
RC24563 (W0805-127) May 20, 2008
Computer Science

IBM Research Report

Scalable Conjunctive Query Evaluation over Large and
Expressive Knowledge Bases

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma*,
Edith Schonberg, Kavitha Srinivas, Xing Zhi Sun*

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

*IBM Research Division
China Research Laboratory

 Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100094
P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Scalable Conjunctive Query Evaluation Over

Large and Expressive Knowledge Bases

Julian Dolby1, Achille Fokoue1, Aditya Kalyanpur1, Li Ma2, Edith Schonberg1,
Kavitha Srinivas1, and Xingzhi Sun2

1 IBM Watson Research Center,P.O.Box 704, Yorktown Heights, NY 10598, USA
dolby, achille, adityakal, ediths, ksrinivs@us.ibm.com

2 IBM China Research Lab, Beijing 100094, China
malli,sunxingz@cn.ibm.com

Abstract. Conjunctive query answering over OWL-DL ontologies is in-
tractable in the worst case, but we present novel techniques which allow
for efficient querying of large expressive knowledge bases in secondary
storage. In particular, we show that we can effectively answer conjunctive
queries without building a full completion forest for a large Abox (unlike
state of the art tableau reasoners). Instead we rely on the completion for-
est of a dramatically reduced summary of the Abox. We demonstrate the
effectiveness of this approach in Aboxes with up to 45 million assertions.

1 Introduction

Scalable conjunctive query answering is an important requirement for many
large-scale Semantic Web applications. In this paper, we present a tableau-
based reasoning solution for answering conjunctive queries over large and expres-
sive Aboxes. We consider queries with only distinguished variables because such
queries are more realistic in practice and can also be answered more efficiently.
Our approach handles the expressive DL SHIN (OWL-DL minus nominals and
datatypes), and scales to Aboxes with up to 45 million assertions.

In our previous work, we have developed an efficient summarization based
technique to do sound and complete membership query answering over SHIN
KBs containing millions of assertions [1]. At its core, the technique applies a
standard tableau algorithm to a summary Abox A′ rather than the original
Abox A. The summary A′ is created by aggregating individuals with the same
concept sets into a single summary individual. Consistency checking is then per-
formed on A′. If the summary is consistent when a negated query is added to
a summary individual a, then all individuals mapped to a can be ruled out as
solutions to the query. If the summary is inconsistent, it is possible that either
(i) a subset of individuals mapped to a are instances of the query or (ii) the
inconsistency is a spurious effect of the summarization. We determine the an-
swer through refinement, a process which selectively expands the summary Abox
by focusing on inconsistency justifications (minimal assertion sets implying the
inconsistency), and making them more precise w.r.t the original Abox. Precise

justifications are then used to find query solutions. A key point here is that even
a precise summary justification is not at the level of Abox individuals, and the
scalability of the approach comes from the fact that it makes decisions on groups
of individuals as a whole in the summary. For example, when the algorithm con-
cludes that a particular summary individual a is a solution to the membership
query C(x), it implies that all the Abox individuals mapped to a are solutions.

A natural question is whether this technique can be extended to solving re-
lationship queries, and hence arbitrary conjunctive queries. Unfortunately, the
nature of our summarization algorithm is such that what works well for solv-
ing membership queries does not hold fully for relationship queries. A simple
example illustrates the fundamental limitation. Consider the relationship query
R(x, y) over an Abox A with summary A′. This translates into a membership
query over the summary as follows: We add a new atomic concept Ny as a type
to every summary individual in A′, and then check for the membership query:
∃R.Ny. Unfortunately, while this technique gives us all Abox individuals mapped
to x, it cannot tell us all the solution tuples for R(x, y) in the Abox, because
not all Abox justifications for these tuples necessarily appear in the summary
in its original structure3. As a result, we are forced to find all solution justifica-
tions in the Abox, which is an NP-complete problem [3], making this approach
impractical.

Our basic approach therefore is to split the conjunctive query into its compo-
nent membership atoms and relationship atoms, solve these two parts separately,
and join the respective bindings at the end. For example, consider a conjunctive
query C(x) ∧ R(x, y) ∧ D(y) ∧ S(y, z) where x, y, z are distinguished variables,
C,D are concepts and R,S are roles. Our algorithm does the following:

1. We evaluate the membership queries C(x),D(y) using an extension of our
previous summarization and refinement technique (see section 4), to find
potential solution bindings for x, y (here, variable z does not have any type
constraints and so all Abox individuals are considered potential bindings
for z). A key point here is to filter out membership query bindings that
do not satisfy the remaining relationship constraints in the query, and for
this we use the completion forest of the summary Abox to estimate query
candidates. This narrows the candidate search space significantly. We prove
correctness of this novel optimization in Section 3 (Theorem 1).

2. We then evaluate the relationship query R(x, y) (resp. S(y, z)) by focusing on
x, y (resp. y, z) individual bindings found in step 1. Details of how we evalu-
ate relationship queries efficiently, using a Datalog rule-set and optimizations
based on the completion forest of the summary Abox, are in Section 5.

3. We join the resultant bindings found across all the relationship query atoms
in step 2 to obtain conjunctive query solutions. The entire conjunctive query
algorithm that combines steps 1 and 2 is presented in Section 6.

Our contributions in this paper are as follows: (a) we present a technique to
perform scalable conjunctive query answering over large and expressive Aboxes

3 For details, see [2].

which relies on an important new property – using the completion forest of the
summary Abox for various optimizations (b) we demonstrate the effectiveness of
this technique with very large Aboxes on the UOBM benchmark, (c) we demon-
strate graceful degradation of our algorithm’s performance, such that queries
whose solutions do not exploit non-determinism in the KB (e.g., do not require
non-deterministic mergers between individuals) are performed very efficiently.

2 Background

2.1 Definition of Conjunctive Query

Given a knowledge base (KB) K and a set of variables V disjoint with the set
Ind of named individuals in K, a conjunctive query Q is of the form (x1, ..., xn)
← q1∧...∧qm where, for 1 ≤ i ≤ n, xi ∈ V and, for 1 ≤ j ≤ m, qj is a query term.
A query term q is of the form C(x) or R(x, y) where x and y are either variables
or named individuals in K, C is a concept expression and R is a role. V ar(Q)
refers to the set of variables occurring in query Q. Let π : V ar(Q) → Ind be a
total function from variables in Q to named individual in K. For a query term
q, π.q denotes the query term obtained by substituting in q all occurrences of a
variable x by π(x).

(a1, ..., an) is a solution in the KB K of the conjunctive query Q of the form
(x1, ..., xn) ← q1 ∧ ... ∧ qm iff. there is a total function π : V ar(Q) → Ind such
that the following hold : (1), for 1 ≤ i ≤ n, π(xi) = ai, and (2), for 1 ≤ j ≤ m,
K |= π.qj (i.e. K entails π.qj).

2.2 Summarization and Refinement

In our earlier work, we presented an algorithm based on summarization and
refinement to scale consistency checking and membership query answering to
large Aboxes in secondary storage. A key feature of our algorithm is that we
perform consistency detection on a summarized version of the Abox rather than
the Abox in secondary storage [4]. A summary Abox A′ can be constructed by
mapping all individuals in the original Abox A with the same concept set to a
single individual in the summaryA′. Formally, an Abox A′ is a summary Abox of
a SHIN 4 Abox A′ if there is a mapping function f that satisfies the following
constraints:

(1) if a : C ∈ A then f(a) : C ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′

(3) if a ˙6=b ∈ A then f(a) ˙6=f(b) ∈ A′

If the summary Abox A′ obtained by applying the mapping function f to A is
consistent w.r.t. a given Tbox T and a Rbox R, then A is consistent w.r.t. T
and R. However, the converse does not hold. In general, an inconsistency in the

4 We assume without loss of generality that A does not contain an assertion of the
form a=̇b

summary may reflect either a real inconsistency in the original Abox, or could
simply be an artifact of the summarization process.

In the case of an inconsistent summary, we use a process of iterative refine-
ment described in [1] to make the summary more precise, to the point where we
can conclude that an inconsistent summary A′ reflects a real inconsistency in the
actual Abox A. Refinement is a process by which only the part of the summary
that gives rise to the inconsistency is made more precise, while preserving the
summary Abox properties(1)-(3). To pinpoint the portion of the summary that
gives rise to the inconsistency, we focus on the justification for the inconsistency,
where a justification is a minimal set of assertions which, when taken together,
imply a logical contradiction.

3 Optimizing Conjunctive Querying With the Summary

Completion Forest

One novelty of our approach is that we use the completion forest obtained from
the consistency check on the significantly smaller summary to rule out obvious
non-solutions in the Abox. This is a significant departure from existing tableau
reasoners which use the completion forest on the original Abox for optimizing
conjunctive queries. This section establishes the basis for our use of the summary
completion forest for optimizing conjunctive queries.

First, we briefly present important tableaux algorithm concepts and nota-
tions. As described in [5], the tableaux algorithm operates on a completion forest
F = (G,L, ˙6=, =̇) where G is a graph, with nodes corresponding to individuals
and edges corresponding to relations; L is a mapping from a node x in G to a set
of concepts, L(x), and from an edge < x, y > in G to a set of roles, L(< x, y >),
in R; =̇ is an equivalence relation corresponding to the equality between nodes
of G; and ˙6= is the binary relation distinct from on nodes of G. At the beginning
of the execution of the tableaux algorithm on an Abox A, the completion forest
is initialized as follows: There is a node x in G iff there is an individual x in
A. < x, y > is an edge in G with R ∈ L(< x, y >) iff R(x, y) ∈ A. For x and
y in G, x ˙6=y iff x ˙6=y ∈ A. Initially, there are no x and y in G such that x=̇y.
The tableaux algorithm consists of executing a set of non-deterministic rules to
satisfy constraints in A. As soon as an obvious inconsistency, a clash, is detected,
the algorithm either backtracks and selects a different non-deterministic choice
or stops if all non-deterministic choices have already been made. A root node a
is a node present in the initial completion forest (it corresponds to the named
individual with the same name in A).

For a root node c in the completion forest F , the root node α(c) is defined
as follows (informally, α(c) corresponds to the node in which c has been directly
or indirectly merged):

α(c) =

c if L(c) 6= ∅
d if L(c) = ∅, d is the unique root node in F

with L(d) 6= ∅ and d=̇c

Now, assuming that the original Abox A is consistent, there are two reasons
for the use of the completion forest of its summary for candidate pruning purpose:

– First, since A is consistent, as discussed in [1], a consistent summary A′ of
A can always be built through a finite number of refinements.

– Second, as established by theorem 1 below, if F ′ denotes the clash-free com-
pletion forest resulting from the consistency check on the summary A′ of
A, then there exists a complete and clash-free completion forest F resulting
from a direct application of tableau rules on A such that for two named
individuals in A a and b if α(f(b)) is not a R-neighbor5 of α(f(a)) then b
is not a R-neighbor of a. In other words, we can rule out the existence of
R-neighbors of a in F based on the non-existence of R-neighbors of α(f(a))
in F ′. Therefore, candidate solutions for a query of the form R(x, y) can be
pruned based on completion forest checking on F ′ instead of F .

Theorem 1 Let K = (A, T ,R) be a consistent knowledge base. Let f be a sum-
mary mapping function that maps A to a consistent summary Abox A′. Let F ′ be
the complete and clash-free completion forest resulting from a consistency check
on A′ , T and R. There exists a complete and clash-free completion forest F
resulting from an application of tableau rules directly on A such that, for named
individuals a and b in F originally present in A and a role S in R,

(1) L(a) ⊆ L′(α(f(a))) (where L(a) denotes the concept set of a in F , and
L′(α(f(a))) is the concept set of the α(f(a)) in F ′

(2) if b is S-neighbor of a in F , then, in F ′, α(f(b)) is a S-neighbor of α(f(a)).

Proof. The proof relies on the following main ideas:

– First, to make sure that properties (1) and (2) of Theorem 1 hold, we use
F ′ to guide the execution of non-deterministic rules on A (i.e. we make the
same choices as in F ′).

– Second, we maintain, during the execution of the tableau algorithm on A,
a mapping σ that maps nodes x in the completion forest F obtained from
A to nodes in F ′, regardless of whether x refers to a root node, or to a
generated node. Furthermore, the relationship between a node x in F and
σ(x) should be compatible with properties (1) and (2) of Theorem 1. This
mapping of x in F to nodes in F ′ is not straightforward in the presence of
blocking, because there is no guarantee that an unblocked generated node x
in F always maps to a node in F ′ that is also not blocked.

We therefore formally define the function σ as mapping a node x in F to a
pair (u, u′) of nodes in F ′, to handle the case when x is related to a blocked
node u′. The node u in the pair is the node that blocks u′ if u′ is blocked; if u′

is not blocked, then u and u′ are the same (u = u′).
Let F be the completion forest initialized from A in the standard way. Before

the start of the execution of tableau rules on F , the function σ maps a root node
in F to a pair of nodes in F ′ as follows:

5 By definition, y is a R-neighbor of x iff. S(x, y) ∈ A or P (y, x) ∈ A where S and P−

are subroles of R

– For a root node a in F , we define σ(a) = (α(f(a)), α(f(a)))

As new generated nodes are introduced during the execution of the tableau
rules on F , the mapping σ is extended to these new nodes as explained in the
treatment of the ∃-rule and ≥-rule. σ(a)[1] denotes the first element of the pair
σ(a), and σ(a)[2] is its second element.

We show by induction that at any given step k of a particular execution6 of
tableau rules on F the following holds: for all nodes x and y in F

(A′) Lk(x) ⊆ L′(σ(x)[1]) (where Lk(x) denotes the concept set of a at step k of
the execution of the standard tableau algorithm on A, and L′(σ(x)[1]) is the
concept set of the σ(x)[1] in F ′)

(B′) if y is a S-neighbor of x and y is either a root node or a generated child of
x, then, in F ′, σ(y)[2] is a S-neighbor of σ(x)[1].

(C ′) for σ(x) = (u, u′), u = u′ iff. u is not blocked
(D′) for σ(x) = (u, u′), u 6= u′ iff. u′ is blocked by u.
(E′) if x ˙6=y holds in F , then σ(x)[2] ˙6=σ(y)[2] holds in F ′

It is very important to note that, since F ′ is clash-free, if, at any step k, (A′),
(B′) and (E′) hold, then, at any step k, F is clash-free.

The details of the induction proof is given in [2].

4 Solving the Membership Query Part

To evaluate all the membership query atoms in the conjunctive query efficiently,
we restrict our tests to candidate individuals that conservatively satisfy all the
relationship atoms in the conjunctive query by making use of the completion
forest of the summary Abox. Note that in general (as described in [6]), the
completion forest of an Abox can be used to rule out candidates a, b to test
for a relationship query R(x, y). The intuition here is that a completion forest
F represents an abstraction of a model of the Abox, and thus if b is not an
R−neighbor of a in F (and R is not transitive), the relation R(a, b) cannot be
entailed by the KB. We apply the same principle to the completion forest of the
summary Abox, which is possible due to Theorem 1. Also, we extend this idea
by checking possible satisfaction of all the relationships in the conjunctive query.

The algorithm SELECT-CANDIDATES-MQ to select test candidates is shown
below. Basically, the algorithm transforms the relationship atoms in the original
conjunctive query into a SPARQL query Qr and issues it over the completion
forest of the summary F ′. Solutions to Qr give us candidates to test for the
membership constraints.

During the transformation, special care is taken for constants appearing in
role atoms. Since Qr is evaluated on the summary, constants are replaced by the
corresponding summary individuals that they are mapped to. Since we assume
that all variables in the original conjunctive query are distinguished, we need

6 An execution in which non-deterministic choices are made based on choices made in
F ′ as explained in the treatment of non-deterministic rules

Select-Candidates-MQ(F ′, R, f , Rj(xk, xl) (1 ≤ j ≤ n))
Input: F ′ Completion forest of Summary Abox, R Rbox of the
original KB, f Abox 7→ Summary mapping function, Rj(xk, xl) Set
of role atoms in original conjunctive query
Output: τ(x 7→ i) mapping from variables to summary individuals
(1) Vs ← set of all variables in role atoms Rj (1 ≤ j ≤ n)
(2) Rs ← set of all role atoms Rj(xk, xl)(1 ≤ j ≤ n)
(3) For any constant c in any of the role atoms in Rs, obtain

the summary individual s← f(c), and replace c by s

(4) Create a SPARQL query Qr whose SELECT clause is Vs

and whose WHERE clause is
∧

Rs.
(5) Issue Qr over F ′ with only Rbox inferencing using R to

obtain solution mapping τ(x 7→ i)
(6) Remove individual solutions from τ which are considered

‘anonymous’ in F ′

(7) Since F ′ may contain mergers between individuals in A′,
expand any individual binding i in τ by its equivalence set
(sameAs(i))

(8) return τ(x 7→ i)

to consider the variables in role atoms in the select clause of Qr. The query
is evaluated considering the Rbox R of the original KB, as we would like to
capture relationships that can be inferred due to sub-property, inverse or tran-
sitive axioms in it (Note that the Tbox need not be considered since we do not
care about concepts and concept-related axioms at this point). Since F ′ is small,
evaluating this query is straightforward.

The result of executing Qr is a mapping τ from variable to summary individu-
als, the latter becoming test candidates for the membership query constraints on
the former. Note that the completion forest of the summary Abox may contain
‘anonymous’ individuals that are generated due to the presence of existential
quantifiers in the KB. Obviously, these anonymous summary individuals are not
present in the original Abox either and so we do not need to test them. Therefore,
we discard any anonymous individuals from τ .

Having identified suitable test candidates, we now proceed to test them for
their respective membership query atoms, using our summarization and refine-
ment algorithm [1].While the previous work focused on testing a single member-
ship query on the summary, it can be easily extended to test multiple member-
ship queries on the summary at the same time. The main difference is that we
now start by adding the negation of all the membership types to their respec-
tive summary individual candidates, before testing for inconsistency (for details
of other optimizations to membership querying, see [2]). SOLVE-MQ, sketched
below, captures the essence of the evaluation of membership queries.

Solve-MQ(Q, A,T ,R)
Input: Q the conjunctive query, A Abox, T Tbox, R Rbox
Output: A′

c consistent version of summary Abox, fc summary map-
ping function for A′

c, F ′
c completion forest of A′

c, β mapping from a
variable to summary individuals satisfying its type constraints
(1) (A′, f) ← compute summary abox of A and its mapping

function f

(2) (A′
c, fc)← consistent version of A′ and its mapping function

obtained through refinement
(3) F ′

c ← complete and clash-free completion forest of A′
c

(4) τ ← Select-Candidates-MQ(F ′
c,R, fc, Rj(xk, xl) ∈ Q)

(5) foreach variable xk in Q

(6) if variable xk has type constraints in Q

(7) β(xk)← compute, through refinement, summary in-
dividuals in τ(xk) instances of concept

⋂
Cp(xk)∈Q

Cp

(8) else

(9) β(xk)← τ(xk)
(10) return (A′

c , fc, F ′
c, β)

5 Solving the Relationship Query Part

In this section, we discuss how we evaluate each of the role atoms R(x, y) in the
conjunctive query. We solve an atomic role query in three steps:

1. Section 5.1: We estimate an upper bound on potential relationship solutions
for R(x, y) in the Abox by capturing all possible ways in which relationships
can be inferred in SHIN . We do this efficiently using using the completion
forest of the summary Abox and a set of Datalog rules. The rules are re-
stricted to the membership query solutions that are output in the previous
step.

2. Section 5.2: After estimating potential role assertion solutions in the Abox,
we identify definite or deterministically-derived role assertions, since we do
not have to test for them.

3. Section 5.3: Finally, we test and solve the remaining potential relationship
solutions in the summary Abox.

5.1 Estimating Potential Solutions for an Atomic Role Query
R(x, y)

Our approach to estimate potential solutions to role queries consists in first
understanding how, in the completion forest F of an Abox A, a root node can
acquire new root node R-neighbors (i.e. root node R-neighbors that were not
present before the beginning of rule execution). Then, we devise a set of simple
rules (see Figure 2) to conservatively estimate potential R-neighbors. These rules
are simple enough to be efficiently evaluated using a datalog engine. Figure 1
illustrates the two ways a root node a in F can acquire new R-neighbors that
are root nodes during the execution of the tableaux algorithm on F :

Fig. 1. Acquisition of named individual R-neighbors

(A) The root node a is merged with another root node d and acquires root
node R-neighbors of d. The merger is performed to satisfy the maximum
cardinality restriction ≤ nQ in the concept set of c. This case also captures
acquisition of R-neighbors through mergers involving root neighbors of a.

(B) The root node b is merged with a generated node x to satisfy the maximum
cardinality restriction ≤ nQ in the concept set of a. As a result of this
merger, b becomes a R-neighbor of a since x was a R-neighbor of a.

Let us assume that F ′ is a complete and clash-free completion forest of the
summary A′ of the Abox A, and F is the complete and clash-free completion
forest of A given by Theorem 1.

We can conservatively account for acquisition of named R-neighbors of a
through mergers with named individuals by applying rules (see rules NamedMerge,
SameRel1, and SameRel2 in Figure 2) on the Abox that trigger a merger be-
tween a and d if (1) a is a Q-neighbor of c in A (explicitly or as a result of
evaluation of our simple rules), (2) d is a Q-neighbor of c in A (explicitly or as
a result of evaluation of our simple rules), and (3), in the completion forest F ′,
≤ nQ ∈ L′(α(f(c))) . If the last condition is not satisfied, Theorem 1 guarantees
that a merger between a and d is not possible in F since ≤ nQ cannot be the
concept set of c in F .

One way to account for mergers between root nodes and generated nodes is
to have rules that create these generated nodes. However, this is not practical
because too many nodes might be generated, complex blocking mechanism will
be required to ensure termination, and the resulting rules will not be simple
enough to be efficiently evaluated by a datalog engine.

Our approach to conservatively account for mergers illustrated in Figure 1 (B)
is to first observe that in order for them to occur in F , the following conditions
must be satisfied:

– a role generator (∃S.C or ≥ mS, where S is a role in the Rbox) must be
in the concept set of a (otherwise, a cannot have a generated node as its
neighbor), and

– a maximum cardinality restriction ≤ nQ must be in the concept set of a
and, the following must hold:
• b must be a Q-neigbhor of a, and
• x must be a Q-neigbhor of a.

For a named individual a in the abox A, Theorem 1 allows us to check
whether a maximum cardinality ≤ nQ and a role generator concept (∃S.C or
≥ mS) can be present in the concept set of a in the completion forest F of
A simply by checking whether they are in concept set of α(f(a)) in F ′. This
reduces the number of potential individuals a and b such that b can become a
R-neighbor of a through mergers of type (B). To further reduce this number, we
need a good upper bound on the set φa of roles P such that there is a generated
node x P -neighbor of a in F , since R has to be in φa. A direct consequence
of property (B′) in the proof of Theorem 1 is that the following set is such an
upper bound: {P | there is a P -neigbhor of α(f(a)) in F ′}.

Let φ̂f(a) be an upper bound of the set φa that depends only on information
in F ′. We can now express all the necessary conditions for b to possibly become
a R-neighbor of a in F through a merger of type (B) in terms of information
present in F ′:

– an existential restriction ∃S.C or a minimum cardinality restriction ≥ mS
must be in the concept set of α(f(a)) in F ′.

– a maximum cardinality restriction ≤ nQ must be in the concept set of
α(f(a)) and, the following must hold:
• b must be a Q-neigbhor of a (either explicitly in A or through the appli-

cation of rules to estimate potential new mergers)

• {Q,R} ⊆ φ̂f(a) (because there must be a generated node x which is both
a Q-neighbor of a and a R-neighbor of a in F).

– finally, α(f(b)) must be a R-neighbor of α(f(a))(direct consequence of The-
orem 1 and the fact that b has become R-neighbor of a in F)

Based on the previous necessary conditions, rule UnnamedMerge in Figure 2
accounts for potential acquisition of new R-neighbors in F through merger of
type (B).

For transitive roles, we perform the transitive closure over the estimated
inferred neigbhors (computed by rules in Figure 2). It is important to note that
new relations found after the application of the transitive closure cannot cause
merger rules to trigger because, in SHIN , maximum cardinality restrictions can
only be defined on simple roles (i.e. roles which are not transitive and do not
have transitive subrole).

Finally, the rule Relevance in Figure 2 forces the rule engine to focus only
on relationships appearing in the conjunctive query Q, and on the individual so-
lutions which satisfy the membership constraints in Q, specified by the mapping
β in the output of algorithm SOLVE-MQ.

5.2 Finding Definite Role Assertions

After estimating potential role assertion solutions in the Abox, we identify defi-
nite or deterministically-derived role assertions, since we do not have to test for
them.

In particular, consider the rule NamedMerge in Figure 2 which conserva-
tively estimates potential mergers between named Abox individuals. We can

(Init) InfTriple(X, R, Y) :- R(X, Y) ∈ A
(SameSym) same(X,Y) :- same(Y, X)
(SameTrans) same(X, Y) :- same(X,Z) and same(Z,Y)
(NamedMerge) same(X, Y) :- f(Z) = A and ≤ nR ∈ L′(α(A)) and X 6= Y

and InfTriple(Z, R, X) and InfTriple(Z, R, Y)
(SameRepl1) InfTriple(X, R, Y) :- same(X,Z) and InfTriple(Z, R, Y)
(SameRepl2) InfTriple(X, R, Y) :- same(Y,Z) and InfTriple(X, R, Z)
(UnnamedMerge) InfTriple(X, R, Y) :- f(X) = A and f(Y) = B and ≤ nT ∈ L′(α(A))

and (∃S.C ∈ L′(α(A)) or ≥ mS ∈ L′(α(A)))
and (α(B) is a R-neigbhor of α(A) in F ′)

and {R, T} ⊆ φ̂A and InfTriple(X, T, Y)
(SubRole) InfTriple(X, R, Y) :- S ⊑∗ R and InfTriple(X, S, Y) and S 6= R
(InvRole) InfTriple(X, R, Y) :- S− = R and InfTriple(Y, S, X)
(Relevance) RelInfTriple(X, R, Y) :- InfTriple(X, R, Y) and f(X) = A and f(Y) = B

and R(x1, x2) ∈ Q and A ∈ β(x1) and B ∈ β(x2)

Fig. 2. PotentialRuleSet: Rules to compute potential new named individual neighbors
that are relevant to conjunctive query Q. Main output: RelInfTriple

be more precise here for deterministic mergers if we somehow identify which
Abox individuals mapped to summary individual A are entailed to be of type
≤ 1.R. Conceptually, this amounts to solving the membership query ≤ 1.R(A)
in the summary Abox, which we evaluate efficiently using our membership query
answering solution. Similar analysis is done for the rule UnnamedMerge to iden-
tify Abox individuals that have role-generators (≥ m.S or ∃S.C) as an entailed
type. This gives us two new rules – DefnNamedMerge, DefnUnnamedMerge
– shown in Figure 3, which replace the rules NamedMerge, UnnamedMerge
in the PotentialRuleSet (Figure 2) to produce the rule set DefnRuleSet that
computes definite Abox relationship solutions.

(SummaryKB Defn) K′ = (A′, T , R)
(DefnNamedMerge) same(X, Y) :- f(Z) = A and K′ |=≤ 1R(A) and X 6= Y

and InfTriple(Z, R, X) and InfTriple(Z, R, Y)
(DefnUnnamedMerge) InfTriple(X, R, Y) :- f(X) = A and f(Y) = B and K′ |=≤ 1T (A)

and (K′ |= ∃S.C(A) or K′ |=≥ mS(A))
and S ⊑∗ R and S ⊑∗ T and InfTriple(X, T, Y)

Fig. 3. DefnRuleSet: Obtained by replacing NamedMerge and UnnamedMerge in the
PotentialRuleSet with the rules shown

5.3 Solving Remaining Potential Role Assertions

Having found potential role assertions solutions for R(x, y) in the Abox and
identifying the definite ones, we are left with testing the remaining potential
solutions.

Suppose the remaining potential tuples to test are {R(u1, v1), ...R(un, vn)},
where uk, vk, (1 ≤ k ≤ n) are Abox individuals. Instead of testing these tuples
in the Abox, we test them in the summary, i.e., for a given tuple R(uk, vk) we
identify the summary individuals to which uk, vk are mapped, say ai, bj respec-
tively, and test whether R(ai, bj) is entailed in the summary KB. This test is
done by reducing the problem to membership query answering as described in
the introduction. However, the limitation here is that when we find a tuple solu-
tion R(bi, bj) in the summary (where bi, bj are summary individuals), we cannot
compute all Abox relationship solutions from it – all we know is that every in-
dividual mapped to bi is entailed to have an R-relation to some individual in
bj (and vice-versa, every individual mapped to bj has an R− relation to some
individual mapped to bi)

7.

In this case, for the sake of completeness, we are left with no choice other
than to split one of the summary individuals down to the level of the Abox
individuals mapped to it and test for relationships subsequently. Obviously, we
choose to split the summary individual which has less Abox individuals mapped
to it, to restrict the size of our summary Abox. Even in this worst case scenario,
the performance of the algorithm is not severely affected as only one end of the
tuple is split and the grouping of individuals is still preserved at the other end.
Also, other than the tested tuples, the rest of the summary remains unchanged
(so typically a large part of the Abox is still summarized).

We combine the three steps discussed in this section into an algorithm SOLVE-
RQ that finds all solutions to a relationship query.

Solve-RQ(R(xi, xj), A, T , R, A′
c, fc, F ′

c, β)
Input: R(xi, xj) Relationship query, A Abox, T Tbox, R Rbox, A′

c

Consistent Summary of A, fc Abox 7→ Summary mapping function,
F ′

c Completion forest of A′
c, β output mapping from Solve-MQ(..)

Output: S set of pairs (a, b) s.t. (A, T ,R) |= R(a, b)
(1) DefnInfTriple ← RelInfTriple computed after evaluation

of DefnRuleSet using T , R, β, A′
c (for A′), fc (for f)

(2) S ← DefnInfTriple

(3) PotentialInfTriple ← RelInfTriple computed after evalua-
tion of PotentialRuleSet using R, β, A′

c (for A′), fc (for f)
and F ′

c (for F ′) (Note: Init rule here initializes InfTriple

as a union of role assertions in A and DefnInfTriple)
(4) PotentialInfTriple ← PotentialInfTriple - DefnInfTriple (re-

maining potential Abox role assertion solutions)
(5) Test and Solve PotentialInfTriple as described in Section

5.3 to get solution pairs S′

(6) S ← S ∪ S′

(7) return S

7 From a precise summary justification for R(bi, bj), we can issue an SQL query based
on the justification pattern to get some relationship pair solutions in the Abox, but
this would not be complete. For details, see [2]

6 Putting it all together

Finally, our complete conjunctive query answering algorithm, SOLVE-CQ, com-
bines SOLVE-MQ and SOLVE-RQ.

Solve-CQ(Q, A, T , R)
Input: Q Conjunctive query, A Abox, T Tbox, R Rbox
Output: S set of tuple solutions to Q

(1) [A′
c, fc, F

′
c, β]← Solve-MQ(Q,A,T ,R)

(2) foreach R(xj , xk) in Q

(3) SRj,k
← Solve-RQ(R(xj , xk),A, T ,R,A′

c, fc, F
′
c, β)

(4) S ← join all relationship solutions in SRj,k
for all R(xj , xk)

in Q

(5) return S

7 Computational Experience

7.1 Correctness and Scalability tests

We evaluated our approach on the UOBM benchmark [7], which was modified
to SHIN expressivity. We used 14 of the 15 queries defined in the benchmark
(query Q2, which is a pure membership query, was not included in our evalu-
ation). The results are reported for 1, 5, 10, 30, 100 and 150 universities. We
compared our results against KAON2 [8]. (Pellet [9] did not scale to even one
university). For KAON2, we set all maximum cardinality restrictions to one
because of KAON2 limitations. Our experiments were conducted on a 2-way
2.4GHz AMD Dual Core Opteron system with 16GB of memory running Linux,
and a maximum heap size of 2G. The Abox was stored in a IBM DB2 V9.1 for
SHER and MySQL V5.0 for KAON2.

Dataset type assertions role assertions

1 25K 214K

5 120K 928K

10 224K 1,816K

30 709K 6.5M

100 7.8M 22.4M

150 11.7M 33.5M

Reasoner Dataset Avg. Time St.Dev Range

KAON2 1 18 5 14

KAON2 5 166 102 376

KAON2 10 667 508 1872

SHER 1 12 2 7

SHER 5 25 6 19

SHER 10 46 14 44

SHER 30 150 50 140

SHER 100 531 322 1222

SHER 150 1066 706 2818

(a) Dataset Statistics (b) Runtimes in sec
Table 1. Evaluation data

The size of the datasets are given in Table 1 (a). Table 1 (b) summarizes the
times taken (in seconds) by KAON2 and SHER solely for query answering, i.e.,
in both cases, the times do not include the knowledge base pre-processing and

setup costs. KAON2 ran out of memory on UOBM-30. In 13 out of 14 queries
SHER and KAON2 had 100% agreement. The difference on query Q15 was due
to differences in the constraints used. As can be seen, the average runtimes for
SHER are significantly lower, usually by an order of magnitude, than those for
KAON2. [2] presents more detailed data on the evaluation performance for each
query on each KB. On all queries, except query 9, SHER scales almost linearly
from UOBM-1 to UOBM-150. Query 9, which has 3 role atoms, is an example
of a query where we can improve our performance by using a cost model based
approach to control the order of evaluation of query atoms as explained in [6].

7.2 Handling Non-deterministic Mergers

In experiments described in the previous subsection, UOBM queries did not
exploit non-deterministic mergers between individuals in the Abox to produce
new inferred results. Therefore, we modified the UOBM dataset to generate new
relationships from non-deterministic mergers between named individuals, and
considered a new query whose solutions required this.

We added disjoint relations between the four UOBM concepts FineArts,
Science, HumanitiesAndSocial, Engineering representing course subjects, and
a set of Abox assertions each resembling the pattern shown in Figure 4. The
newly added individual LS1 had type LeisureStudent, which is defined as (≤ 3.
takesCourse) in the UOBM Tbox. LS1 was assigned four takesCourse rela-
tions to individuals C1..C4 respectively. In general, we randomly added any one
of the four course subjects mentioned above as a type to Ci, 1 ≤ i ≤ 3 (C4 is
always assigned the type Course). In the case shown, C1, C2, C3 are mutually
disjoint concepts and hence the maxCardinality restriction in the type of LS1

causes a non-deterministic merger between C4 and any one Cj (1 ≤ j ≤ 3),
which in turn causes C4 to acquire a new isTaughtBy relation to the Lecturer

individual L1. To exploit this behavior, we considered the query: QND: (x, y,
z) ← LeisureStudent(x)∧ takesCourse(x, y)∧Course(y)∧ isTaughtBy(y, z)∧
Lecturer(z). In the example shown, there are 4 tuple solutions to QND, three
of which are explicit (LS1, C1/C2/C3, L1), and one is inferred (LS1, C4, L1) .

We modified UOBM-1, UOBM-5 and UOBM-10 by adding 100, 200 and 300
instances of LeisureStudent respectively. These numbers and datasets were
chosen since as the pattern in Figure 4 shows, generation of new relationships due
to non-deterministic mergers is non-trivial and seldom seen in large quantities in
practice. We then evaluated QND on the modified datasets. KAON2 is unable to
handle this query since it cannot deal with non-deterministic mergers. Results
of this query evaluation using SHER are shown in Figure 5. In the table, the
column E (resp. I) stands for the number of explicit (resp. inferred) solutions
for the query introduced by our script, PA, computed in step (4) of SOLVE-
RQ, is the number of potential relationship pairs in the Abox that need to be
tested, PA′ is the number of summary pairs corresponding to the Abox pairs
counted in PA, and SA′ is the number of summary solution tuples found using
the procedure described in Section 5.3, which are eventually split down to the
individual level.

Fig. 4. Abox pattern creating new isTaughtBy

relations from non-deterministic mergers

Dataset Time E I PA PA SA′

(in s)

1 38 210 70 182 32 1

5 76 480 160 335 75 1

10 165 786 152 319 100 15

Fig. 5. Evaluating QND

As the results show, the algorithm demonstrates a graceful degradation for
this query. For example, in UOBM-10, there are 786+152 = 938 entailed isTaughtBy

relationships (152 due to non-deterministic mergers8), however our algorithm
finds, in step(4) of SOLVE-RQ, that only 319 need to be tested. Moreover, they
are first tested through their corresponding summary pairs as explained in Sec-
tion 5.3. As result, only 15 out of 100 summary pairs are found to be solutions9,
and only one end of these 15 pairs are split down to the individual level. We feel
that the times shown are acceptable for realistic use-cases.

8 Related Work & Conclusions

Scalable reasoning algorithms exist for Aboxes in secondary storage, but they
either assume role-free Aboxes [10], or relatively inexpressive-DLs [11]. For the
more expressive OWL-DL, state-of-the-art tableau reasoners such as Pellet and
RACER have recently incorporated optimizations to support conjunctive query
answering over large Aboxes ([6], [12]). Inspired by relational-database join opti-
mizations, the systems use various heuristics to estimate a cost-model for evalu-
ating the various query atoms in the conjunctive query, to determine an efficient
join order. Additionally, the completion forest of the Abox (aka pseudo-model)
is used to identify obvious solutions and non-solutions to a query. Finally, Tbox
and Rbox information is used to rewrite conjunctive queries into a simpler form.
However, a fundamental limitation is that they work with the complete Abox,

8 Only isTaughtBy relations can be inferred due to non-deterministic mergers.
9 Not all potential relationships are solutions since the script may not necessarily add

disjoint subject types to individuals C1, C2, C3.

and the complexity of the tableau reasoning algorithm makes it infeasible to
build a completion forest for a large and expressive Abox, which affects both
solution pruning and testing. For this reason, the current implementations of
these systems scale to thousands but not millions of Abox assertions.

On the other hand, KAON2, which we included in our evaluation, is a non-
tableau based approach that relies on translating Description Logic to disjunctive
datalog [13] and is able to scale to an Abox with a million assertions. However,
KAON2 has problems dealing with max-cardinality restrictions (for cardinality
greater than 1) and even excluding such restrictions, is unable to scale to an
Abox with 7 million assertions.

Our technique appears to scale almost linearly for conjunctive queries of
large, expressive Aboxes composed of 30-45 million Abox assertions. As future
work, we plan to integrate a cost-model to determine an efficient join order for
the query atoms.

References

1. Dolby, J., A.Fokoue, Kalyanpur, A., A.Kershenbaum, L.Ma, E.Schonberg,
K.Srinivas: Scalable semantic retrieval through summarization and refinement.
Proc. of the 22nd Conf. on Artificial Intelligence (AAAI 2007) (2007)

2. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srini-
vas, K., Sun, X.: Scalable conjunctive query evaluation: Tech-
nical report. In: http://domino.research.ibm.com/comm/research
projects.nsf/pages/iaa.index.html/$FILE/techReportCQ.pdf. (2008)

3. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of owl
dl entailments. In: Proc. of Int. Semantic Web Conf. (ISWC-2007). (2007)

4. A.Fokoue, A.Kershenbaum, L.Ma, E.Schonberg, K.Srinivas: The summary abox:
Cutting ontologies down to size. Proc. of the Int. Semantic Web Conf. (ISWC
2006) (2006) 136–145

5. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ∗. Proc. of 17th Int.Conf. on Automated Deduction (2000) 482–496

6. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First
results. In: Proc. of the Description Logics Workshop. (DL-06). (2006)

7. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology
benchmark. In: Proc. of the third European Semantic Web Conf.(ESWC 2006).
(2006) 124–139

8. Hustadt, U., Motik, B., Sattler, U.: Reducing shiq - description logic to disjunctive
datalog programs. Proc. of the 9th Int. Conf. on Knowledge Representation and
Reasoning (KR 2004) (2004)

9. Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Description Logics. (2004)
10. Bechhofer, S., Horrocks, I., Turi, D.: The owl instance store: System description.

Proc. of 20th Int.Conf. on Automated Deduction (2005) 177–181
11. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:

Tractable description logics for ontologies. Proc. of AAAI (2005)
12. Moller, R., Haarslev, V., Wessel, M.: On the scalability of description logic instance

retrieval. In: Proc. of the Description Logics Workshop. (DL-06). (2006)
13. U.Hustadt, Motik, B., Sattler, U.: Reducing shiq description logic to disjunctive

datalog programs. (Proc. of 9th Intl. Conf. on Knowledge Representation and
Reasoning (KR2004)) 152–162

