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Abstract. As applications based on semantic web technologies enter
the mainstream, there is a need to provide highly efficient ontology rea-
soning over large Aboxes. A common approach to achieving scalability
is to build reasoners for DL subsets (e.g., the EL family of languages,
DL-Lite, DLP, or OWL-Prime). However, the proliferation of DL sub-
sets runs counter to standardization efforts. In this paper, we present a
hybrid approach which combines a fast, incomplete reasoning algorithm
with a slower complete reasoning algorithm to handle the more expres-
sive features of DL. Our approach works for SHIN . We demonstrate the
effectiveness of this approach on large datasets (30-60 million assertions),
where we show that performance on this hybrid approach provides sig-
nificant performance gains (an average of 15 mins per query compared
to 100 mins) without sacrificing completeness or expressivity.
keywords: Reasoning, Description Logic, Ontology.

1 Introduction

As applications based on semantic web technologies enter the mainstream, there
is a need to provide highly efficient ontology reasoning over large Aboxes. How-
ever, it is well known that description logic (DL) reasoning is intractable in the
worst case. A common approach to achieving scalability is to define useful sub-
sets of DL that have polynomial-time complexity, and build reasoners for these
subsets (e.g., the EL family of languages, DL-Lite, DLP, or OWL-Prime). While
this approach satisfies the needs of some applications, there are many scenarios
where the reasoning requirements exceed the expressivity of these subsets of DL,
and where completeness is a requirement. Furthermore, the proliferation of DL
subsets runs counter to standardization efforts.

In this paper, we present a hybrid approach that combines a fast, incom-
plete reasoning algorithm with a slower complete reasoning algorithm to handle
the more expressive features of DL. Our approach works for SHIN (OWL-DL
without nominals or datatypes). An interesting feature of this technique is that



any sound and incomplete algorithm may be used in the first phase to quickly
find as many solutions as possible to the query. The key novelty in the approach
is a mechanism to incorporate these solutions into a slower, complete reason-
ing algorithm for SHIN , providing much better performance characteristics
overall, without sacrificing completeness or expressivity. This approach can be
described as self-adjusting, since the reasoner dynamically defaults to the ex-
pensive complete algorithm only when deeper inferencing is actually required.
On large datasets (30-60 million assertions), this hybrid approach provides sig-
nificant performance gains (an average of 15 mins per query on the 60 million
dataset compared to 100 mins) without sacrificing completeness or expressivity.

At its core, this hybrid approach builds on the summarization and refine-
ment techniques we described earlier to perform sound and complete reasoning
on large Aboxes in relational databases [1] [2]. Briefly, this technique applies a
standard tableaux algorithm on a summary Abox A′ rather than the original
Abox A to answer queries. A summary Abox is created by aggregating individ-
uals which are members of the same concepts, so when any given individual is
tested in the summary Abox, all individuals mapped to the summary individual
are effectively tested at the same time. For a tested individual s in A′, if the
summary is found to be consistent, then we know that all individuals mapped
to that summary individual s are not solutions. But if the summary is found to
be inconsistent, it is possible that either (a) a subset of individuals mapped to
the summarized individual s are instances of the query or (b) the inconsistency
is a spurious effect of the summarization. We determine the answer through re-
finement, which selectively expands the summary Abox to make it more precise.
Refinement is an iterative process that partitions the set of individuals mapped
to a single summary individual based on the common edges they have in the
original Abox, and remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consistent, or it can be
shown that all individuals mapped to the tested summary individual are solu-
tions. Significantly, convergence on the solution is based only on the structure of
the refined summary, without testing individuals in A. In practice, the scalability
of this algorithm is limited by the number of refinement steps that are needed.
Refinement is performed by database join operations, which become expensive
when the database is large.

The advantage of our hybrid approach is that it can incorporate any sound
and incomplete reasoning algorithm into this summarization and refinement pro-
cess to provide efficient, complete, and yet highly scalable reasoning over large
Aboxes. The key insight is that the solutions from the sound and incomplete
reasoner can be used as a partitioning function for refinement instead of parti-
tioning based on common edges, as described in our earlier work. This effectively
removes the obvious solutions from the summary Abox. If the sound and incom-
plete reasoning algorithm finds all solutions, there will be no solutions left in the
summary Abox after this first refinement, so the algorithm will converge very
quickly. Any remaining inconsistencies are spurious, and can be resolved in one
or a few refinement steps. If the sound and incomplete algorithm finds only some



of the solutions, then the refinement process will find the rest of the solutions
with fewer refinement steps. If there are no solutions found by the sound and
incomplete reasoner, the number of refinement steps is the same.

Our key contributions in this paper are as follows: (a) we describe a fast,
sound but incomplete algorithm, which finds most but not all solutions in typical
usage scenarios, (b) we describe how to incorporate these solutions into a sound,
complete algorithm for large Aboxes, and (c) we demonstrate its effectiveness
in providing performance gains (from 100 minutes per query to 15 minutes per
query) on expressive Aboxes with 60 million assertions.

2 Background

Query answering in expressive DLs can be reduced to consistency detection. For
instance, assume that we want to find all instances of the concept C. To answer
this query, each individual a is tested by adding the assertion a : ¬C to the
Abox, and checking the new Abox for consistency. If the Abox is inconsistent,
then a is an instance of C. For large Aboxes, this approach will clearly not scale.
Therefore, in our previous work [2], we modify this approach to perform tableau
reasoning on a summarized version of the Abox rather than the original Abox.
Formally, an Abox A′ is a summary Abox of a SHIN Abox A if there is a
mapping function f that satisfies the following constraints4:

(1) if a : C ∈ A then f(a) : C ∈ A′
(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′
(3) if a ˙6=b ∈ A then f(a) ˙6=f(b) ∈ A′

If the summary Abox A′ obtained by applying the mapping function f to A is
consistent w.r.t. a given Tbox T and a RboxR, then A is consistent w.r.t. T and
R. However, the converse does not hold. In the case of an inconsistent summary,
we use a process of iterative refinement to make the summary more precise, to
the point where we can conclude that an inconsistent summary A′ reflects a real
inconsistency in the actual Abox A. Refinement is a process by which only the
part of the summary that gives rise to the inconsistency is made more precise,
while preserving the summary Abox properties (1)-(3). To pinpoint the portion
of the summary that gives rise to the inconsistency, we focus on the justification
for the inconsistency, where a justification is a minimal set of assertions which,
when taken together, imply a logical contradiction.

We define refinement for a summary individual s in a justification J as a
partition where individuals mapped to s are partitioned based on which edges
in J each individual actually has. More specifically:

key(a,J ) ≡

R(t, s)

∣∣∣∣∣∣∣∣∣∣
f(a) = s∧
R(t, s) ∈J∧
∃b in A s.t.
R(b, a) ∈ A∧
f(b) = t

 ∪

R(s, t)

∣∣∣∣∣∣∣∣∣∣
f(a) = s∧
R(s, t) ∈J∧
∃b in A s.t.
R(a, b) ∈ A∧
f(b) = t


4 We assume without loss of generality that A does not contain an assertion of the

form a=̇b



Since an individual may be mapped to a summary individual that is in multiple
overlapping justifications, we define:

key∗(a) =
⋃

{J |a∈J }

key(a,J )

In a refinement step that refines s in A′, new individuals s1...sk replace s in
A′, where there are k unique key sets key∗(a), for all a in A such that f(a) =
s. Individuals a and b in A mapped to s in A′ are partitioned correspondingly,
that is, f(a) = f(b) after the refinement step iff key∗(a) = key∗(b) before the
refinement step.

In principle, in the presence of many justifications involving overlapping sets
of nodes, the union of the keys could become very large. In practice, we have
not observed this across the various knowledge bases we have evaluated, even
for ones that do contain overlapping justifications.

If all individuals in A mapped to a summary individual s have the same key
w.r.t. J , then it must be the case that they have all the edges in the justification
and hence s is precise w.r.t. J . If a justification is precise, we can conclude that all
individuals in A mapped to the tested individual in the justification are solutions
to the query. In the worst case, iterative refinement can expand a summary Abox
into the original Abox, but in practice, we conclude on precise justifications with
many individuals mapped to each summary node in the justification.

Our implementation of summarization and refinement in a system called
SHER is in terms of RDBMS operations to allow the system to scale to large
data sets. However, the iterative process of summarization and refinement is
expensive, because (a) it requires expensive join operations on all role assertions
in the Abox A to define the key(a), as well as expensive join operations of role
assertions with type assertions to rebuild the summary, and (b) it requires several
consistency checks to find the many sources of inconsistencies for each summary
that gets built. For large knowledge bases with multiple ways in which one can
derive a solution to the query, this becomes a serious performance bottleneck.

3 A Sample Knowledge Base

We illustrate our techniques with the sample knowledge base (Tbox T , the Rbox
R and the Abox A) in Figures 1 and 2. This example is a small subset of the
UOBM [3] benchmark that we use in our evaluation. To form the summary Abox
for Figure 2, the individuals a and b are mapped to a single summary individual
w with a concept set of Woman, and the individuals f , g and j are mapped
to another summary individual p with a concept set of Person. The summary
Abox is shown in the Figure 3.

Consider the query WomanWithHobby, which is defined as Womanu≥ 1likes.
There are three solutions. The individual a is a solution because loves v likes.
The individual f is a solution because the course d can be taught by only one
Person, and so f and b will be identified with each other during reasoning. Fi-
nally, g is a solution, since isStudentOf(g,WomenCollege) implies that g is a
Woman.



T assertions:

(1) WomanCollege v ∀hasStudent.Woman
(2) > v ≤ 1isTaughtBy

R assertions:

(1) loves v likes
(2) isStudentOf is inverse of hasStudent
(3) teacherOf is inverse of isTaughtBy

Fig. 1. Example T , R
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Fig. 2. Example A

Figure 3 shows the entire refinement process for answering this query:

(1) Refine w by splitting it into two nodes w′ which has a mapped to it, and w′′

which has b mapped to it.
(2) Refine p by splitting it into two nodes p′ which has g mapped to it, and p′′

which has f and j mapped to it.
(3) Refine p′′ further, by splitting it into nodes p1 which has f mapped to it,

and p2 which has j mapped to it.

We explain these steps in more detail. First, ¬WomanWithHobby is added
to a tested summary individual w. The resulting Abox is inconsistent, and a jus-
tification J contains the assertions: w : Woman, loves v likes, and loves(w, c).
For refinement, we target the summary individuals in J , which are w and c.
Refinement makes a justification J precise, that is, it partitions the individuals
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Fig. 3. Refinement Steps for Example

mapped to the summary node w into a new set of summary nodes to reflect
the fact that not all individuals in A mapped to w have the loves(w, c) in J .
The summary individual w is therefore split into two new summary nodes, w′

that has individuals with no loves(w, c) mapped to it (e.g., a), and w′′ that has
individuals with loves(w, c) mapped to it (e.g., b). This new refined Abox is still
inconsistent, with a new justification J which contains the individuals w′′ and
c. Refinement of w′′ or c however is no longer possible, because every individual
in A that is mapped to w′′ also has the loves(c, ,) and every individual mapped
to c has the same edge (here c is the same as the summary node c). At this
point, the justification J is precise, in that it cannot be refined further, and we
conclude that all individuals in A mapped to w′′ are solutions to the query.

For the second step, ¬WomanWithHobby is added to a tested summary
individual p. The resulting Abox is inconsistent, and this time there is the jus-
tification: isStudentOf(p, i), loves v likes, and loves(p, h), combined with the
axiom WomanCollege v ∀hasStudent.Woman. The result of the second refine-
ment is shown in Figure 3. After this refinement, the subgraph containing p′ is



still inconsistent, and p′ is not refinable. Therefore, all individuals in A mapped
to p′, namely g, are solutions.

There is one final justification which is refinable: teacherOf(p′′, d), teacherOf(w′′, d),
w′′ : Woman, loves v likes, loves(w′′, c), and > v ≤ 1isTaughtBy. After the
third refinement step, we conclude that f mapped to P1 is a solution.

On large knowledge bases, the cost of each additional refinement is significant,
so it is critical to reduce the number of refinements. We show in the next sections
how our hybrid reasoning approach can reduce the number of refinements for
this example.

4 Hybrid Algorithm

The key idea to reducing refinement iterations is to (a) quickly find solutions to
the query, (b) refine the summary to isolate these solutions into new summary
individuals, and (c) ignore these individuals for the rest of the refinement process.
We find solutions quickly by using a sound and incomplete reasoning algorithm
which does a form of query expansion described in Section 5. Although we present
our implementation of a specific incomplete reasoning algorithm, any sound,
incomplete algorithm may be plugged into this technique.

To illustrate the overall idea in terms of our example in Figure 2, we ex-
pand our query WomanWithHobby into the query WomanWithHobby(x) t
(Woman(x) u likes(x, y)) t (Woman(x) u loves(x, y)). This query matches all
pairs of individuals in the Abox bound to both x and y, namely the pair (b,
c), and this constitutes our set of known bindings. Our next step is to refine
the summary Abox, so that the individuals in the solution, namely b and c, are
mapped to distinct new summary individuals. We do this by a refining the sum-
mary Abox in a manner similar to that described in Section 2; the only difference
is that we now partition the Abox individuals according to whether they were
bound to any variable in the query or not, rather than according to key sets.
That is, f(a) = f(b) after the refinement step iff a and b are mapped to the same
summary node before the refinement step and either both or neither a and b are
individuals in the set of known bindings. Our algorithm keeps track of the subset
of known bindings that actually are answers to the query, which is just b in this
case. Next, consistency checking is applied to this refined summary, and any re-
maining inconsistencies are resolved using the standard iterative refinement and
summarization process described in [2].

This approach has a nice property: in cases where the incomplete step ac-
tually does find all solutions and the summary itself is consistent, the complete
reasoning step may simply be a single consistency check on the refined summary.
Since there are no more solutions to be found, the only possible causes of incon-
sistency are spurious inconsistencies, which are the result of our summarization
technique. In practice, we find that the incomplete step captures all solutions
on most complex queries. This optimization therefore significantly reduces the
number of refinements and makes query answering practical for large Aboxes.



The pseudo-code for overall algorithm is shown in the function Membership-
Query in Figure 4.

Function:MembershipQuery

Input: QueryConcept: x : C
/* Get incomplete answers from sound but incomplete algorithm, which

can be translated to SQL */

sqlQuery ← BuildQuery(C, x, ∅);
/* Get the bindings for all variables in the expanded query, i.e., x

(which holds the solutions themselves) and any additional

variables introduced by existential restrictions */

result ← execute(sqlQuery);
/* Build filtered summary for query answering, which is the basic

summary Abox A′ */

summary ← BuildSummary(C);
/* Separate the bindings for x from bindings for any existential

variables */

sqlsolutions ← getBindings(result, x);
others ←

⋃
v∈vars(result)−x

getBindings(result, v);

/* Refine summary based on solutions found from SQL */

sum ← refineSummaryFromSolutions(sum, sqlsolutions ∪ others) ;
/* Find all summary nodes in new summary which have sqlSolutions

mapped to them */

sumSolutions ← getSummaryNodesForSQLSolutions(sum, sqlSolutions);
/* complete query answering, using refined summary */

restsolutions ← solveQuery(sum, allnodes - sumSolutions);
return sqlsolutions ∪ restsolutions

Fig. 4. Overall optimized complete query algorithm

5 Query Expansion

In our current implementation, our incomplete reasoning algorithm expands a
subset of DL constructs, namely, intersections, existentials and unions found in
a query concept. (Note that a minimum cardinality of 1 is a special case which is
treated as an existential (∃R.>)). The expansion is based on the fact that for a
given query concept C, an instance a can be a member of C if there is directly an
assertion a : C in the Abox, if there is an assertion a : C ′ in the Abox, where C ′

is a subclass of C, or if a satisfies the definition of C (in an equivalence axiom).
Query expansion is performed after the Tbox has been absorbed.

For any given query a : C, we generate an abstract representation of the
query by recursively traversing the definitions and subclasses of the concept C,
and by generating corresponding patterns. The abstract query produced consists



of nested AND and OR expression patterns, where the expression terms are vari-
ables, constants, or other patterns. In query expansion, we use the following ab-
stract patterns: AndPattern, OrPattern, TriplePattern, TripleTransitivePattern,
TypePattern, MergePattern, and EmptyPattern. The AndPattern and OrPat-
tern express intersections and unions, respectively, and can be arbitrarily nested.
The TriplePattern expresses a relation R(x, y), and a TripleTransitivePattern ex-
presses an R(x, y) pattern when Trans(R), i.e. when R is transitive. A TypePat-
tern expresses an x : y assertion as a TriplePattern rdf : type(x, y). A MergePat-
tern has a single parameter, which is any of the other patterns; it matches all
individuals matched by the parameter pattern, and additionally any individuals
that the analysis has determined must be merged with any individual matched
by the parameter pattern. An EmptyPattern is one that returns no solutions.

The abstract query pattern is then translated into SQL, which is fairly
straightforward, except in the case of MergePattern and TripleTransitivePat-
tern. These are implemented in the form of datalog rules, and are evaluated by
a datalog engine.

For our sample query x : WomanWithHobby, we first generate an OrPattern
P which signifies all the possible ways in which this query can be expanded. The
first disjunct of the OrPattern matches individuals of WomanWithHobby di-
rectly, rdf : type(x,WomanWithHobby). In this case, however, the WomanWithHobby
type does not appear in the Abox, and so we drop this disjunct. Next we would
generate OrPattern disjuncts to match individuals that are in subclasses of
WomanWithHobby, but in this case there are no subclasses. We find subclasses
by calling a standard DL reasoner. The one term that is actually generated
comes from recursively processing the definition of WomanWithHobby, which
is Womanu≥ 1likes. This generates a set of AndPatterns. The first AndPattern
has conjuncts TypePattern rdf : type(x,Woman) and TriplePattern likes(x, y).
The second AndPattern has conjuncts TypePattern rdf : type(x,Woman) and
TriplePattern loves(x, y), since likes has a subproperty loves.

Our query expansion algorithm is provided in pseudo-code in 5. The algo-
rithm uses a set of auxiliary information which are defined below.

conjuncts(c) is the set of conjuncts in an intersection concept
disjuncts(c) is the set of all disjuncts in a union concept
existentialRole(c) is the role in an existential concept
existentialConcept(c) is the concept in an existential concept
rolesInAbox is the set of all roles that actually appear anywhere in the Abox.
typesInAbox is the set of all concepts that appear in the Abox, including any

complex types.
subproperties(p) is the set of all subproperties of p, as defined by the Rbox

(including p itself)
subclasses(c) is all subclasses of concept p, as defined by the Tbox (including

c itself)



Function:BuildQuery

Input: concept, var, processedConcepts
Output: AbstractQuery
/* input: ‘concept’ is concept to expand, ‘var’ is the current query

variable, ‘processedConcepts’ is concepts being done currently.

*/

if concept /∈ processedConcepts then
switch typeof(concept) do

/* Also covers minCard concepts with a degree of 1 */

case existential
/* ‘objectVar’ is a new variable to bind the object of

this existential */

objectVar ← newAnonVar;
makeOrPattern(

pc ← processedConcepts ∪{concept};
ec ← existentialConcept(concept);
for r ∈ rolesInAbox ∩ subproperties(existentialRole(concept)) do

if transitive(r) then
TripleTransitivePattern(var, r, BuildQuery(ec,
objectVar, pc));

else
TriplePattern(var, r, BuildQuery(ec, objectVar, pc));

end

end

)

end
case union

makeOrPattern(
for p ∈ disjuncts(concept) do

BuildQuery(p, var, processedConcepts ∪{concept});
end

)

end
case intersection

makeAndPattern(
for p ∈ conjuncts(concept) do

BuildQuery(p, var, processedConcepts ∪{concept});
end

)

end
case Primitive

makeOrPattern(
for t ∈ typesInAbox ∩ subclasses(concept)) do

MergePattern(TypePattern(var, t));
end
for t ∈ subclasses(concept)) do

if definition(t) then
BuildQuery(definition(t), var, processedConcepts ∪{t});

else

end

end

)

end
otherwise

EmptyPattern;
end

end

else
EmptyPattern;

end

Fig. 5. Query expansion algorithm



6 Evaluation

We evaluated our technique on two knowledge bases: the first is a real-world
knowledge base, and real queries of clinical data that we had used in previ-
ous work[4], and the second is the UOBM benchmark[3]. Our experiments were
conducted on a 2-way 2.4GHz AMD Dual Core Opteron system with 16GB of
memory running Linux, and we used IBM DB2 V9.1 as our database. Our Java
processes were given a maximum heap size of 8GB for clinical data, and 4GB
for UOBM.

6.1 Clinical trials dataset

In prior work [4], we reported on the use of expressive reasoning for matching
of patient records on clinical trials. The 1 year anonymized patient dataset we
used contained electronic medical records from Columbia University for 240,269
patients with 22,561 Tbox subclass assertions, 26 million type assertions, and
33 million role assertions. The 22,561 Tbox subclass assertions are a subset
of the a larger Tbox which combines SNOMED with Columbia’s local taxon-
omy called MED for a total of 523,368 concepts. For details of the partition-
ing algorithm used to define the subset see [4]. Although the expressivity of
the SNOMED version we used falls in the EL fragment of DL, the expres-
sivity needed to reason on the knowledge base is ALCH. This is because we
have type assertions in the Abox which includes assertions of the type ∀R.¬C,
where the concept C is itself defined in terms of a subclass or equivalence
axiom. As a concrete example, for a given patient, and a specific radiology
episode for the patient, the presence of ColonNeoplasm may be ruled out.
ColonNeoplasm has complex definitions in SNOMED (e.g., ColonNeoplasm ≡
∃AssociatedMorphology.Neoplasm u ∃FindingSite.Colon u ColonDisorder).
We selected the 9 clinical trials we evaluated in our earlier work which are
shown Table 1. Table 2 shows the DL version of the queries, in the order shown
in Table 1. For query NCT00001162, the results shown are for the union of 7
different disorders, only 4 of which are illustrated in Table 2.

Table 3 shows the queries, the number of patients matched to the queries,
the time to process the queries in minutes, the time in minutes for our hybrid
approach (HTime), the time in minutes for our previous approach (Time), the
number of refinements with our hybrid approach (HRefinements) and the number
of refinements with our previous approach (Refinements). As can be seen from
the table, the hybrid approach reduced the number of refinements to 1 in all
cases, which reflects the refinement needed to check that there are no additional
solutions after the incomplete algorithm has completed (The one case where 0
refinements occurred was because for that specific query, our expressivity checker
decided that no refinement was needed given the specific filtered Abox that was
built for the query and the Tbox.) The hybrid approach improved our overall
query times from 100.4 mins on average with a standard deviation of 113.7, to
15.6, with a standard deviation of 3.5. This is not surprising, given that the



ClinicalTrials.gov ID Description

NCT00084266 Patients with MRSA
NCT00288808 Patients on warfarin
NCT00393341 Patients with breast neoplasm

NCT00419978 Patients with colon neoplasm

NCT00304382
Patients with pneumococcal pneumonia where source
specimen is blood or sputum

NCT00304889 Patients on metronidazole

NCT00001162
Patients with acute amebiasis, giardisis, cyclosporiasis
or strongloides...

NCT00298870 Patients on steroids or cyclosporine

NCT00419068 Patients on corticosteroid or cytotoxic agent

Table 1. Clinical Trial Requirements Evaluated

entire variability in query answering in our previous approach was due to the
number of refinements.

6.2 UOBM

We evaluated our approach on the UOBM benchmark, modified to SHIN ex-
pressivity. This was done by adding a new concept to correspond to each of
the nominals in the dataset (e.g. SwimmingClass for Swimming), adding a type
assertion for each nominal (e.g., Swimming : SwimmingClass), and changing
any of the references to nominals in the Tbox to point to the class. We are
evaluating membership query answering, so we tested one membership query
for each concept in the benchmark5, comparing the hybrid approach with our
prior techniques. We report results for UOBM size 100—with roughly 7.8 mil-
lion type assertions and 22.4 million role assertions—and UOBM size 150—with
about 11.7 million type assertions and 33.5 million role assertions. The queries
naturally fall into three categories:

empty Concepts that have no instances in the Abox.
simple Concepts that have only simple solutions (i.e. reasoning does not require

iterative refinement because the justification viewed as a graph does not have
path lengths greater than 1).

complex Concepts that have complex solutions (i.e. reasoning requires itera-
tive refinement because the justification viewed as a graph has path lengths
greater than 1).

We expect the hybrid approach to benefit only the third category of queries.
One complication is that the summary Abox for the UOBM benchmark has a
spurious inconsistency induced by the summarization process, so all membership
query answering require 2 passes of refinement in order to make the summary
consistent/footnoteThis is a deficiency in our current implementation.
5 That is, all classes in the original benchmark. The extra classes introduced by our

transformation to SHIN are ignored.



DL Query

∃associatedObservation.MRSA

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Warfarin

∃associatedObservation.BreastNeoplasm

∃associatedObservation.ColonNeoplasm

∃associatedObservation.(
PneumococcalPneumonia
u
∃hasSpecimenSource.Blood t Sputum

)
∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Metronidazole

∃associatedObservation.
acuteamebiasist
giardisist
cyclosporiasist
strongloidest
. . .


∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.cyclosporine t steroids

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.corticosteroid t cytotoxicAgent

Table 2. DL Queries for Evaluated Clinical Trials

Table 4 shows results for the 3 query categories for UOBM sizes 100 and
150. The first three columns list the UOBM dataset size, the category of query,
and how many such queries there are. For both sizes and each query category,
we report the average and standard deviation for the query time and the num-
ber of passes of refinement. For both datasets, we timed out queries that took
longer than 30 minutes to complete; the timeouts occur ed on both the 100
size (1 timeout) and the 150 size (6 timeouts) for the original approach. Hence,
those averages and standard deviations are significant underestimates, and so
are marked with a ∗ in the table.

As one might expect, there is some overhead for executing the incomplete
query, and so the simpler queries actually show some slowdown in the hybrid
approach. However, the results do indicate that our hybrid approach does indeed
greatly reduce the time for the complex queries, which were the most expensive
ones with our previous approach. In fact, for all but one query, the incomplete



Query Matched Patients Time (m) HTime (m) Refinements HRefinements

NCT00084266 1052 68.9 17.8 6 1

NCT00288808 3127 63.8 11.6 5 0

NCT00393341 74 26.4 12.1 2 1

NCT00419978 164 31.8 12.4 3 1

NCT00304382 107 56.4 15.1 8 1

NCT00304889 2 61.4 20.7 3 1

NCT00001162 1357 370.8 13.5 58 1

NCT00298870 5555 145.5 19.3 8 1

NCT00419068 4794 78.8 17.5 5 1

Table 3. Patient Matches for Trial DL Queries for 240,269 Patients

Time (seconds) Refinement
Original Hybrid Original Hybrid

Size Category Count Average Stdev Average Stdev Average Stdev Average Stdev

100 empty 11 214 37 214 19 2 0 2 0
100 simple 43 255 83 265 47 2 0 2 0
100 complex 14 891∗ 386∗ 377 105 14∗ 11∗ 3 .3

150 empty 11 301 35 347 45 2 0 2 0
150 simple 43 340 88 416 85 2 0 2 0
150 complex 14 1368∗ 508∗ 647 198 14∗ 11∗ 3 .3

Table 4. Results for UOBM Membership Queries for sizes 100 and 150

reasoning algorithm found all the solutions. The one query which was the outlier,
GraduateCourse, required propagation from a universal restriction for reason-
ing, which was not accounted for by our incomplete algorithm. In this case, we
proceeded to find the answer through our prior complete reasoning algorithm.

7 Related Work and Conclusions

There have been efforts in the semantic web community to define less expressive
subsets of OWL-DL for which reasoning is tractable. The EL-family of languages
[5] is one such example, for which classification can be done in polynomial time.
The fragment EL++ [5] supports nominals, which means that Abox reasoning
(i.e. conjunctive query answering) can also be done in polynomial time. However,
transforming Abox assertions into nominals-based axioms in the Tbox and doing
classification can still be expensive, especially when the Abox contains millions
of assertions. To our knowledge, there are no results for this particular scenario;
[6] describes performance of the CEL reasoner for classifying the SNOMED Tbox
(which is in EL) containing roughly 700K assertions in 29 mins.

Another example is the DL-Lite family [7], for which conjunctive query an-
swering is expressible as a first-order logic formula (and hence an SQL query) over
the Abox stored in a relational database, yielding LOGSPACE data-complexity.



[7] describes a query reformulation algorithm, which is similar in spirit to ours,
using IS-A, role-typing (∃R.A v C), and participation (A v ∃R.>) assertions in
the Tbox to expand query concepts.

Finally, the Oracle 11g system supports another subset of OWL known as
OWL-Prime and does query answering over the data by precomputing inferences
using a forward-chaining rule engine. Using this technique it is able to scale query
answering to millions of assertions.

However, a key point is that the optimizations developed in the above ap-
proaches, whether it is query-reformulation or the evaluation of a simple rule-set
to compute sound, but not necessarily complete, solutions to the query can be
plugged into our hybrid system when dealing with the more expressive OWL-
DL. When it is known that the optimization is complete based on the underlying
logic of the KB6 and the manner in which it is implemented, fallback to our re-
finement strategy is not necessary. Otherwise, the refinement process will find
any remaining solutions.
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