Eclipse plug-in projects)

• Review privileged code placement suggestions. Those
locations in the code should be trusted libraries, whose
inputs (parameters and objects/fields that are to be
part of the trusted function) are not tainted, or have
been sanitized.

• Refactor the code to eliminate unsanitized parameters
and other input values to privileged code.

• Review and refactor nested privileged operations, elim-
inating redundant calls to AccessController.doPrivileged().

Best practices

• Review mutable classes. If any listed mutable classes
were intended to be immutable, refactor the code as
necessary.

• Review native methods to follow best practices.

• Review member (fields, methods) accessibility to make
it as restrictive as possible.

Debug authorization policy

• Select the project you would like to debug.

• Launch the debugger

• Review run-time security exceptions generated during
the debug session

• Update authorization policy based on the information
from the debugger

Export and digitally sign code

• Select the Java project to export and sign

• Sign the selected Java Archive (JAR) file

Each of these tasks has a number of subtasks, which we
will review later in this paper.

Once a developer has reached a level of proficiency, where
they are comfortable with the secure development process,
SWORD4J continues to provide contextual help. Addition-
ally, some analyses are performed automatically while edit-
ing or generating code. Examples include Java SE incremen-
tal permission analysis and warning generated for deviations
from security best practices.

4.2 Authorization policies
As was described in Section 2, determining authorization

policies is a complex multi-step process. This involves de-
termining the Java authorization policies that need to be
granted to each codebase (e.g., JAR file), potentially refac-
toring some of code to make it “privileged”, making sure
that no tainted data is inappropriately propagated to priv-
ileged operations, test cases are written and run against
the code, and SecurityExceptions are investigated and ad-
dressed (e.g., policy changes and/or privileged code addi-
tions) so that the code will not unexpectedly throw Secu-

rityExceptions when it executes.
We addressed the time to perform authorization analysis

and privileged code placement along a number of dimen-
sions. In our earlier tooling, as described in section 3, our
user community accepted the analysis results as being use-
ful. However, they were dissatisfied with the time required
to run the static analysis of the entire project under devel-
opment.

4.2.1 Static analysis time reduction
The deep static analysis we were using in SWORD4J would

build control flow and data flow graphs of the entire project,
starting with a set of entry points (e.g., all of the public and
protected methods) and the control flow graph represented
execution paths through all of the reachable code. The typi-
cal time to execute this deep static analysis, and perform the
policy and privileged code placement algorithms, would be
anywhere from 2 to 15 minutes for small to moderate sized
projects7. The deep static analysis would also consume sub-
stantial amounts of RAM8 What developers were requesting
was immediate feedback in the IDE while they were entering
new code or modifying existing code — no waiting for the
deep static analysis.

We added the ability to perform the authorization and
privileged code analysis incrementally in addition to our pre-
vious static analysis of the code by analyzing the entire com-
ponent / application. The incremental analysis is performed
by precomputing and caching the authorizations required for
the all of the code upon which the developer’s projects de-
pends. As the developer is entering new code, SWORD4J
locates method invocations and consults the authorization
cache to see if there are any authorization requirements for
newly entered method invocations. The developer can then
update athorization policy, create privileged code, and in-
spect the code for tainted data flows, as will be described
below. While this incremental analysis would work for new
code being entered into the IDE, it can also be used to an-
alyze entire projects, thus reducing the amount of time to
analyze a previously developed project that is being loaded
into the IDE workspace.

4.2.2 Further time reductions
The time to perform the deep static analysis phase was

clearly an area of concern, although it might not been one
of the biggest contributors to the time needed to perform

7Most of the processing time is in the computation of con-
trol flow and detailed data flows of the code, upon which the
security analyses are run. Control / data flow analysis com-
putation time depends on the complexity of the code being
analyzed, as well as the processing speed of the computer.
8We typically would run SWORD4J with a 756MB heap in
order to perform this deep static analysis.



the authorization policy task. Subtasks that were time con-
suming for the developer include many of the very repetitive
editing tasks, including updating of the authorization pol-
icy and refactoring of the source code to enable privileged
code. Reducing the number of false positives (particularly
for common coding patterns9), understanding why the au-
thorization requirements are being recommended (navigat-
ing the control flow path from the component’s entry point
to the authorization test), and understanding how tainted
data could reach a program point that is being recommended
as becoming privileged can also be very time consuming.
The goal we had for SWORD4J was to take each of these
time consuming developer subtasks and create a suite of au-
tomated techniques that would minimize the amount of time
a programmer would need to spend on the subtasks. Where
possible, provide quick fixes that would make appropriate
policy updates, code refactorings, and source code naviga-
tion / exploring. These quick fixes are often one, or a few,
mouse clicks, and provide source code navigation when ap-
propriate.

The goal for SWORD4J is to provide appropriate infor-
mation in the context in which it is to be used to minimize
context swapping that would increase the amount of time
(e.g., keystrokes, mouse clicks) and the cognitive load on the
developer [28]. Once the static analysis phase is complete
(deep analysis or incremental analysis), SWORD4J gener-
ates a set of markers and lists of problems in the task list
(see Figures 1 and 2). This is consistent with the way de-
velopers expect to manage the set of actions that need to be
addressed, including compiler errors and warnings. By se-
lecting a problem in the task list, the IDE opens the source
code file and navigates to the source statement being refer-
enced by the problem in the task list.

Figure 1: Generated markers displayed in the
Eclipse Java Editor

Figure 2: Problem task list

The source code line has marker (see Figure 10) with a
set of quick fixes, including:

9Consider if (sm==null) e1 else e2, where expression e1
typically does not have a set of authorization policy require-
ments that e2 requires. This is a very common pattern in
Java code. Filtering out these false positives can save a de-
veloper a substantial amount of time.

• Adding a suggested authorization (that can be edited)
and added to the authorization policy entry (see Fig-
ures 3 and 4). Without this feature, the developer
would need to copy and paste (or retype) the policy
into a policy file or editor. Depending on the environ-
ment (e.g., Java SE, OSGi), the authorization policy
has different syntax. SWORD4J correctly formats the
policy for the developer.

Figure 3: Java Policy Editor

Figure 4: Context menu action to update authoriza-
tion policy

• Refactoring options to modify the source code so it
no longer requires the authorization (and/or make the
code privileged — see Figure 10). This may be as sim-
ple as removing a statement or expression. However, if
the developer wants to wrap the privileged operation
into a PrivilegedAction instance (to pass to Access-

Controller.doPrivileged()), then SWORD4J will ini-
tiate Ecipse’s refactoring features, thus removing the
tedious (and error-prone) process of creating the code



for PrivilegedAction instance creation and the call
to doPrivileged().

• Bring up a task pane to show tainted data flows to
the privileged operations (see Figure 5 and 6). Man-
ually computing the tainted data flows is tedious and
time consuming. SWORD4J shows the interprocedu-
ral tainted data flows through a combination of tree
viewers, to show the control flow paths, and high-
lighted text to illustrate the tainted data flows from
the tainted data source to the privilged operation.

Figure 5: Context menu for tasks list to analyze
taint flow

Figure 6: SWORD4J Tainted variable paths data
flow viewer

• Task panes to show the control flow paths from the
entry points into the component (see Figure 7) to a
point in the program that is requiring an authorization.
This can be very time consuming for most programs
and components used in large applications.

• The control flow paths to the authorization points (e.g.,
calls to the SecurityManager) (see Figure 8). Pro-
grammers want to verify that an authorization is re-
ally required and not a false positive. Often it is not
obvious as to why an authorization is required, so the
control flow path helps the developer understand why
SWORD4J is making a recommendation.

• One of the many frustrations of working with the Java
authorization frameworks is that it offers few clues as
to why authorizations fail. One reason is that the
policy file is not correctly formatted (syntax error).
SWORD4J provides a syntax directed editor to assist
the developer in entering syntactically correct policy.

Figure 7: Control flow paths from the entry points
into the component

Figure 8: The control flow paths to the authoriza-
tion points

• Context sensitive help. As the developer processes the
various analysis results, assistance is provided in the
form of hover text, context menu details, and coding
examples. Providing these details, when and where
they are needed, rather than in-bulk reduces the con-
text switching by the developer and improves task com-
pletion rates (See figure 9).

4.2.3 Policy debugging
After the developer has created an initial authorization

policy, they are able to launch the code in the IDE debug-
ger to verify that the authorization policy is sufficient to run
the code without SecurityExceptions. While other tools
capture SecurityExceptions to infer authorization policies
[3], SWORD4J goes further by capturing the SecurityEx-



Figure 9: Context sensitive help

ception, including the run-time stack. SWORD4J is able
to infer which CodeSource(s) are missing the authorization
policy and allow the developer to update the authoriation
policy. Quick fixes in the IDE are then provided to allow
the developer to update the authorization policy on-the-fly
(see Figure XXX).

4.2.4 Isolation analysis
As noted earlier, we are interested in identifying cases

where (shared) state should be immutable to protect the
state of a component. SWORD4J has a task viewer that
shows the set of mutable classes and fields that it discovers.
By selecting a mutable class in the viewer, a table of reasons
show why a class, or one of its static fields, is mutable (see
Figure XXX). Some of the reasons for mutability include:
a field (static or instance) is accessible and non-final, an
mutable object or array referenced by a inaccessible field or
object is returned by an accessible method, etc.10.

The mutable classes are listed in a task viewer. Once a
class is selected, the mutable fields are displayed, and select-
ing a field will result in a display of reasons the field is muta-
ble. For example, if a field is accessible and non-final, there
are quick fix refactoring options to make the field final, or
make it private and generate getter/setter methods. Return-
ing arrays or mutable objects via an accessible method could
be addressed by returning a cloned array/object. While not
implemented, it is straightforward to implement such a quick
fix.

4.3 Best practices
Just as the JDT is able to identify syntax errors (missing

punctuation, undeclared fields and methods, etc.) while the
developer is entering code, SWORD4J flags the violations of
security best practices. These best practices include limiting
the scope of members (fields, methods) in classes, consider-
ing public fields to be constants, limiting the extensibility
of classes and methods, checking uses of ClassLoaders, Se-
curityManagers, reporting native declarations that are not
private, uses of Java’s reflection methods, verifying that
security sensitive fields are protected, and identify access
to the Java security Policy object.

Part of user interface is a set of “quick fixes” that allow
the developer to rapidly address the best practice violations.
For example, if a field is public and not final, then one
of the quick fixes is to make the field private. One of the
advantages of working within the IDE is that it is possible
for the editor to search the project (or workspace) to see if
there are any uses of the field outside the class. If the value
of the field is used elsewhere in the code, one of the quick
fix options is to generate getter/setter methods. This saves

10See [34] for further discussion about mutability.

the developer quite a bit of effort in manually performing a
search, or recompiling the project, o see if making the field
private would break other code.

Another quick fix option is to allow the developer to tell
SWORD4J to ignore the security issue. The quick fix is
performed by selecting the marker on the vertical rule bar
on the left side of the text pane on the screen. A pop-up
context menu then allows the developer to choose to ignore
the security violation (see figure 10). In other contexts, a

Figure 10: Marker suppression GUI

right mouse click on the highlighted violation results a pop-
up menu with an option to ignore the security violation.
In either case, a line or block comment of the form $NON-

SEC added to the source code, thus directing SWORD4J to
ignore the best practice violation.

For security sensitive fields a $SEC-SENSITIVE comment
can be added to the code as part of the field declaration.
This comment can be added by right mouse-click on the
field and selecting the Mark as security sensitive action
from the pop-up context menu. If there is an expression in
the code, such as writing the sensitive field to an Output-

Stream, SWORD4J will flag that expression. The quick fixes
include deleting the expression, suppressing the warning (as
described above), or getting addition context sensitive help
to explain why the expression is a violation of a best prac-
tice.

The other best pracitices are handled in a similar con-
text sensitive manner: markers are generated, quick fixes
are provided, and context help is available.

4.4 Code signing
SWORD4J provides a Java KeyStore editor for the Eclipse

IDE. This editor facilitates the management of digital cer-
tificates. It supports viewing and editing of keystore entries
such as: changing certificate aliases, removing certificates,
copying certificates between certificate stores, and import-
ing certificates from the file system.

SWORD4J provides a signing dialog to facilitate the sign-
ing of JARs from within the Eclipse IDE. This signing utility
works together with the KeyStore editor to select which cer-
tificates will be used during the signing process.

4.5 Code distribution
Once a software component has been security enabled, it

can be signed and queued for deployment to an update site.
The update site administrator receiving updates, or com-
ponents from various third party oranizations will want to
know what level of code authorization a given component
will require (i.e. what system and network resources will it



Figure 11: SWORD4J JAR Signing Dialog

have access to based upon its included authorization pol-
icy). Additionally, an important aspect of deciding to allow
the execution, or hosting of third party-provided component
is its associated digital signature. SWORD4J addresses this
need by providing a JAR inspection utility. The JAR inspec-
tor analyzes a selected JAR within the Eclipse workspace
and provides detailed information about the JAR architec-
ture (package sealing), OSGi permissions (Code Authoriza-
tion policy), and digital certificates (signing information).

4.6 How to keep it secure
Once the components are secured, the organization needs

to ensure that they remain secure. SWORD4J has the op-
tion of running headless builds, whereby security reports are
generated via batch process and the reports are stored in a
repository for subsequent distribution. These reports can
then be imported into Eclipse IDEs, where developers can
view the analysis results. SWORD4J also generates sum-
mary reports which can be used by the build administrators
and the quality assurance team.

5. DISCUSSION
Section 2 outlines a set of representative development tasks

for securing Java code, and section 4 described how SWORD4J
addresses these tasks. In this section, we return to the set
of tasks of section 2 and describe how SWORD4J is able to
make improvements on the development process.

(A) SWORD4J addresses the security learning process,
to a limited degree, by providing online material that is rel-
evant to the security enabling. There could be better in-
tegration with existing online resources. How to integrate
educational reasources into the development process is a re-
search opportunity.

(B) Similar to (A) with respect to integrated resources
for learning while using the IDE. However, with respect to
learning how to debug the authorization policy, SWORD4J
greatly reduces the learning curve since the SWORD4J pol-
icy debugging is integrated into the IDE (see section 4.2.3,
Policy debugging). The policy debugging support also pro-
vides a clear advantage over the traditional approach since
SWORD4J figures out which CodeSources need an autho-
rization, and a quick fix will update the policy directly (no

editing required).
(C) SWORD4J supports run-time authorization through

a menu selection, or is automatic when using the Cheat
Sheets. While not a big time savings for the developer, it is
one less topic of concern.

(D) SWORD4J does not provide any support for test case
generation. SWORD4J focuses on determining authoriza-
tion policies through the use of static analysis. To the extent
that policy creation cannot be fully automated (unsoundness
due to all native methods not being modelled by the static
analysis engine, as well as the String or literal values to the
Permission class constructors), some test cases will still be
needed

(E) and (G) Similar to (B). SWORD4J provides debug-
ging support that allows for quick fixes to update autho-
rization policy entries that are missing or are incomplete.
This is clearly an advantage over the traditional approach
to policy debugging.

(F) SWORD4J has quick fixes that allow for updating of
the policy without having to know the location of format of
the policy description. In addition, there is a policy editor
which verifies the policy syntax (e.g., for the Java Policy-

File format), as well as the run-time policy debugging as
noted in (E).

(H), (I) and (J). SWORD4J provides refactoring automa-
tion for creating privileged code that greatly reduces the
amount of code editing needed for creating PrivilegedAc-

tions. Also, SWORD4J has tainted data detection, that
shows the tainted data flow path. These features can save
the programmer a considerable amount of time since these
are common operations.

(K) and (L) Secure coding guidelines and mutability anal-
ysis are partly automated by SWORD4J. What is clearly
valuable is that it can find the locations in the code where
the guidelines are being violated, as well as some limited
refactoring support. For mutability issues, SWORD4J clearly
has an advantage over other techniques since it can auto-
mate the mutability computations that are tedious and er-
ror prone when performed manually. For large code bases,
mutability analysis may not be practical due to the amount
of time that would be required.

(M) Complete mediation is currently not implemented in
SWORD4J, although it was implemented for C code using
the same static analysis infrasture [47]. This can be a very
time consuming tasks in the absence of automation. Our
experience was that automation can reduce a task through
the use of several minutes of computation.

(N) Code signing and keystore management integrated
into the IDE does not provide a big time savings, but does
result in a better developer experience by not having to exit
the developement envioronment to perform this task.

(O) SWORD4J has support for being integrated into the
build process, as was described above in section 4.6 “How to
keep it secure”.

5.1 Early emperical results
As previously noted, without SWORD4J, securing one

Eclipse RCP plug-in took six weeks. Using a subset of
SWORD4J that included privileged code placement with
call path reporting, and authorization policy analysis, a new
professional programmer was able to secure six Eclipse RCP
plug-ins in six weeks. This included testing the plug-ins to
ensure that they would continue to function as expected (us-



ing existing regression tests). However, this developer did
not have the tainted data analysis feature. This missing fea-
ture was one of the reasons that limited his productivity in
securing the plug-ins.

Even with the limited security analysis support, this pro-
grammer was six times more productive than before. We
found these early results very encouraging, leading us to
believe that we could improve security enablement by one
order of magnitude.

6. WEB APPLICATIONS
Securing Web applications shares many of the same char-

acteristics as securing Java components, although the details
are quite different.

Web programmers, like Java programmers, need to learn
the basics of secure programming. As with Java, there are
many security best practices that are described in books and
can be found on the Web. For the Web, however, there are
additional challenges due to programming-model differences
between the client and the server, as well as security con-
cerns related to the network protocol, which can introduce
security vulnerabilities.

Web programmers need to make authorization decision
both at the server and at the client. Server-side authoriza-
tion is usually based on a client’s identity (e.g., user id and
password). However, authorization must still be correctly
configured for all of the applictions’ entry points. Secure
client side cross-domain communication is challenging (e.g.,
[21]).

Test cases need to be created for the Web applications,
including testing for common Web vulnerabilities, such as
cross-site scripting, cross-site request forging, and SQL and
command injection. Black box testing appears to be a pop-
ular technique for detecting these vulnerabilities (e.g., [4]).

Once Web applications are created, they need to be main-
tained, resulting in the need to include security in the main-
tenance and build process. We hypothesize that adding in-
tegrated security analysis to Web development tools will be
beneficial to Web programmers.

7. RELATED WORK
Static and dynamic analysis techniques have both been

used for modelling authorization algorithms. Much of the
work has focused on performance optimizations or on pro-
viding alternatives to the existing approaches employed by
Java 2 [33, 32] and CLR [22]. Pottier, Skalka, and Smith [35]
extend and formalize Wallach’s security passing style [44]
via type theory using a λ-calculus, called λsec. However,
their approach does not model all of Java’s authorization
characteristics, including multi-threaded code and analysis
of incomplete programs [37], nor does it compute the autho-
rization object, which often includes identifying the String

parameters to the Permission object’s constructor. These
requirements are all addressed by SWORD4J.

The static analysis algorithms for authorization and privileged-
code analysis included in SWORD4J were described in two
conference papers [30, 27]. The analysis described in those
papers was not modular, was not optimized for efficiency
and scalability, and did not include any IDE support. The
work described in this paper greatly extends those prelimi-
nary implementations and adds support for multability and
accessibility analysis.

Bartoletti, Degano, and Ferrari [9] are interested in opti-
mizing performance of run-time authorization testing. This
is done by eliminating redundant tests and relocating oth-
ers as is needed. Additionally [10], they investigate ways in
which program transformations can preserve security prop-
erties in existing code, particularly in the context of Java.
Specifically, the transformations they study include redun-
dant authorization tests elimination, dead code elimination,
method inlining, and an eager evaluation strategy for stack
inspection. While their model takes privileged code into ac-
count, they assume that privileged code has already been
inserted, and do not solve the problem of detecting which
portions of library code should be made privileged.

Felten, Wallach, Dean, and Balfanz have studied a num-
ber of security problems related to mobile code [42, 17, 44,
14, 43, 16, 15]. In particular, they present a formalization of
stack introspection, which examines authorization based on
the principals currently active in a thread stack at run time
(security state). An authorization optimization technique,
called security passing style, encodes the security state of
an application while the application is executing [44]. Each
method is modified so that it passes a security token as part
of each invocation. The token represents an encoding of the
security state at each stack frame, as well as the result of any
authorization test encountered. By running the application
and encoding the security state, the security passing style
explores subgraphs of the comparable invocation graph, and
discovers the associated security states and authorizations.
The purpose of their work is to optimize the authorization
performance, while ours is to discover which portions of li-
brary code should be made privileged. Our approach ana-
lyzes all the possible execution paths, even those that may
not be discovered by a limited number of test cases.

Rather than analyzing security policies as embodied by
existing code, Erlingsson and Schneider [19] describe a sys-
tem that inlines reference monitors into the code to enforce
specific security policies. Their objective is to define a secu-
rity policy and then inject authorization points into the code.
This approach can reduce or eliminate redundant authoriza-
tion tests. Koved, Pistoia, and Kershenbaum [27] describe
an algorithm and system for computing Java 2 security au-
thorization requirements for existing Java code. Their algo-
rithm, which is the starting point for this paper, covers many
of the subtle aspects of Java 2 security, including authoriza-
tion requirements for multi-threaded applications and anal-
ysis of incomplete programs [37], for the computation of a
call graph.

Privileged code has historic roots in the 1970’s. The Dig-
ital Equipment Corporation (DEC) Virtual Address Exten-
sion/Virtual Memory System (VAX/VMS) operating sys-
tem had a feature similar to the doPrivileged() method in
Java 2 and the Assert() method in CLR. The VAX/VMS
feature was called privileged images. Privileged images were
similar to UNIX setuid programs, except that privileged
images ran in the same process as all the user’s other unpriv-
ileged programs. This meant that they were considerably
easier to attack than UNIX setuid programs because they
lacked the usual separate process/separate address space
protections. One example of an attack on privileged im-
ages is demonstrated in a paper by Koegel, Koegel, Li, and
Miruke [25].11

11In a private communication with Dr. Paul A. Karger [24],



The notion of tainted variables became known with the
Perl language. In Perl, using the -T option allows detecting
tainted variables [41]. Shankar, Talwar, Foster, and Wag-
ner present a tainted-variable analysis for CQual using con-
straint graphs [39]. To find format string bugs, CQual uses
a type-qualifier system [20] with two qualifiers: tainted and
untainted. The types of values that can be controlled by
an untrusted adversary are qualified as being tainted, and
the rest of the variables are qualified as untainted. A con-
straint graph is constructed for a CQual program. If there
is a path from a tainted node to an untainted node in the
graph, an error is flagged. Newsome and Song [29] propose
a dynamic tainted-variable analysis that catches errors by
monitoring tainted variables at run time. Data originating
or arithmetically derived from untrusted sources, such as
the network, are marked as tainted. Tainted variables are
tracked at run time, and when they are used in a danger-
ous way an attack is detected. Volpano, Irvine, and Smith
[40] relate tainted-variable analysis to enforcing information
flow policies through typing. Ashcraft and Engler [8] also
use tainted-variable analysis to detect software attacks due
to tainted variables. Their approach provides user-defined
sanity checks to untaint potentially tainted variables.

None of the works cited here discuss the integration of se-
curity analysis tooling into an IDE, or address the developer
productivity impact of such tooling.

8. CONCLUSIONS
This paper described a number of challenges in creating

secure Java applications that are both challenging and time
consuming. A set of technologies were created that greatly
improved the productivity of programmers. By analyzing
the set of representative tasks for securing software compo-
nents, we were able to identify those tasks that were most
time consuming and technically challenging. We also consid-
ered the set of affordances of the environment in which our
tools were to be integrated. These included task markers,
tasks lists, quick fixes, Cheat Sheets, and other technologies
with which the developers were already familar. The result
was a set of integrate analysis technologies to target these
security tasks, resulting in significant productivity gains.

We also argue that many of the security analysis tasks
involved in Java component development are similar to the
challenges for Web application development. We postulate
that similar technologies for Web applications will have com-
parable productivity gains for Web developers.
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