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Abstract—The vitality and utility of a network is affected 
significantly by the network management system which is used to 
administer the network. However, in the state of the art, there are 
no good models that can characterize how good a network 
management system is. In this paper, we introduce the concept of 
Quality of Management (QoM), provide a mathematical 
formulation based on stochastic processes that can be used to 
model a network management system and define QoM metrics 
based on this formulation. A formal analysis of the proposed 
framework along various metrics is provided, along with 
examples of its application to several network management 
paradigms. 
 

Index Terms—quality of management, network management, 
discrete event model, aggregation functions 

I. INTRODUCTION 
Network management is a key component of overall 

operations of any computer communications network. The 
choice of network management system can significantly affect 
the performance and utility of the network and impact its 
operating costs. It can also be a decisive element in the 
formulation of service level agreements that are established 
with its users. Because of the significance of management 
operations, it is important to ask how well a management 
system is meeting its objectives. However, the techniques used 
to determine whether a network management system is 
performing at a satisfactory level or not tend to be ad-hoc at 
present. Given the importance and vital role of network 
management in the operation of networks, there is a need for a 
formal framework and mathematical model that can 
characterize how well a network management system is 
working, or how good the Quality of Management is.  

The Quality of Management (QoM) of a network 
management system characterizes how well the network 
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management system achieves its purpose. Given any two 
network management systems, QoM should be able to describe 
which of the network management systems is better for a 
specific network management task. Frameworks for 
characterizing data quality have been studied in the areas of 
sensor networks [1][10][13], web searches [2], data stream 
processing systems [15], voice [3] and video [4] quality, and 
network games [5]. Also trade-offs among various dimensions 
of quality such as accuracy of information, completeness and 
transmission overhead have been investigated in the above 
areas (e.g. [11], [12]), while aspects over quality of monitoring 
primarily focusing on efficiency and accuracy have been the 
focus of recent studies in the network management field 
[20][21][22]. Complementary to the above efforts, the goal of 
this work is to propose a unified quantitative framework for 
assessing QoM for network management systems along several 
dimensions, without being bound to any particular protocol or 
system for network management. 

Towards developing a comprehensive framework for QoM, 
this work makes the following contributions: 

• A mathematical model based on stochastic processes for 
characterizing the management function of a network. 
The proposed model is generic enough to capture 
different types of management system functions, yet 
amenable to analysis of the key Quality of Management 
metrics. 

• QoM metrics analyzed within the proposed stochastic 
framework with an emphasis on the effects of 
transmission latency on the accuracy of monitoring 
information that is obtained by the management system. 
We consider two types of management systems: (a) the 
transparent system where monitored events are 
immediately reported without processing and (b) the 
aggregation system, in which monitored events are 
periodically reported after aggregation. 

The reminder of this paper is structured as follows: Section 2 
provides a review of network management systems. Section 3 
presents a simple model for the network management function 
and definitions. Section 4 presents a mathematical analysis of 
QoM metrics. Section 5 presents related work, and finally 
Section 6 concludes the paper with potential future research 
directions.  
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II. NETWORK MANAGEMENT SYSTEM 
To ensure continuous and efficient operation of a network, 

the operator uses a network management system to discover 
elements in the managed network, identify any situations that 
may need attention, and then take any requisite corrective 
actions. Three distinct entities can be readily identified in this 
process, namely the managed network itself, the network 
management system, and the network operator, as shown in 
Figure 1. 

Managed networks are subject to a variety of unpredictable 
situations that may require the attention of a network operator, 
such as hardware and software failures, misconfiguration of 
devices or applications, as well as problems caused by 
third-party networks that are connected to the managed 
network. The network operator’s management policy may 
dictate that information about some of these situations is either 
sent to or collected by the network management system. This 
information may be manifested as events, which typically have 
a number of characteristics including: (a) a message describing 
a situation, (b) an indication of the managed resources affected 
by the situation, (c) an indication of the originator of the event, 
and (d) an indication of the time the situation arose.  

The network management system may receive events at 
various times in a number of diverse formats. Common types of 
events include SNMP traps, syslog messages and events 
originating from periodic polling of IP addresses and SNMP 
MIB variables. Events are typically subject to some degree of 
preprocessing so that they are consumable by other processes 
and/or the network operator for further analysis. For the 
purposes of this paper, we consider the network operator to be 
the consumer of events processed by the network management 
system.  

Depending on the management policy, some events may be 
subject to additional processing. The system may decide to: (a) 
discard an event; (b) suppress reporting of duplicate events and 
instead increment a counter associated to the existing event2; 
(c) archive events for historical analysis and auditing; (d) 
analyze and correlate events in the context of a constructed 
network model so as to identify which events are considered 
 

2 This operation is commonly called de-duplication in the network 
management context. 

‘cause’ and which are ‘symptoms’; (e) enrich events with 
additional information, such as customer contact information; 
(f) inject synthetic events back into the event stream3; and (g) 
send events to other network management systems.  

After processing, events are typically presented to an 
administrator. Common ways of providing an administrator 
with event information includes the use of graphical user 
interfaces, SMS messages and e-mail. The administrator then 
may take some corrective action depending on the situation 
described by an event. 
 

III. MODELING THE MANAGEMENT FUNCTION 
In order to understand QoM, we need to define a model of 

the network management function, which is generic enough to 
abstract from the specifics of the underlying implementations, 
yet representative of real-world deployed network management 
systems for the analysis to give useful insights. In this section, 
we present a stream model for network management systems 
and define the QoM metrics that will be used for the analysis in 
a later section. 

A. Stream Model for Network Management 
Following the aforementioned description of the typical 

network management system, two flows of information can be 
readily identified in the management environment: one 
between the managed network elements to the network 
management system, and another one between the network 
management system and the operator. In large scale network 
management deployments, the network management system  
usually consists of distributed network monitoring agents that 
are close to the managed entities and report the results to a 
centralized network management system (NMS). Once an 
event in the network is detected by the monitoring agents, 
simple processing is handled first by the agents, and the event 
information is typically sent to the NMS for further calculation 
of user-defined metrics. Then, the results of the analysis are 
presented to the network administrator. Thus, the sequence of 
information processing in an NMS can be modeled using a 

 
3 For example, a link-flapping event may be deduced from repeated 

occurrences of link-down/link-up events and/or ping 
failure/restoration events. 
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three-stream model, as shown in Fig. 2. In a centralized 
network management system where all the monitoring and 
polling operation is performed by a single NMS, the interaction 
is usually direct from the managed network to NMS. 

When an external event such as link failure happens in the 
system, it has an impact on the operation of the network. The 
occurrence of these external events is represented by the Event 
Stream in the Figure 2, with occurrence times T1 … T7. Some 
of these event instances are collected and pre-processed by the 
monitoring agents, and sent to the network management. This 
is called the Monitored Stream. In the same figure, we present 
the case when some events are suppressed (e.g. events occurred 
at T2, T3) by the monitoring agent. These monitored events are 
sent to the NMS for further processing (e.g. event correlation) 
and can be optionally stored in a database for later use. The 
information that is generated as output from the NMS is called 
the Processed Stream. Since the monitoring agents may be 
remotely located, the NMS may receive the monitored data out 
of sequence depending on the network condition as shown in 
the case of T4’ and T5’. The information from the processed 
stream is further reported to the administrator using some 
means as previously described. This is represented as the 
Administrator View in the figure. We note that the generic 
processing model shown in Figure 2 is applicable to most 
network management systems. 

Quality of management should be analyzed by comparing 
the processed stream with the event stream, the latter 
representing the actual state of the network and being 
susceptible to measurement errors induced by the monitoring 
agents, as well as event transmission losses due to network 
instabilities. To simplify though our analysis in the next 
section, we assume perfect monitoring agents for the NMS, 
which introduce no errors in the measurements or the 
transmission of events, and study the event processing that 
takes place between the event stream and the processed stream 
under this assumption. 

B. Formal Definition of a Stream Model 
Formally, we define the stream model as follows. Let E = 

{e1, e2, … ek} be an enumerable set of events that are of interest 
in a management context. The event stream ES is a stochastic 
process defined over the set E.  Examples of events include: 

• The link between address 9.2.10.1 and 9.2.10.25 fails.  
• The number of dropped packets at node with address 

9.2.10.20 exceeds 10% of all packets.  
Each event is assumed to be a discrete entity. In a finite 

network, the number of distinct events of interest in the entire 
system can be assumed to be enumerable and finite without loss 
of generality. In the event stream ES, each event is associated 
with a time at which the event occurs.  

Similarly, let M = { m1, m2, … mk’ } be an enumerable set of 
monitored data. A monitored data is a unit of information 
detected by the network monitoring agent. The monitored 
stream MS is a stochastic process defined over set M. We 
assume that each monitored data is carried in a single logical 
message (the message may be transmitted on multiple network 
packets if needed), and contains some information about one or 

more events in the network. Examples of monitored data may 
be: 

• A polling response stating that node with address 
9.2.10.11 is up.  

• A trap from node 9.2.10.21 indicating that its neighbor 
9.2.10.22 is no longer reachable. 

Let P = { s1, s2, … sk…} be an enumerable set of records in 
the processed data stream received by the network management 
system. The processed stream PS is a stochastic process defined 
over the elements in set P. Similarly to the monitored data 
stream, individual processed stream data is carried in a single 
logical message (the message may be transmitted on multiple 
network packets if needed), and contains information about the 
events in the network that has been derived from processed and 
correlation of monitored data. For example, processed stream 
data may be:  

• Route flapping happened between nodes 9.2.10.21 and 
9.2.10.22.  

• Node 9.2.10.12 could not be reached for the last five 
minutes. 

C. QoM Metrics 
The three streams characterizing the management system can 

be analyzed along different metrics. We consider three primary 
measures for evaluating the quality of management: (a) latency, 
(b) accuracy, and (c) efficiency. 

Latency: This metric denotes the timeliness of a network 
monitoring function. Latency L is defined as the expected time 
between the moment an event appears in the event stream and 
when the indication of that event appears in the processed 
stream.  

Accuracy: Accuracy characterizes the ability of the 
management process to capture the events that happen in the 
event stream. It is defined as the fraction of the time for which 
the status of the network as measured by the processed stream 
is consistent with the actual status of the network as represented 
by the event stream. If we had an oracle that could examine the 
status of both streams, this fraction could be accurately 
determined. The accuracy measure defined in this way will be 
dependent upon the latency of the network, as well as the 
probability of the loss of processed stream data in the network 
and errors in the measurement process of the monitoring 
agents.  

Efficiency: Conceptually, efficiency can be measured by the 
volume of data that is associated with an event in the event 
stream. However, events in the event stream are not associated 
with any volume of data, as they are considered dimensionless. 
This implies that efficiency cannot be obtained by comparing 
volume of data at the processed stream with the respective one 
at the event stream. Therefore, alternative practical metrics of 
efficiency are used, such as the average frequency and average 
data volume of the processed data streams to those of the 
monitored stream, respectively, for an event in the event 
stream.  

We should note that the filtering and aggregation of events in 
the processing system affect the accuracy and efficiency of a 
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monitoring system.  Moreover, information associated with 
events might have to be incorporated, for example by adding 
metadata to an event for enriching its description (an operation 
known as “enriching”). This means that it might not be 
sufficient to represent the event streams at the monitoring and 
processed streams as point processes that follow the “birth” of 
the events, but information on the data volume associated with 
the events will also need to be included. In this paper, we focus 
on the timing behavior of the events’ delivery over the network, 
and provide more enriched analysis of the impact of 
aggregation function on the accuracy in a companion paper 
[26]. 

A management operation may have very different 
characteristics for the three dimensions. For example, it may 
exhibit higher accuracy but a higher volume than another 
management or data collection operations.  The relative merit 
of the three different axes of the Quality of Management would 
depend on which of the different criteria are considered most 
important in a particular management environment. 

 
IV. QOM ANALYSIS 

In this section, we investigate generic properties of network 
management systems using formal stochastic analysis 
techniques under our QoM model. We consider the following 
nominal network management model for the analysis:  

• A distributed network monitoring agent is deployed in 
each managed network element, configured to 
continuously monitor the events in the event stream. We 
assume “transparent” network monitors, meaning that all 
events of interests to the network administrator are 
captured with no delay by the monitoring agents (or with 
delay small enough to neglect in the overall latency within 
NMS). 

• Upon capturing a network event, each monitoring agent 
immediately sends the monitored management data to a 
centralized processing system. We assume the 
management data is reliably delivered with some 
networking delay from each monitoring agent to the 
processing system without loss. The monitored data sent 
by all monitoring agents constitutes the monitored stream 
in our stream model.  

• The processing system in turn stores and processes these 
monitored data sent by the monitoring agents across the 
network in some manner (we will describe the processing 
methods shortly) and reports the processed data to the 
administrator. This report to the administrator constitutes 

the processed stream. 
Note that, although we assume reliable data delivery 

between the monitoring agents and the processing center, we 
do take into account late delivery of the data from monitoring 
agents to the processing center. We leave the analysis of a more 
comprehensive model that incorporates the monitoring and 
networking loss as a future research item. 

We consider the following timing model of events and 
network delay (see Figure 3). Let ti denote the time that i-th 
event occurs in the event stream (ti < ti+1 for all i = 0, 1, …), Ti 
the time that i-th event arrives at the processing system, and Di 
the difference between  Ti and ti, i.e., Di = Ti – ti. Then we 
assume: 

• Events in event stream occur according to a 
homogeneous Poisson process with arrival rate λ.  

• The network delay Di is i.i.d. random variable with 
exponential distribution of mean 1/μ, i.e., Pr{Di > t} = 
e-μt.  

Note that, since we assume transparent monitors (i.e., no loss 
and zero delay) the monitored stream is essentially the same as 
the event stream, and therefore omitted in Figure 3. Note also 
that, although our results are derived based on the assumption 
of exponential network, analysis for other delay distributions is 
also possible. For instance, one can analyze the accuracy metric 
using an M/G/∞ rather than the M/M/∞ queuing model.  

We analyze the QoM metrics for two representative 
management data processing methods, namely the transparent 
system and the aggregation system. In the transparent system, 
the processor immediately reports each event that it receives to 
the administrator. This type of processing is most applicable 
when the goal of the network monitoring is to follow the 
real-time activities (for instance, link failure, threshold crossing 
alarm, etc.) in the event stream and all necessary data 
aggregation takes place in the lower level, for example, by the 
network monitoring agents residing in the managed entities.  

The aggregation system periodically aggregates the events 
sent by the monitors, and reports (and stores) the aggregated 
events to the administrator with aggregation period T. If there is 
no event received during an aggregation period, no aggregated 
event is generated during that period. In this sense, T=0 is a 
special case that represents a transparent system. This type of 
processing method is most appropriate when the managed 
entities produce raw data and the management system is 
responsible for the aggregation and further processing before 
reporting to the administrative stream. 

A. QoM Analysis of Transparent System 
In the transparent stream, since there is a one-to-one 

mapping between events in the event stream (ES) and the data 
in the processed stream (PS), the efficiency, measured by the 
ratio of frequency of events in ES to that of the data generation 
in PS is 1. Also, since there is no additional delay within the 
processor, the latency, Li, of an event i in ES is exactly the 
random delay, Di. Hence the latency distribution is also 
exponentially distributed, i.e., Pr{Li > t} = Pr{Di > t} = e-μt, and 
E[Li] = E[Di] = 1/μ.  

Event stream

Processor

t1 t2 t3 t4

T1 T2T3 T4

D1 D2 D3 D4

Figure 3 Event timing model 
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We define the accuracy of the transparent management 
system as the fraction of time that the network administrator is 
in-sync with the event stream, where the synchrony is defined in 
the following way: We say that NMS is in an out-of-sync state 
when there is any event that arrives at the processed stream 
later than a constant time h from the moment the event is 
generated in the event stream (Otherwise NMS is in the in-sync 
state). This constant time h is a design parameter, typically 
introduced to enable the NMS to account for the network delay, 
and is used as a maximum allowable amount of time that the 
NMS can wait before presenting a delivered event as in-sync 
event. 

Suppose the NMS is designed in such a way that it holds the 
events received before time t+h (t is the event occurrence time) 
until t+h before presenting the events to the administrator (e.g., 
for providing a synchronized real-time view of the events).  The 
average latency in this case is then E[Li] = h Pr{Di > t} + 
(h+1/μ)Pr{Di > t} = h+1/μ. 

To analyze the fraction of time that the NMS is in the in-sync 
state, we define a continuous-time stochastic process, Q(t), that 
represents the number of outstanding out-of-sync events as 
follows:  

• Initially, Q(t) = 0 at t = 0. 
• Every time an event i that is generated at time ti  arrives 

at the processor at some time Ti > ti+h, Q(t) is 
increased by 1 at ti+h, and decreased by 1 at Ti. 

We now show that the stochastic process Q(t) can be 
represented by a M/M/∞  process with some arrival rate λq and 
some departure rate μq, and the accuracy of the management 
system can be calculated by finding the limiting distribution 
limt→∞Pr{Q(t) = 0}. 

First, let us define a new arrival process {vi} as the time 
instances that shift the events arrival times by h, i.e., vi =ti+h. 
Since shifting the arrival times of a homogeneous Poisson 
process is also Poisson with the same rate [25, pp. 318-319], the 
arrivals of {vi} is also Poisson with the same rate λ. 

Furthermore, let us define random variables {Si} such that Si 
=1 if the processor has not received the event i at time si 
(otherwise Si =0).  We further define {Vi} as the subset of {vi} 
where Si =1, i.e., the moments that the processor stream starts to 
be out-of-sync with the event i.  

Now consider an event i that occurs at times ti. Then 
probability that this event is delivered at the processor later than 
ti+h  is 

,}Pr{}Pr{}1Pr{ h
iiii ehDhtTS μ−=>=+>==  

from the exponential distribution of the network delay. Since 
the occurrence of an event’s out-of-sync delivery is i.i.d.,  is a 
Bernoulli process. Therefore the arrival process {Vi} is a 

thinned Poisson process with arrival rate λλ μh
i eS −== }1Pr{ . 

Since Q(t) is increased by 1 at each t ∈ {Vi}, the transition of 
Q(t) from any k to k+1 is Markovian and occurs at rate 

λλ μh
q e−= . 

By the memory-less property of the exponential distribution, 
it is straightforward to see the time until an out-of-sync event 
finally arrives at the processor is also exponentially distributed 
with mean 1/μ. More specifically, Pr{Di > (t +h)+s| Di > t +h} =  
Pr{Di > s} = e-μs. Therefore, the process Q(t) is indeed a 
Markov process, and more precisely an M/M/∞  process with 
arrival rate λλ μh

q e−= and departure rate μq=μ, whose state 

transition diagram is depicted in Figure 4. 
The accuracy of the management system is therefore 

obtained by the standard limiting distribution of the M/M/∞ 
process, that is, 4 

.}0)(Pr{lim
)exp(

/ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−

∞→
=== μ

λμ
μλ

h

t
eetQ qq    (1) 

Note that the steady-state probability of being in the in-sync 
state goes to zero as the ratio λ/μ becomes large, i.e., as the 
mean arrival rate of events becomes large relative to the mean 
delay. Also the accuracy increases as μh increases, i.e., the 
waiting constant h is set relatively larger than the average 
latency 1/μ (the penalty is increased latency of h+1/μ) 

Figure 5 shows the accuracy of the transparent system as a 
function of λ/μ for different values of μh. For instance, when 
h=1/μ and when this ratio is as large as 2, there is a 50% chance 
that the system view will be out-of-sync. Thus practical NMS 
systems must be designed to ensure the network delay 1/μ  
relatively small to the mean inter-arrival time of the events 1/λ. 

If the network delay distribution is not exponential, it is a 
relatively straightforward exercise to verify that the service 

 
4 More generally, the limiting distribution of the number of outstanding 

out-of-sync events is !/)/(})(Pr{lim / kektQ qq
qqt

μλμλ −
∞→ == . 

Understanding the temporal evolution of the statistics of the synchrony is also 
important and can be analyzed using our Markov model, for instance, how fast 
Q(t) approaches the steady-state.   

0 1 2 n

e- h e- h e- h e- h e- h

Figure 4 M/M/∞ process model: Number of out-of-sync events 
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time of the out-of-sync events no longer enjoys the Markov 
property, while the inter-arrival time between out-of-sync 
events is still exponentially distributed. Hence the accuracy 
under non-exponential delay can be obtained by analyzing the 
resulting M/G/∞ model. 

B. QoM Analysis of Aggregation System 
Suppose the processor periodically aggregates at time t = kT 

+ h the events that occurred in the event stream within the time 
epoch [(k-1)T,  kT) at time t = kT + h for some constant h and for 
k =  1, 2, …. The additional time h is introduced as a “waiting 
constant” in order to allow the events occurring near the end of 
each epoch to arrive at the processor and be aggregated with 
other events that occurred in the same epoch. However, even 
with this additional waiting time, due to the randomness of 
delay, there can be some events that occur in [(k-1)T,  kT) but 
miss the deadline t = kT + h, in which case the late events will 
be aggregated at the earliest aggregation time after it finally 
arrives. We will investigate the impact of the choice of h on the 
latency and the accuracy later in this section. 

With the aggregation taking place periodically, it is easy to 
see that the efficiency, defined as the ratio of the reporting 
frequency at processed stream to the frequency that events 
occur in the event stream, is (1 – e-λΤ)/(λT).  

The latency Li of an event i in the event stream is the sum of 
the random network delay and the time between the arrival of i 
at the processor and the waiting interval until the next 
aggregation time. Without loss of generality, suppose an event i 
occurred at some time ti = t ∈ [0, T). Then the latency of this 
event is such that, If t + Di < T+h, i.e., if this event arrives at the 
processor no later than the first aggregation time (T+h), then Li 
= T+h–t. Note that, for all events that occur in , the first 
aggregation time is at T+h, not at h, i.e., even if an event arrives 
before time h, it will be aggregated at T+h, not at h. Otherwise, 
if the event i’s arrival time at the processor (t+Di) falls within 
[kT+h,  (k+1)T+h), then Li = kT+h – t. for k = 1, 2, …. 

Since Di is exponentially distributed with mean 1/μ, the 
probability that event i is aggregated at T+h is Pr{t + Di < T+h} 
= Pr{Di < T+h – t} = 1 – e-μ(T+h-t), and the probability that it will 
be aggregated at later aggregation time kT+h (k=1, 2, …) is 
Pr{kT+h < t + Di < (k+1)T+h} = e-μ(kT+h-t) –  e-μ((k+1)T+h-t) = 
eμ(t-h)e-kμT (1–  e-μT) for k = 1, 2, …. Therefore, the average 
latency Et[Li|t] given Ti = t ∈ [0, T) is 
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Since the events in the event stream constitute a Poisson 

process, the distribution of events’ arrival times in the event 
stream is uniformly distributed within [kT, (k+1)T] [24, pp. 
297-299]. Hence, the (unconditioned) mean latency E[Li] is 
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 An intuitive interpretation of Eq. (2) is that the latency E[Li] 
can be broken into three components: the first one is the delay 
until the mean aggregation time (T/2), the second is the 
additional delay due to the waiting constant (h), and the last is 
the additional delay affected by whether the event arrives after 
the nearest aggregation time (e-μh/μ).  

The impact of the waiting constant (h) on the overall latency 
is such that, as h grows, E[Li] quickly approaches T/2 + h, 
which makes the latency grow linearly with h. On the other 
hand, if μh << 1, E[Li] ≈ T/2 + 1/μ, leaving only the latency 
components due to the periodic aggregation. Also note that, as 
T → 0 and h → 0, the latency E[Li] → 1/μ, which corresponds 
to the latency in the transparent system. 

We now turn our attention to the accuracy. Due to the 
periodic aggregation, however, the accuracy analysis for the 
aggregation system based on the definition Section 4.1 does not 
enjoy the Markov property. Therefore, we instead use the 
following alternative definition for the accuracy of the system. 
We say the network management system is in in-sync state 
during the (entire) aggregation period [(k-1)T,  kT] if all events 
that occurred during this period arrive at the processor before 
time t = kT+h. Otherwise, the NMS’s view is out-of-sync 
during that period. We define Wk as the random variable that 
takes 1 if the aggregation period [(k-1)T,  kT]  is in-sync, and 0 
otherwise; Then the accuracy of the system is defined as the 
probability Pr{Wk = 1}, which is independent of k as all ti’s and 
Di’s are independent. 

Suppose an event i occurs at some time ti = t ∈ [(k-1)T,  kT]. 
Then the conditional probability that its arrival time Ti at the 
processor is before kT +h is Pr{Ti < kT+h | t} = Pr{Di +t < 
kT+h} = 1 – e-μ(kT+h-t).  

Now suppose the number of events in [(k-1)T,  kT)  is given 
by Nk = n. Since the arrival times of such n events are uniformly 
distributed within [(k-1)T,  kT), 
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and since all n events must arrive at the processor before kT+h 
for the aggregation period Wk to be in-sync, our accuracy 
measure of an aggregate system is 
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It follows from the Poisson arrival of the events that the 
unconditional probability of the NMS being in the in-sync state 
is  
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Similarly to the latency case, the impact of the waiting 
constant on the accuracy of the system is clear: if the waiting 
constant h is large, it becomes more likely that all events are 
delivered within the (extended) deadline provided by large h, 
and hence the management system is likely to maintain a 
in-sync view of the network. One can see this from Pr{Wk = 1} 
≈ 1 when μh >> 1. Also, notice that the accuracy metric of the 
aggregation system approaches that of the transparent system 

when μT >> 1, i.e., μ
λμ )exp(

}1Pr{
h

k eW
−−

≈=  when μT >> 1. 
We conclude the QoM analysis of aggregation systems with 

an interesting observation on the tradeoff between latency and 
accuracy, introduced by the waiting constant h. It can be seen 
from the analytical results in Eq. (2) and (3) that a large waiting 
constant h improves accuracy at the expense of increased 
latency, while a small h reduces latency but decreases accuracy.  

In Figure 6, we plot numerical values of the average latency 
and accuracy respectively, as a function of h with T=100 and 
λ=1. We can observe that, with small waiting constant h, the 
overall latency is mainly determined by the average network 
delay—the latency is high with large network delay (small μ). 
However, the impact of network delay diminishes as h grows, 
and the latency is mostly determined by h. In the case of 
accuracy, increasing h has an effect of enhancing the accuracy, 
which converges to 1. But the rate at which the accuracy 
approaches 1 is largely dependent on the network delay (1/μ): 
larger network delay causes lower accuracy. This tradeoff 
analysis facilitates the design of network management systems 
in selecting proper values of waiting time until aggregation and 
the aggregation period depending on the specific design goal 
(e.g., delay and accuracy constraints) and on the expected 
networking delay and event arrival characteristics.  

V. RELATED WORK 
In [23], Chen and Liu provided a model for four network 

management approaches (client-server, hierarchical, weak and 
strong mobility) and evaluated them with respect to scalability 
and efficiency using simple static assumptions. Unlike [23], our 

proposed model enables us to analyze the dynamic behavior of 
QoM. 

Data quality characterization and analysis have been the 
focus of study in the areas of sensor networks, data stream 
processing systems, and, in recent years, in network monitoring 
of distributed systems. In sensor networks, several efforts (e.g. 
[9][11]) explored the tradeoffs between energy consumption 
and precision of in-network computation of aggregate statistics 
such as AVG, MIN and COUNT. In [12], Zhao et al. proposed 
an architecture and protocols for digest diffusion of network 
aggregates for sensor network monitoring purposes. The focus 
is primarily on the topologies used for the in-network 
computation paths and how they affect approximation errors 
with respect to the above operators under packet loss and 
sensor node failures. In contrast, our work is focused on the 
effects of late delivery of events and the resulting discrepancy 
between the event and the administrator views. Recent work 
[10] has similar goal to ours: to provide a framework for 
assessing quality of information transferred and managed along 
dimensions such as accuracy, completeness (also discussed in 
[13]) and confidence. However, the focus is more on sensor 
imprecision and its effects on accuracy, rather than the effects 
of latency. 

Since some of the most frequent operations in network 
monitoring are aggregations of the raw event data using various 
functions such as averaging, count, max, quality of network 
monitoring is conceptually similar to quality of data in stream 
processing systems. In this area, work on adaptive filters 
[17][19] explores the trade-off between precision and 
transmission overhead of data collected centrally from 
distributed sources. While latency and its effect on the 
correctness of source data are briefly discussed in [17], no 
quantitative framework is provided to characterize discrepancy 
of the monitored and the administrator view when the latency 
tolerance bounds are violated. [18] introduced the concept of 
fraction-based tolerance for adapting the width of the filter at 
the source depending on the how many false-positive or 
false-negative events (as opposed to an error-constraint in their 
value) the system is willing to tolerate. This bears similarity 
with our definition of the accuracy dimension in QoM, but this 
work does not discuss the effects of latency. [14] proposed 
three protocols that satisfy progressively less-strict levels of 
correctness and explore their behavior with respect to accuracy 
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of computations, resilience to transmission delays and 
overhead. Although very similar to our work, [14] is concerned 
with the in-network processing of aggregate functions, and not 
as much with the discrepancy between various “views” of event 
data in the multi-level management hierarchy model. 

Recently, accuracy of data in network monitoring 
applications has received renowned attention. Prieto et. al. in 
[20] formulate the task of computing aggregates from a 
hierarchical monitoring network graph with minimal overhead 
as a constraint optimization problem. However their work does 
not mention the effects of latency in propagating the partial 
computations to the root. Follow-up work in [16] evaluates the 
use of gossiping in the computation of aggregates and 
compares these approaches, without establishing though a 
generalized quality framework as is the purpose of this work. In 
[21] the trade-offs between monitoring overhead and accuracy 
are investigated from the sampling perspective, for 
dimensioning the monitoring infrastructure, but no 
comprehensive framework for the analysis is provided. Finally, 
[22] studies the problem of optimal sampling strategies of flow 
data whose traffic distributions are not known in advance. The 
model considered is similar to the events, monitored and 
processed streams of this paper. However, our work focuses on 
providing a framework for characterizing the discrepancy 
between the streams of monitored and stored data and not on 
the particular sampling strategy. 

VI. CONCLUSION 
Network management is fundamental in ensuring continuous 

and efficient operation of a communication network. Although 
various management architectures that have been proposed in 
the past a generic model for the analysis and comparison of 
these architectures has been missing. This paper introduced the 
concept of Quality of Management (QoM) and proposed a 
framework for analyzing it using the paradigm of event streams 
modeled as stochastic processes. Formal definitions of 
accuracy, efficiency and latency dimensions as metrics of 
quality in this framework are also provided. A study of QoM 
along the accuracy-latency dimensions is performed under this 
model, in which we show how the choice of aggregation 
waiting time affects the accuracy of the observed events at the 
monitoring level. Our current framework assumes that the 
operation of the management system does not impact the events 
in a network. In future work, we intend to extend the 
framework to account for the impact of management system 
operations on the network events and the effects of in-band 
management, and to further analyze the QoM with different 
stochastic characteristics of underlying stream and network 
model.  
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