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Relationships between molecular clock deviations and 

high nonsynonymous to synonymous ratios among 

some older haplogroups. 
 
Daniel E. Platt 
 

Abstract 

This study presents an exhaustive computation of the deviations of substitution counts 
from what would be expected by a maximum likelihood Poisson regression model of a 
molecular clock, together with a similar computation of nonsynonymous to synonymous 
substitutions on each node, and their deviation from expectation determined from the 
entire phylogenetic tree.  We show that the observed deviating nodes shows significant 
overlap, primarily in leaf nodes, suggesting most nonsynonymous substitutions are 
recent, and not yet excluded by selection pressure, in agreement with prior studies.  We 
have verified prior studies also reporting some deviations of nonsynonymous to 
synonymous substitution ratios between northern and temperate climes, but, at the finer 
level of analysis, show that some of the groups of clades lumped by environment in 
previous studies are actually heterogeneous in their deviations, tending not to support 
environmental selection.  We have also identified deviations in older interior clades that 
share relationships with each other, suggesting drift effects fixing nonsynonymous 
substitutions before selection removed them from the population. 

Introduction 

The molecular clock hypothesis [1] represents an ideal against which deviations 

both reveal information and inject difficulties.  Genetic forces that may promote 

deviations from the molecular clock are a topic of increasing interest in recent research 

on the human expansion.[2, 3, 4, 5, 6, 7, 8, 9]  The difficulties associated with deviations 

from the molecular clock on estimation of times of most recent common 

ancestors,[10,11] and on phylogeny construction (particularly across taxa), and limited 

available data, has prompted the development of tools that allows local variation in the 

molecular clock, at the cost of introducing more parameters and variability into the 

problem.[12]  However,  the causes of violations of the molecular clock are also of 

significant interest, particularly because of what such violations may reveal about the 
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biological selection and population processes that promoted these divergences, which has 

prompted several good review articles and many studies.[13,14,15,16,17]  

Appendix A revisits the standard development of Markov processes in describing 

substitution processes.  Instantaneous substitution rate matrices that emerge from that 

description form the basis of substitutions as a Poisson process, both in terms of actual 

substitution events as well as genetic distance.  If substitution rate matrices reflect the 

differences present in mtDNA samples, they will reflect molecular substitution processes, 

heteroplasmy, selection, and population effects such as drift.  These issues inject 

variations in the relative timescales of selection and fixation, producing differences in the 

rates observed in different parts of the phylogenetic tree. Other issues include the impact 

of correlated substitutions on the ability to sum substitution rates, as well as the distinct 

question of the role that correlation between rate variations must play in order to observe 

significant deviations from Poisson clock-like behavior.  Deviations from the molecular 

clock are tied to relationships between selection and drift, allowing a Poisson maximum 

likelihood regression to act as a probe for processes inducing the differential rates 

described here. 

Details of the computation by Maximum Likelihood Poisson Regression as 

adapted here are presented in Appendix B. 

Efforts to identify environmental selection pressure have focused on variations in 

climate[2,4] as well as regionally localized haplogroups.[7,8,9]  Enrichment of 
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ratios in younger haplogroups has been identified by several studies[3,11], arguing 

against climate-driven selection pressure.[3]  Another review has also identified evidence 

of selection pressure, without such supportable evidence of climate-driven selection.[6]  

The review of substitution rates and Markov processes suggests some remarkable 

constraints on the type of processes that could produce differential rates of evolution.  

Specifically, these include correlated substitutions, as well as the necessity of correlations 

between the variations of substitution rates across sites.  In this second group, interactions 

between selection and drift stands out as a possible source of rate variations dependent on 

locations within the phylogenetic tree. 

This paper identifies a number of haplogroups that show some deviation from the 

best-fit molecular clock, and explores other measures of differential evolution, including 
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nonsynonymous to synonymous substitution ratios, 
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, determined exhaustively for 

the entire phylogenetic tree.  The method for determination of deviations from the 

molecular clock presented here echoes Sarich and Wilson’s approach, which compared 

differences between Poisson-distributed variables, determined by simulation to be 

normally distributed for Poisson counts 

! 

N " 20, yielding 

! 

" 2 distributed variables.[18]  A 

later study compared observed counts with those of counts placed by simulation on a 

phylogenetic tree, essentially implementing a Poisson distribution to measure 

probabilities branch-by-branch.[19]  Ancestral states were inferred using a modified 

Sarich-Wilson algorithm,[20] consistent with the relative rates test of the molecular 

clock. 

Materials and Methods 

 

Alignments and SNP Counts 

 

A dataset of 3839 complete mtDNA sequences were compiled from public 

databases Mitomap [21]  (http://www.mitomap.org/euk_mitos.html), and NCBI 

(http://www.ncbi.nlm.nih.gov/sites/entrez?term=Homo[Organism]%20AND%20mitocho

ndrion[All%20Fields]%20AND%2015000:17000[SLEN]%20NOT%20pseudogene[All%

20Fields]&cmd=Search&db=nuccore&QueryKey=1) around November 21, 2007 . These 

sequences were pair-wise aligned with the Revised Consensus Reference Sequence rCRS 

[22] by applying the linear global alignment algorithm “stretcher” [23] implemented in 

Emboss [24]  (http://emboss.sourceforge.net), and by ClustalW [25] and all SNPs 

identified across all of the samples were indexed.  SNPs included deletions, 

transversions, transitions, and deletions relative to rCRS.  However, insertions relative to 

rCRS were not included since associations between multiple insertions present 

ambiguities in comparisons between haplotypes bearing such SNPs.   Deviations from the 

rCRS that represent insertions or deletions represent special problems in comparing two 

haplotypes [26,27] with each other because alignments within multiple-site insertions or 

deletions are not consistently indexed in their alignment with each other.  The most 

consistently identifiable mutations to process are nucleotide changes from the rCRS, 
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excluding deletions or insertions.  This implies significant blind spots that could be 

important to groups outside of the rCRS H haplogroup, as well as reliable resolution of 

mutations in regions involving insertions relative to rCRS. If the SNP is due to base 

calling or alignment errors, then the number of haplotypes in which such a SNP may 

appear would be expected to be low.  For each alignment, the number of haplotypes 

supported by each SNP was determined.  The relationship between support and putative 

error is explored. 

A similar analysis, applying ClustalW to data collected by Herrnstadt et al [7,28]  

was aligned with the rCRS, and SNPs were identified.  Following a neighbor-joining 

analysis,[29] it was pointed out by Bandelt [30] that there are a number of sources of 

error, some of which specifically identified in the Herrnstadt et al neighbor-joining study.  

Herrnstadt responded by acknowledging Bandelt’s contribution,[28] identified and 

corrected those errors, and more, and made the data available.  Since then, the data, 560 

complete mtDNA sequences excluding D-Loop sites are available courtesy of MitoKor at 

http://mito546.securesites.net/science/560mtdnasrevision.php.  56 of these are L clades, 

which were republished, together with 37 new L-clade haplotypes, all with control region 

sites.  This new data was published with the supplementary material online.[7] 

SNPs identified in the alignment were indexed according to rRNA, tRNA and 

coding segments, as well as D-LOOP and HVS-I and –II membership using the 

information in Anderson et al.[31] At each site, an index of all possible substitutions (A, 

C, G, T) against the RCRS, using the tRNA tables[31] to determine peptides for each 

specific possible nucleotide substitution in the coding segments. 

 

Haplogroup Assignment 

 

These haplotypes were assigned to haplogroups as outlined by the Genographic 

Project public participation markers.[32] The phylogenetic tree shows polytomy, which 

was reduced to bifurcations [33] with branch orders selected to roughly reflect observed 

mutation counts.  Note that labels marked with “x”, representing “complement,” provide 

references for otherwise un-named clades necessary for discussion, but do not reflect any 

intent to introduce nomenclature.  The haplotypes were assigned to each clade and 
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subclade down to the leaves of the phylogenetic tree following the protocol defined in the 

Genographic report.  More detailed information from the L clades, together with some 

finer detail in some other haplogroups was spliced into this tree. Inclusion of more 

detailed L clades appropriate to this study presents some difficulties.  Nomenclature 

among L clades is not consistent.  For example, L0a as defined by Kivisild et al [3] is   

marked as L1a by Torroni et al. [9]  The Torroni study used L1a only as an outgroup.  

This study will follow the phylogeny described by Kivisild, which is most consistent with 

the tree on the mtDB website ( http://www.genpat.uu.se/mtDB/ ) [34]  The L2 clades are 

more consistently marked.  The Mitomap phylogeny avoids some of these issues by 

simply not labeling the branches except by marker.  Other phylogenies consulted include 

those of Bandelt [35] and Macaulay.[36]  
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Figure 1.  Phylogenetic tree and haplogroup markers used for classification of haplotypes. 

 

 

Inferring Ancestral States 

 

The algorithm employed in this study is an adaptation of  Sarich and Wilson’s 

approach.[20]  The adaptation described here essentially considers each SNP and 

mutation candidate individually to assign contribution to the appropriate node.  

Thresholds are applied to sibling and outgroup clade comparisons to avoid counting low-

support errors. 

Identification of mutations, or which haplotype nodes should own which 

mutations given homoplasies, should take cognizance the following.  First a mutation that 

occurred in a clade is likely not going to be present in its sibling.  If a SNP is present in 

both siblings, the mutation marked by the SNP occurred in a parent mutation.  Given that 

a SNP is so marked, as absent from its sibling, looking in the parent clade’s sibling can 

further check the mutation state of that SNP value.  If a mutation occurred in a clade, 

generally, both subclades will contain some haplotypes carrying the marker.  An 

algorithm that places a candidate mutation in a node that 1) is present in some haplotypes 

above a proportionate threshold in the node, 2) is absent (below some stringent threshold) 

in neighbor and nearest outgroup (parent’s sibling – in the case of the root node, the 

nearest outgroup is comprised of two chimpanzees and a bonobo obtained from 

http://www.genpat.uu.se/mtDB/ [34]), 3) and is present (above some threshold) in 

haplotypes assigned to both children (if it is not a leaf), will guarantee placement as 

recently in the tree as possible, and can place markers in multiple locations within the 

phylogeny (homoplasy) where this mutation could occur, except for those so close to 

each other that it would not be possible to resolve the mutation from sibling and parent’s 

sibling.  These conditions are guaranteed to preserve mutations when subclade 

bifurcations are trimmed yielding lower resolution in the tree, except for the case of 

homoplasy in the nearest outgroup (parent’s sibling).  While the number of mutations 

associated with a trimmed node may increase (approximately the union of both children), 

the number of such mutations associated with each of the haplotypes, also comprised of 
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the union that would have been assigned to subclades, does not increase, and may 

actually decrease if some mutations are lost due to homoplasy in the outgroup.   The 

estimate of the number of mutations that occurred along the lineages within a node is 

computed from the average and variance of the number of mutations observed across the 

haplotypes in that node.  

It has been noted that the Fitch algorithm is capable of identifying ambiguities in 

a maximum parsimony estimate of the number of mutations given the possibility of 

multiple mutations along a lineage.[37]  However,  the probability of finding such in a 

data set given so few mutations along a human mtDNA lineage to the most recent 

common ancestor is small.  Both relative rates and the Fitch algorithm are likely to suffer 

from noise.  An advantage to the modified relative-rates approach is that it easily allows 

the use of thresholds to screen and/or allow for some of the noise identified in the data 

set. 

Upon identification of each substitution, the peptide associated with each coding 

region is identified.  This is compared to all the peptide assignments at that site in the 

sibling group haplotypes.  The fraction of synonymous and nonsynonymous substitutions 

are accumulated in the node, yielding measures of 
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 Variations in the number of mutations identified in each node across the 

haplotypes are also recorded, to estimate overdispersion  [38, 39]   of the molecular clock 

relative to the expected Poisson distribution.  Such estimate must be done within each 

node to control for the significant correlation imposed by the phylogenetic tree structure.  

While overdispersion is a sure demonstration of violation of the molecular clock, 

correlations due to phylogeny may result in apparent underdispersion in a sample. 

Unfortunately, measures of overdispersion can be sensitive to sampling weights of 

haplotypes within any particular clade, confounding results.  Therefore, that analysis is 

not reviewed here. 

 An estimate of the probability of finding that many or more/less (depending on 

whether the average substitution count is above or below that expected by ML Poisson 

regression) is computed.  There is a challenge in that this would represent the probability 

of finding an individual haplotype with that much deviation, not the average for the 

haplogroup node.  A difficulty exists in that the haplotype substitutions tend to be 
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strongly correlated in the haplogroup (the Hg H haplogroup is distinct in having a wide 

range of markers distributed among its large number of haplotypes, yet each haplotype 

shows an average of around two substitutions, indicating low correlation). 

 

Silent and Nonsynonymous Substitutions 

 

The ratio 
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s
 is computed for each node.  These counts are compared to a binomial 

distribution where the probability of observing a count equal to or more/less than that 

expected for the global count 

! 

p = Ka Ka + Ks( )  is computed and tabulated. 

 

Evidence of interactions 

 

 The presence of correlated substitutions, as described in the appendix, would 

challenge the additivity of  substitution rates across sites.  Other dependencies would be 

difficult to detect given the very low substitution rate (there are only around 1700 

substitutions out of 15,000+ sites, with each haplotype carrying some number less than 

40 substitutions).  This implies that dependence of rates on neighboring states is not 

sampled across a wide range of substitutions.  This leaves the question of whether 

correlated mutations occur in numbers large enough to impact rate calculations.  This is 

distinct from the question of whether such interactions exist, but rather whether such 

interactions would be sufficient in number to affect rates.  Parenthetically, if they were 

present in such numbers, phylogeny reconstruction efforts would likely reflect these 

effects in greater number. 
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Results 

 

Haplogroup Assignments 

 

 The alignments of the Herrnstadt set and subsequent SNP identification produced 

1779 SNPs.  These were retained.  The alignments with the NCBI set showed more than 

11,000 SNPs, reflecting significant noise.  A histogram across sites showed no distinction 

between coding region and hypervariable regions in SNP counts.  Exclusion of SNPs 

below support thresholds showed reductions in counts that changed qualitatively at 

around 8 haplotypes, with a much more level fall-off of SNPs at higher supports.  The 

number of recorded SNPs at 10 haplotypes support showed around 2,000 SNPs, with a 

histogram that clearly identified hypervariable regions as distinct from coding regions.  

There are some haplogroups with smaller numbers of haplotypes than the support level of 

10, rendering any estimate of substitution counts in those groups suspect.  Some HV 

markers showed apparent back-mutations, misplacing significant numbers of H 

haplotypes in R clades.  For these reasons, the NCBI set was not used. 

 The identification of markers in the L clades corresponded to those reported 

elsewhere. [7,8,29]  

 

Maximum Likelihood Poisson Regression 

 

The Poisson regression shows the required constraints (i.e. 

! 

"
V

= "
H

+ "
xV

).  

Larger deviations, many of which are significant, though non are highly significant, are 

identified at Hgs L0a, L2b, xL2a*, D, B, U, K, U*, xR9, xW, and X, many of which have 

been identified in prior studies.[3,4,7,8,9]  All are leaf nodes except for xR9 and xW, 

though leave nodes associated with these are balanced with the local Poisson regression 

estimates.  Hg B appears significant, but the variation 

! 

"
m

 among haplotypes within Hg B 

is also large, so this result is not such a clear result.   Similarly for Hgs K, U*, and xW.  

Only a fraction of haplotypes register any substititons in Hg  U. 
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Haplogroup H is unusual.  It has a large number of haplotypes, and a large 

number of substitutions in the group.  However, the number of substitutions per 

haplotype is lower than expectation.  While the probability of seeing only 2 or less given 

an expected number of substitutions of 3.34 is 0.35, the largely independent character of 

the haplotypes and their substitutions sampled appears to indicate some unusual character 

in or around this clade. 

 

 

Haplogroup 

! 

"  

! 

"# 

! 

m  

! 

"
m
 L-R tail 

! 

P m;"( )
m

#  

root 0.0000 0.0000 0.0000 0.0000 - ------ 
L0/L1 2.4812 0.2178 3.0000 0.0000 > 0.2384 
L0a 25.8938 0.2891 33.7143 2.8140 > 0.0720 
L0/L1* 25.8938 0.2891 30.7812 3.9901 > 0.1808 
L2/L3 7.4645 0.1105 7.3645 0.6745 < 0.6668 
L2 6.1340 0.2704 6.0159 0.2813 < 0.7253 
L2a 14.7765 0.2946 12.6042 2.4895 < 0.3849 
xL2a 0.0000 0.0000 0.0000 0.0000 - ------ 
L2b/c 3.0225 0.3664 4.1539 1.7908 > 0.1885 
L2b 11.7541 0.4307 19.2500 1.0897 > 0.0176 
xL2b 11.7541 0.4307 11.2000 4.7497 < 0.6041 
xL2a* 14.7765 0.2946 22.0000 0.0000 > 0.0284 
L3 6.6431 0.1084 6.5586 0.8104 < 0.6517 
M 3.0913 0.3929 2.0000 0.0000 < 0.4031 
D 11.1762 0.4097 5.8889 0.7370 < 0.0717 
xD 5.3811 0.5300 3.8235 2.0069 < 0.3763 
C 5.7950 0.5358 4.1667 0.9860 < 0.4791 
M* 5.7950 0.5358 4.0000 0.8944 < 0.3134 
xM 1.4266 0.0519 1.4327 0.8962 > 0.4173 
N 5.8766 0.1049 6.0865 1.1432 > 0.3739 
R 1.3210 0.0543 1.3606 1.1392 > 0.3806 
R0 2.1845 0.1281 1.0000 0.0000 < 0.3584 
HV 0.0000 0.0000 0.0000 0.0000 - ------ 
V 3.4588 0.1374 2.3750 0.4841 < 0.5455 
xV 0.1116 0.0359 0.0502 0.2184 < 0.9942 
H 3.3472 0.1376 1.5455 1.4307 < 0.3500 
HV* 3.3472 0.1376 0.7000 0.9000 < 0.1529 
R0* 3.4588 0.1374 1.0000 0.0000 < 0.1403 
xR0 3.4187 0.0894 5.8936 3.6040 > 0.1318 
B 2.2246 0.0753 5.1579 3.0134 > 0.0261 
xB 0.3142 0.0322 0.5207 1.2922 > 0.2697 
R9 1.9104 0.0715 1.5000 0.5000 < 0.7009 
xR9 0.0862 0.0171 0.1437 0.3834 > 0.0826 
J 1.8242 0.0703 1.4688 1.1452 < 0.7241 



 - 12 – 
 
 

Haplogroup 

! 

"  

! 

"# 
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m  
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m
 L-R tail 

! 

P m;"( )
m

#  

xJ 0.1662 0.0247 0.3111 0.6718 > 0.1531 
U 0.0438 0.0141 0.1047 0.3061 > 0.0428 
K 1.6143 0.0678 3.2444 1.8638 > 0.0808 
U* 1.6143 0.0678 4.5366 3.4152 > 0.0245 
xU 0.0000 0.0000 0.0000 0.0000 - ------ 
T 1.6580 0.0682 1.7381 1.7870 > 0.4936 
R* 1.6580 0.0682 0.7143 0.8806 < 0.5064 
xR 0.0000 0.0000 0.0000 0.0000 - ------ 
X 6.9643 0.1134 2.7273 0.8624 < 0.0836 
xX 0.3955 0.0795 0.4894 0.5408 > 0.3267 
W 6.5688 0.1331 8.6250 1.4087 > 0.2167 
xW 0.1049 0.0461 0.1282 0.3343 > 0.0996 
N1 2.9580 0.2995 3.8571 0.5151 > 0.3434 
I 3.5058 0.3022 5.0000 2.2361 > 0.1432 
N1* 3.5058 0.3022 2.0000 1.0000 < 0.3198 
A 6.4639 0.1388 7.6000 1.0583 > 0.3220 
L3* 12.8409 0.1473 8.7391 2.8775 < 0.1766 

 

 

Table 1. Estimated times (

! 

T ), Poisson parameters (

! 

" ),number of mutations (

! 

m ) at each 

node, and number of haplotypes 

! 

N  for the full phylogenetic tree from the Herrnstadt set. 

 

 

Coding Nonsynonymous vs. Synonymous ratios 

 

 Haplogroups showing larger deviations are Hgs L0a, L2, L2b, xL2b, D, N, xR0, 

xR9, and L3*.  All are leaves except for xR0, and xR9.  Of those that show deviations, 

only N, xR0 and L3* do not show significant variation from the molecular clock. 

 The estimated 
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s
= 0.5885 obtained here is significantly larger than the ratio 
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= 0.198 ± 0.054  reported by Hasegawa et al [40] for human and other species. 

 

 

Haplogroup # Haplotypes 

! 

k
a
k
s
 

! 

N  L-R Tail 

! 

P na;p,N( )
na

"  

root 648.0000 ------- 0.0000 - ------- 
L0/L1 39.0000 1.0000 2.0000 > 0.6037 
L0a 7.0000 0.3333 40.0000 < 0.0760 
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Haplogroup # Haplotypes 
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N  L-R Tail 

! 

P na;p,N( )
na

"  

L0/L1* 32.0000 0.6338 116.0000 > 0.3819 
L2/L3 609.0000 0.6667 10.0000 > 0.5413 
L2 63.0000 0.0000 6.0000 < 0.0622 
L2a 48.0000 0.6216 60.0000 > 0.4666 
xL2a 15.0000 ------- 0.0000 - ------- 
L2b/c 13.0000 0.5000 3.0000 < 0.6899 
L2b 8.0000 0.4706 25.0000 < 0.3828 
xL2b 5.0000 1.3750 19.0000 > 0.0523 
xL2a* 2.0000 0.3077 17.0000 < 0.1847 
L3 546.0000 0.3846 18.0000 < 0.2900 
M 26.0000 1.0000 2.0000 > 0.6037 
D 9.0000 2.3333 10.0000 > 0.0359 
xD 17.0000 0.6667 5.0000 > 0.6102 
C 12.0000 1.0000 10.0000 > 0.2951 
M* 5.0000 0.6000 16.0000 > 0.5785 
xM 520.0000 0.2727 14.0000 < 0.1765 
N 474.0000 1.5714 18.0000 > 0.0328 
R 416.0000 1.0000 16.0000 > 0.2060 
R0 228.0000 0.0000 1.0000 < 0.6295 
HV 227.0000 ------- 0.0000 - ------- 
V 8.0000 0.4966 3.0000 < 0.2495 
xV 219.0000 0.0000 1.0000 < 0.6295 
H 209.0000 0.6667 135.0000 > 0.2658 
HV* 10.0000 1.0000 4.0000 > 0.4732 
R0* 1.0000 ------- 0.0000 - ------- 
xR0 188.0000 0.2914 31.0000 < 0.0279 
B 19.0000 0.9000 19.0000 > 0.2409 
xB 169.0000 2.0000 3.0000 > 0.3101 
R9 2.0000 1.0000 2.0000 > 0.6037 
xR9 167.0000 4.0000 5.0000 > 0.0663 
J 32.0000 0.8333 22.0000 > 0.2720 
xJ 135.0000 0.5000 12.0000 < 0.5235 
U 86.0000 ------- 1.0000 > 0.3705 
K 45.0000 0.5789 30.0000 < 0.5642 
U* 41.0000 0.5366 63.0000 < 0.4176 
xU 49.0000 ------- 0.0000 - ------- 
T 42.0000 0.6250 26.0000 > 0.5143 
R* 7.0000 0.5000 3.0000 < 0.6899 
xR 58.0000 ------- 0.0000 - ------- 
X 11.0000 0.5216 9.0000 < 0.5572 
xX 47.0000 1.0000 2.0000 > 0.6037 
W 8.0000 0.3077 17.0000 < 0.1847 
xW 39.0000 0.0000 1.0000 < 0.6295 
N1 14.0000 1.0000 4.0000 > 0.4732 
I 12.0000 0.6000 16.0000 > 0.5785 
N1* 2.0000 0.5000 3.0000 < 0.6899 
A 25.0000 0.4706 25.0000 < 0.3828 
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Haplogroup # Haplotypes 
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! 

N  L-R Tail 

! 

P na;p,N( )
na

"  

L3* 46.0000 0.4208 81.0000 < 0.0759 
 

 

Figure 2. 

! 

K
a
K

s
= 0.5885 for the entire population.  This table shows nonsynonymous to 

synonymous ratios for all nodes across all protein coding regions.  Probabilities are listed 

as computed against a null hypothesis of binomial sampling from the entire population, 

where the probability represents the chances of seeing that many substitutions or 

more/less (depending on whether the ratio is larger or small than expected) by chance.  

! 

N  

is the number of coding region substitutions. 

 

Interaction Candidates 

 

 Substitutions that appeared in L2b, one of the candidates for unusual numbers of 

substitutions,  and in other non-L haplogroups in the Herrnstadt dataset include 3 from H: 

4185T, 4767G, and 5237A, and single entries K: 5237A, 6: 6026A, U*: 6629G (two 

haplotypes), xJ: 12406A (three haplotypes out of 135), M*: 15236G, and R: 15326A 

(eight haplotypes out of 416).  These do not appear to represent significant contributors to 

rates. 
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Conclusions 

Analysis of the Markov character of stochastic substitution models indicates that 

independent rate variations should show molecular clock-like behavior in a fairly robust 

manner.  Deviations must imply either interactions between substitutions, or correlations 

between substitution rates.  Substitution interactions show two types of signatures: 1) 

rates of multiple substitution events of 

! 

O "t( ), or 2) rates at one site that depend on 

nucleotide values at other sites.  While some rare homoplasies were identified that may 

represent candidates, significant numbers would need to be apparent in order to 

significantly impact substitution rates.  Given less than 40 substitutions back to the most 

recent common ancestor for the human mtDNA phylogeny, and around 1000 SNPs out of 

the roughly 15,000 coding region sites, there is not significant opportunity for these 

interactions to affect rates sufficiently to account for deviations from the molecular clock.  

What remains are correlations between variations in substitution rates.  Without such 

correlations, the cumulative rate would converge to a fairly stable mean due to the action 

of the central limit theorem.  Therefore the effective number of independently varying 

rates must be reduced by correlation.  This leaves the question of which processes can 

lead to correlations between large numbers of sites. 

 Selection, by itself, could account for gradients in substitution rates among 

substitutions marking older haplogroups to substitutions that occurred within younger 

haplogroups.   Population changes without selection will not affect substitution rates.[41]  

Therefore, population size interactions with substitution rates must be enabled by 

selection.  This interaction is realized in the relative time it may take for a deleterious 

substitution to become fixed in the population vs. the time it takes for selection to remove 

the deleterious substitution.   

Candidates for selection driving deviations from the molecular clock would be 

identified by deviations from the molecular clock accompanied by unusual 

! 

k
a
k
s
 ratios.  

Those that may mark population size-selection interactions will be those that are 

identified in older haplogroups interior to the tree. 
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Prior studies seeking to identify environmental selection effects have tended to 

lump multiple haplogroups into regional groups.[2,4]  For example, Northern Asians 

would include the C and D clades.  Hgs A and B do not appear in their list of deviants. 

However, haplogroup-by-haplogroup analysis presented here shows a significantly high  

! 

k
a
k
s
 for D, but not for C.  Hags A and B also are not significant in deviation of 

! 

k
a
k
s
.   

Deviations from the mean clock show up also for Hg D, but not A, B, or C.  Among those 

interior nodes showing both deviations from the mean clock and with significant 

! 

k
a
k
s
 

deviations, namely xR0 and xR9, which are branch points of a number of haplotypes 

showing movements through a diverse range of environments.  Given these 

considerations, it would appear that environmental selection is not strongly supported by 

! 

k
a
k
s
 of multiple haplogroups associated with differences in northern vs. southern 

climes. 

 Alternatively, almost all of the deviants from both the molecular clock and the 

! 

k
a
k
s
 ratio appear in or near the leaves, consistent with results of other studies.[6,11], 

and also consistent with the identification of “private substitutions” by Howell et al.[7,8]  

Further, there is significant overlap between lists of groups showing deviations from the 

molecular clock and 

! 

k
a
k
s
.  This would be consistent with a picture of deleterious 

nonsynonymous substitutions being removed from their populations by selection over 

time, ultimately achieving some equilibrium in deeper nodes.   

 It is also notable that while most deviations occur in leaves, this is not universal 

for all leaves.  Only some leaves show deviations.  It would be expected that the mutation 

rate matrix would produce a binomially distributed spectrum of nonsynonymous 

substitutions insensitive to the deleterious character of the mutation except for those that 

are immediately lethal.  Selection will act to remove many of these over time.  At the 0.1 

level that was chosen as a threshold, it would be expected that between 4 and 6 leaf nodes 

would have been in this list, and a similar number from deeper in the tree.  The number of 

leaves observed exceeding the expected nonsynonymous to synonymous ratio was about 

expectation, while the number exceeding the molecular clock expectation was rather 

larger than this number.  The number from non-leaf nodes was well under expectation.  

Significantly, those haplogroups deeper in the tree that were identified as deviant are also 

closely associated with each other, indicating systematic deviation in those clades.  
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Specifically, xR0 and xR9 were introduced to resolve polotomy ambiguities.  SNPs 

associated with them are placed in the interior due to the K/U* and T/R* splits.  

Therefore, these 

! 

k
a
k
s
 ratios and notable (though not significant) deviations from the 

mean clock may indicate unusual levels of nonsynonymous substitutions becoming fixed 

during some period of small population sizes in the clades. 

 While the L clades that have shown deviations are technically leaf nodes, they are 

very deep clades, showing 20’s of substitutions per haplotype.  This suggests that they 

should be dominated by older substitutions, with many of the deleterious nonsynonymous 

substitutions having been removed by selection.  Yet, they show significant deviations 

from expectation not typical of clades closer in age to their common branch points.  In 

this respect, they share some similarities to the xR9 clade. 

 Among all of the cited results, the most striking deviations are among the L0-L2 

clades.  These deviations are apparent even at the course-grained resolution that this 

study accomplished.  A much more detailed study[42] of the L clades has suggested that 

the early expansion of H. sapiens through Africa was characterized by a long-term 

isolation of numbers of very small matrilineal groups.  Numbers of groups with small 

effective population sizes would be consistent with higher rates of fixed nonsynonymous 

substitition rates than in other populations.  Numbers of substitutions from the present to 

clade MRCAs are consistent with those obtained here assuming the same 5138 

yrs/substitution[2] employed in that study. 

While nonsynonymous-synonymous ratios may provide insight into this situation, 

they are by no means exhaustive of deleterious substitutions, considering tRNA’s,[5] and 

rRNA impacts.  This is highlighted by xL2a*, where the number of substations is larger 

than expected, yet the nonsynonymous to synonymous substitution ratio is close to the 

phylogenetic average. 
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Appendix A 
 

Introduction 

 

The purpose of this section is to consider premises necessary for the description of the 

molecular clock, and to determine whether and in what ways a constrained Poisson 

regression constitutes an effective test of the molecular clock hypothesis for the human 

mtDNA phylogeny.  

The molecular clock hypothesis [1] depends on the notion that molecular and 

population processes producing nucleotide substitutions in a population or across any 

number of populations will operate with the same substitution rates throughout the 

phylogenetic tree.  Observed violations of a molecular clock [2] should therefore involve 

mechanisms relating differences in rates to differences in environment, genetics, or other 

elements that would cause deviations.[3,4,5,6]    

Among these are population effects [7,8,9] including those due to enhanced 

chance for a mutation, weakly deleterious or not, to survive in smaller effective 

populations,[10] variations in generation time, geographical environmental effects that 

differentially impact selection in the phylogenetic tree depending on where different 

mutations emerge [11,12,13], and geometric impacts, such as protein DNA and RNA 

folding, that impose selection-based correlations between mutations at different sites in 

the genetic sequence.  Yet, founding events and bottlenecks are characterized by a loss of 

diversity [14] in the population; effect on evolutionary rate (rate that substitutions are 

accumulated in each lineage) is not so clear. 

 

Conditions leading to Markov Processes 

 

Cells, including the germ line, contain multiple mitochondria, among which 

various mitochondria may bear different mtDNA sequences, a condition called 

heteroplasmy.[15]  In any organism, the distribution of alleles may vary from tissue to 
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tissue.  Each ovum represents a population bottleneck.  From generation to generation in 

a population, drift and selection impacts the measured variation in the population. 

A standard approach is to develop a phenomenological probability model, and 

explore the constraints that such a model imposes. 

First, it is possible to at least conceptually consider probabilities such as 

! 

p xs,t( ) = P Xs t( ) = xs( ) , where 
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X
s
t( )  is a random variable representing a nucleotide type 
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( , a Markov process.  This could be 

applied yet again iteratively, yielding the Chapman-Kolmogorov equation 
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) .  Therefore, under very general 

considerations, a Markov model emerges naturally from an assumption of a substitution 

process regardless of dependence on other sites.  Essentially, the above applies to the 

marginal summed over all other sites that specific substitution rates (not yet defined here) 

might depend upon.   

 

Substitution Rates: the Differential Chapman-Kolmogorov Equation 

 

A stochastic substitution rate may be constructed by defining 

! 

Aij t( ) = lim
"t#0

p i,t + "t j, t( ) $ p i,t j,t( )
"t

= lim
"t#0

p i,t + "t j, t( ) $"ij
"t
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The assumption that such a limit exists imposes constraints on the analytical form of  
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p xs,t xs
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' 
( .  Specifically, no cyclic behavior, and the distribution evolves with a 

diffusive character.  Phenomenologically, the assumption being made is that a time scale 
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! 

"t  describes a time scale very small compared to the time over which 

! 

p xs,t xs
",t

0
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$ 
% 
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' 
(  

varies, but long compared to the time that defines a stable presence of a substitution in 

the population.  However, there are a number of processes acting, two of which being 

selection and drift.  Selection operates on a characteristic time scale 

! 

" #1 s, while drift 

operates on a time scale 

! 

" # N
e
.  If the population is small, drift may dominate over 

selection: more deleterious substitutions may survive in that smaller population more 

probably than in larger ones.  Further, those lineages with more deleterious substitutions 

are more likely to die out over time within any haplogroup, leaving more depleted 

nonsynonymous substitutions for older haplogroups than younger subhaplogroups.  Even 

if bottlenecks and varying population sizes in the history of a haplogroup did not play a 

role, the formation of subhaplogroups may probe time scales at some 

! 

" < #t  assumed for 

selection to have uniformly weeded out nonsynonymous deleterious substitutions to some 

equilibrium threshold.  Some of those haplotypes in leaf nodes bearing deleterious 

substitutions may be selected out later, when the node moves to the interior of the tree.  

The Poisson processes (described later) will measure these rates as they appear now.  

The result is that rates measured for the same events in the haplogroup (node) will appear 

to change over time as that haplogroup ages and moves deeper in the tree.  The tree can 

probe on a time scale 

! 

" < #t , smaller than the time scale assumed for the limit to be a 

valid description.  

 The existence of such a limiting form implies

! 

p i,t + "t j,t( ) = "ij + Aij t( )"t + o "t( ). 

The Chapman-Kolmogorov equation becomes 
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Chapman-Kolmogorov equation may then be rewritten 
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a form called the “master equation.” 
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Stationary Solutions 

 

There are a number of special cases for the 

! 

Aij ’s that have been studied and used 

extensively.  These include the Jukes-Cantor model,[16]  Kimura 2-Parameter model,[17] 

Felsenstein ’81 model,[18] Felsenstein ’84 model,[18] Hasegawa, Kishino, and Yano ’85 

model,[19] Tamura-Nei ’92 model,[20] Tamura-Nei ’93 model,[21] and the General 

Time Reversible model (REV/GTR).[22,23]   One of the primary reasons so many 

variants exist is the diagonalization characteristics of these particular matrices allowing 

for closed-form analytical expressions of the genetic distance by means of eigentheory. 

The expectation is that the 
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( )* s  independent of the initial state after 

some long time.  Certainly such a condition can be guaranteed given a term-by-term 

cancellation in the master equation, yielding 
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.  In this case, this states that 

the total rate of transition 
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i" k  is equal to the total rate of transition 
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k" i , a condition 

called detailed balance.  If this is true in a tree, then it does not matter which direction 

one transverses an edge, and the phylogeny may be constructed in an unrooted manner, 

which is what is meant by a time-reversible model.  This matrix relationship is satisfied 

by 
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It is possible to prove that a limiting stationary solution exists under GTR.  
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$ < 0.  This implies that this positive 

number must decrease, approaching some greatest lower bound (0 is a lower bound, so 

some greatest lower bound possibly larger than 0 exists), at which time the rate of change 
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 being unique.  

Interactions between sites 

Consider the case where two sites 
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The continuous time-like rate may be defined 
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The differential form of the Chapman-Kolmogorov equation may then be written 
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* 
+ . 

These rates are constrained in their relationship to the one-site marginal rates. 

! 

"p xs1 ,t( )
"t

=
"p xs1 ,xs2 ,t( )

"t
xs2

# = A
xs1 xs2 xs1

$xs2
$
t( )

xs2 ,xs1
$ ,xs2

$

# % p xs1
$,xs2

$,t
& 
' 
( ) 

* 
+ = A

xs1 xs1
$
t( )

xs1
$

# % p xs1
$,t

& 
' 
( ) 

* 
+ , 
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so that 

! 

A
xs1 xs1

"
t( ) = A

xs1 xs2 xs1
"xs2

"
t( )

xs2 ,xs2
"

# $ p xs2
",t xs1

",t
% 

& 
' 

( 

) 
* . 

If the sites are independent, then 

 

! 

P X
s
1

t( ) = x
s
1

" X
s
2

t( ) = x
s
2

( ) = P X
s
1

t( ) = x
s
1

( )P X
s
2

t( ) = x
s
2

( ) . 

Inserting this into the rate equation, this yields the following constraint on rates: 

! 

A
x
s1
x
s2
x
s1

"x
s2

"
t( ) = A

x
s1
x
s1

"
t( )#

x
s2
x
s2

"
+ A

x
s2
x
s2

"
t( )#

x
s1
x
s1

"
. 

In other words, rates are additive.  The probability of observing multiple transitions in 

time 

! 

"t  is 

! 

O "t 2( ), which is the effect of the Kronecker-

! 

"’s.  The contribution to the rate 

of the transition of 

! 

s
1
 is not influenced by the value of 

! 

x
s
2

. 

 Interactions between substitutions at multiple sites could produce deviations as 

catalogued above: specifically, that 1) double substitutions could be promoted with 

probabilities 

! 

O "t( ) resulting in the effective total rates not being additive, 2) the 

contributions of individual rates depends on the value of other sites’ nucleotides.  Of 

these, the issue related to 

! 

"t  most directly is the promotion of simultaneous substitutions.  

In this case, a situation where such might be observed would be multiple mutations with 

selection promoting specific pairs in a time short compared to fixation. 

 

Independent Markov Substitution Events Must be Poisson Processes 

 

 Poisson processes are Markov processes, where the distribution of the number of 

transitions that occurred are counted rather than the end-states resulting from specific 

transitions.  If the rate that transition events happen is 

! 

r , construct a distribution of 

transition events counting events 

! 

N t( ).  Then the probability of seeing 

! 

n  transitions at 

time 

! 

t + "t  is equal to the total probability of seeing 

! 

n  at time 

! 

t  and none in time 

! 

"t  plus 

that of seeing 

! 

n "1 at time 

! 

t  and one in time 

! 

"t , or 

! 

P N t + "t( ) = n( ) = r"t # P N t( ) = n $1( ) + 1$ r"t( )P N t( ) = n( ) . 

The resulting differential equation satisfied by this is 
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! 

"P N t( ) = n( )
"t

= r # P N t( ) = n $1( ) $ r # P N t( ) = n( ) . 

The similarity to the master equation is very visible.  If the conditions are stationary, the 

distribution of events is Poisson distributed 

! 

P N t( ) = n( ) =
rt( )

n

n!
e
"rt  

 

If a number of events occur independently, rates are additive.  Given two groups 

of events, with cumulative substitution counts 

! 

n
1
 and 

! 

n
2
 over time 

! 

t  with rates 

! 

r
1
 and 

! 

r
2
, 

the distribution of the total number of counts 

! 

n = n
1

+ n
2
 will be distributed according to  

! 

P
n
t( ) =

r
1
t( )
n1

n
1
!
e
"r1t

r
2
t( )
n2

n
2
!
e
"r2t

n1 ,n2

n1 +n2= n

# =
r
1
+ r

2( )t[ ]
n

n!
e
" r1 +r2( ) t . 

In other words, the rates are cumulative.  

 At a particular site, the rate that a nucleotide species 

! 

j  transitions to species 

! 

i  is 

! 

Aij" j .  The total rate that all species 

! 

j  contribute to the probability of a specific species 

! 

i  

is 

! 

Aij" j

j# i

$ .  The total rate of all transitions over all species 

! 

i  is then 

! 

Aij" j

i, j# i

$ .  If all sites 

! 

s are independent, then the total rate is 

! 

r = Asij" sj

s,i, j# i

$ . 

 From the above argument, it is clear the result depends on the notion that 

! 

r  does 

not change significantly over the course of sampling.  This could be true if the system 

had equilibrated.  However, it could also be approximately true for constant 

! 

Asij  for a 

time-slice short compared to the rate of change expressed in the Chapman-Kolmogorov 

equation.  The observable distribution is not anywhere near this equilibrium given the 

short time to the human MRCA (less than 40 substitutions).  That requires that sampling 

implied in the limit definition has occurred in a way so that the sample time is long 

compared to selection and population drift effects, that these effects were uniform over 

the phylogenetic tree, and that the time probed by phylogenetic branching is long 

compared to the drift and selection effects.  Independence of substitution events between 
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sites is also required, but this can be examined explicitly.  Therefore the presence of such 

selection/population interactions can be tested with a maximum likelihood Poisson 

estimation as a null hypothesis, assuming correlated substitutions can be eliminated. 

 

Overdispersion and Violation of the Molecular Clock Hypothesis 

 

Even in the case of variation in rates, the constancy of the total rate could be 

expected to be fairly robust.  One way to view effects of variations in substitution rates 

sampled by the phylogenetic process is to allow each site to vary independently.  This 

yields roughly 15000-16000 independent rates, which are distributed from site to site, and 

over time.  Such variation has been modeled with fair success previously with a 

! 

" -

distribution.[24,25]  The Poisson distribution may be summed over the 

! 

" -distributed 

rates.  This can be considered to be a simple phenomenological model for the variations 

in the molecular clock.  

If each individual site were identically and independently distributed according to 

a gamma distribution[24,25] 

! 

" r;#,$( )dr =
$#

" #( )
r
#%1
e
%$r
dr , then cumulative rate 

! 

r = r
1

+ r
2
 

where 

! 

r
1
 and 

! 

r
2
 are distributed as 

! 

" r
1
;#

1
,$( )dr1 and 

! 

" r
2
;#

2
,$( )dr2  will be distributed as 

! 

" r;#
1
+#

2
,$( )dr .  So this distribution also allows a cumulative description of molecular 

mutation rates for aggregates of sites.  Now, the distribution of the number of mutations 

expected to occur at one site given it is drawn from a random selection of sites whose 

rates are distributed according to the gamma distribution is distributed according to the 

negative binomial distribution  

! 

P n,t;",#( ) = dr
rt( )

n

n!
e
$rt #"

% "( )
r
"$1
e
$#r

0

&

' =
% " + n( )
n!% "( )

t

# + t

( 

) 
* 

+ 

, 
- 

n

#

# + t

( 

) 
* 

+ 

, 
- 

"

. 

The rules allowing aggregation of sampling sites immediately implies that the number 

! 

n  

expected in time 

! 

t  out of 

! 

L  sites will be distributed as 

! 

P n,t;L",#( ).  Identifying 

! 

r =" /#  and 

! 

"
r 

2
=# /$ 2 ,  this becomes  
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! 

P n,t;",#( ) =
$ " + n( )
n!$ "( )

r t

" + r t

% 

& 
' 

( 

) 
* 

n

1

1+
r t

"

% 

& 
' 

( 

) 
* 

" "+,
- + - - 

r t( )
n

n!
e
.r t  

The mean and variance of 

! 

n  are 

! 

E n( ) = r t

var n( ) = r t 1+
r t

"

# 

$ 
% 

& 

' 
( 
 

Any regime of the negative binomial distribution with large enough 

! 

"  to 

approximate the Poisson distribution has an 

! 

"  large enough to cause overdispersion to be 

negligible, which, even if significantly overdispersed for individual sites,  since 

! 

" # S , it 

follows that the total is likely not overdispersed.  However, for the hypervariable regions, 

where 

! 

S  is significantly smaller and 

! 

r  is larger, it has been reported that the 

! 

"  

distributed rates fits the observed data quite satisfactorily.[26]  Even accounting for rather 

broad overdispersion in individual sites, the effect of summing over independently 

distributed contributions will tend to converge to a Poisson distribution, which is 

expected from more general considerations from the law of large numbers. 

Even if individual sites show broad fluctuation, the sum of independent variants 

will tend towards a Poisson distribution.  Given 

! 

" -distributed variability, the only way to 

cause a significant change in a sum of a large number of samples would be if the 

variations among the rates were not independent (this is distinct from saying that the 

sites’ substitutions interact). 

 

Incomplete Phylogenies: collapsing nodes 

 

Also an important consideration in this development, if a phylogeny is 

incomplete, and some bifurcations have been collapsed, then counts 

! 

m  from two layers 

of nodes will have been combined into one node.  Given a rate 

! 

r , the distribution of total 

counts over time 

! 

t = t
1
+ t

2
 becomes 
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! 

P
m
t( ) =

rt
1( )
m1

m
1
!
e
"rt1

rt
2( )

m2

m
2
!
e
"rt2

m1 ,m2

m1 +m2=m

# =
r t

1
+ t

2( )[ ]
m

m!
e
"r t1 + t2( )  

In other words, collapsed clades in a phylogenetic tree will obey the same kind of 

statistics that a more detailed tree will show.  This is just the non-differential form of the 

Chapman-Kolmogorov equation, that all continuous time Markov processes must satisfy. 

 

Conclusions 

 

 The preceding shows that a Poisson distributed molecular clock can follow from 

non-correlated substitutions in

! 

O "t( ) resulting in additive rates, and rates that may vary, 

but whose variations are not correlated with each other.  An assumption of time-

independent rates might be suggested by the idea that substitutions along specific 

lineages are governed primarily by molecular rates, whereas selection will act to remove 

haplotypes bearing deleterious substitutions from the population.  If such elimination is 

differential according to population size and fixation time effects relative to selection, or 

by environmental effects, substantial correlations between rates could be introduced that 

would cause deviations from Poisson processes.  Therefore, a maximum likelihood 

Poisson regression applied to the phylogenetic tree may act as a test of a null hypothesis 

against which deviations can mark candidates for selection population, drift, and inter-

site correlated substitutions. 
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Appendix B: Maximum Likelihood Poisson Regression 

 

The method presented here echoes Sarich and Wilson’s approach, which 

compared differences between Poisson-distributed variables, determined by simulation to 

be normally distributed for Poisson counts 

! 

N " 20, yielding 

! 

" 2 distributed variables.[1]  

A later study compared observed counts with those of counts placed by simulation on a 

phylogenetic tree, essentially implementing a Poisson distribution to measure 

probabilities branch-by-branch.[2]  Ancestral states were inferred using a modified 

Sarich-Wilson algorithm,[3] consistent with the relative rates test of the molecular clock.  

The approach seeks in large part to assess the level of noise in the system, and, as much 

as possible, to exclude it, rather than to accommodate it. 

An earlier Poisson regression study[4] by Rosset introduced the Poisson 

regression method with molecular clock constraints, and explored the question of 

deviations from the molecular clock.  That study employed the Fitch algorithm,[5] which, 

in the case of evidence of multiple mutations along a single site (homoplasy), identifies 

multiple numbers of candidate ancestral states that yield the same number of mutations 

(maximum parsimony), or, if scored with a substitution rate matrix, the same maximum 

score.  Such ambiguities are identified in a two-step process, the second step recognizing 

the possibilities of multiple mutations along the lineage.  Without such mutations, the 

first step yields results equivalent to the results of Sarich and Wilson.  Rosset did also 

show that the probability of seeing such mutations given current estimates of mutation 

rates is very small in the human mtDNA phylogeny.  The Sarich and Wilson algorithm 

lends itself to comparisons across a number of haplotypes per node at once, allowing for 

threshold-limited selection of mutations.  It is more difficult to adapt the Fitch algorithm 

to this purpose.  While this was adapted to attempt to deal with some of the datasets, the 

dataset ultimately identified showed very little need to manage for errors. 

For each node, given a parameter 

0!= rt"  

for rate of mutation r  over time t , the probability of observing n  mutations is 

! 

P
m
t( ) =

"m

m!
e
#". 
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The log-likelihood function for 

! 

n  observed 

! 

m j , one for each haplotype, is 

! 

L "( ) = m j ln" # " + c m j( )[ ]
j

$  

which extremizes at 

! 

" =

m j

j

#

n
. 

 

The variance in !  may be computed from 

! 

"#
2

= $
d
2
L

d#2
% 

& 
' 

( 

) 
* =

#

n
=
"
m

2

n
. 

 

This does not account for the molecular clock constraint that the time from this node to 

each of its leaves must be the same as the time for its sibling to each of the sibling’s 

leaves.  For each node i , the time for the two children will be labeled 
1i
t  and 

2i
t .  There 

is therefore a constraint imposed at each node that 

21 ii
tt = . 

Rather than managing multiple constraints, a cost may be added to the maximum 

likelihood function that maximizes with value 0 where the 
21 ii
tt = .  Such a function 

could be represented by a simple quadratic of the form 

! 

"K t
i1
" t

i2( )
2.  This imposes a 

“ridge” on the maximum likelihood function, which satisfies the constraint more closely 

as 

! 

K" +#.   The modified log-likelihood function becomes 

! 

L
K

= M
i
ln"

i
# N

i
"
i
#K t

i1
# t

i2( )
2( )

i

$ , 

where the 

! 

Mi = mij

j

" for the 

! 

n
i
 haplotypes in node i , and where the extremization of 

K
L converges to the values for L  subject to the equal-time constraints as +!"K .   This 

is equivalent to introducing a representation of a Dirac-

! 

"  representation 

! 

" x( ) = lim
# $0

+

1

2%# 2
e

&
x
2

2# 2  in order to require convergence.  The effective sequence of 

penalty functions has benign computational characteristics that allow easy convergence. 
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In seeking to apply simple maximization techniques to this problem, another issue 

is the constraint that the 0!
i
" .  This condition may be transformed into a form that is 

amenable to numerical methods by mapping i
x

i
e=! .  The auxiliary log-likelihood 

function may then be smoothly differentiated using simple numerical techniques, such as 

Richardson’s extrapolation, which was employed here to compute first and second partial 

derivatives of the log-likelihood function with respect to the 
i
x ’s. 

Until now, there has been no explicit assumption that the mutation rate is the 

same for all branches.  At this point, it is explicitly inserted.  For ease of notation and 

computation, time units are chosen so that the rate of mutation is unity (i.e., the unit of 

time is the amount of time for the expected number of mutations to be one).  Then, at 

each node, the estimated time passed up to the parent node is defined to be 

! 

t
i
= e

x
i +

t
i1

+ t
i2

2
. 

 

(Note, the average could be arbitrarily weighted, so long as the result is between the two 

times; as 

! 

t
i1
" t

i2
 is reduced as 

! 

K  increases, both terms in the average approach each 

other).  The auxiliary log-likelihood function may be expressed as 

  

! 

L
K

v 
x + "

r 
x ( ) = L

K

v 
x ( ) +

v 
b # "

v 
x +

1

2
"
v 
x #C # "

v 
x + O dx

3( )

= L
K

v 
x ( ) $

1

2

v 
b #C

o
#
v 
b +

1

2
"
v 
x + C

o
#
v 
b ( ) #C # "

v 
x + C

o
#
v 
b ( ) + O dx

3( )
 

where 

  

! 

v 
b =" v 

x 
L

K

C =" v 
x 
" v 

x 
L

K
.
 

and 

  

! 

C
o = lim"#0 C + I"( )

$1
C C + I"( )

$1 

represents the inverse with contributions from the zero-valued eigenvalues of C  removed 

since there are no contributions to 
K
L from such components of xv! .  These vectors and 

matrices are computed via Richardson’s extrapolation.[6]  This maximizes where 

  

! 

"
v 
x = #C

o
$
v 
b . 
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As in the simple Newton’s method, this tends to show quadratic convergence for the 

sequence 
nnn
xxx
vvv
!+=+1 , so long as the curvature is small over the length scale of the 

step size.  This can be a problem for large K , so a schedule of increasing K ’s are 

applied to a succession of roots, checking that the converged value for large K  is 

independent of the schedule.  The convergence misbehaves if empty nodes are included. 

Then the MLE ! ’s are 

  

! 

" j = e
x j

#"i" j
= $e

xi +x j C
o( )
ij
.
 

 

For a linear thread from a node up to some ancestor node, passing through a set of nodes 

D , the time estimates are 

! 

tD = " j

j#D

$ ,

% tD

2
= %" j" j '

2
.

j , j '#D

$
 

 

Note that the covariances between variables must be included to correctly propagate 

errors since the constraints impose correlations in the variations of the parameters. 
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