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Abstract

In this work, we present a novel distor-
tion model for an Arabic to English max-
imum entropy word aligner. In constrast
to the distortion model of (Ittycheriah and
Roukos, 2005), our model is integrated with
the observation model allowing the param-
eters to be estimated jointly. To have more
robust estimates, the distortion model is
parametrized using linguistically motivated
features such as segmentation and WordNet
information. The resulting aligner gives sig-
nificant improvements over a strong base-
line on two different data sets. We also
present preliminary work on a self-trained
alignment model, which improves align-
ment quality even further.

1 Introduction

The typical processing pipeline of a phrase-based sta-
tistical machine translation (SMT) system consists of
two steps. In the first step, word alignments are ex-
tracted from a sentence-aligned parallel corpora. In
the second step, statistics over the word alignments
are used to decode test sentences. In this work, we
focus on the first task.

Generally, generative probabilistic models such as
the IBM models 1-5 (Brown et al., 1993) are used to
produce word alignments with increasing algorithmic
complexity and performance. These IBM models and
more recent refinements (Moore, 2004) as well as al-
gorithms that bootstrap from these models like the
HMM algorithm described in (Vogel et al., 1996) are
unsupervised algorithms.

Recently, a flurry of work (Ittycheriah and Roukos,
2005; Taskar et al., 2005; Moore, 2005; Fraser and

∗This research was conducted during the author’s in-
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Marcu, 2006; Moore et al., 2006; Blunsom and Cohn,
2006) has shown that provided the availability of
some manually annotated word aligned data as train-
ing material, discriminatively trained models can
outperform the alignment accuracy of the unsuper-
vised models.

This paper is an extension of the Maximum En-
tropy (ME) aligner presented in (Ittycheriah and
Roukos, 2005). In Section 3, we investigate the use of
syntactic features in the alignment model . However,
these features do not help improve alignment accu-
racy. In Section 4, we address a deficiency of the ME
aligner by incorporating a distortion model whose
parameters are estimated jointly with the observa-
tion model. We evaluate our model on the Arabic
to English alignment tasks on Sakhr and the MT 03
data sets showing significant improvements on both.

While our labeled training data is relatively small
(14.5K sentence pairs), we have access to an unla-
beled parallel corpus of almost 600K sentence pairs.
In Section 5, we present some self-training experi-
ments, in which the labeled training set is augmented
with the unlabeled data to create a larger training
set from which a new alignment model is estimated.
We show that this semi-supervised model produces
alignments of better quality on both test sets.

2 Maximum Entropy aligner

The ME aligner of (Ittycheriah and Roukos,
2005) probabilistically models link decisions between
source and target words in a given sentence pair. Fig-
ure 1 shows a sentence pair where the top sequence
is considered the source sequence and the bottom
sequence the target sequence. Each sequence can
have auxiliary information such as Arabic segmenta-
tion or English WordNet (Miller, 1990) information
as shown. Each target word has a link li which in-
dicates which source position it links to. The range
of li is from 0 to K and there are M of these links.
The source word position 0 is used to indicate NULL
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Figure 1: Alignment example.

which we imagine gives rise to unaligned (sponta-
neous) English words. A valid link configuration has
M links.

Define L to be the set of all possible valid link
configurations, and L to be a member of that set.
The aim is to maximize the alignment probability
by finding the optimum link configuration Lopt,

p(Lopt|S, T ) = argmax
L∈L
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Note that in the outlined link model, many source
words can align to the same target word, but a tar-
get word can align to at most one source word (in-
cluding NULL). Since we are interested in aligning
unsegmented Arabic words and typical words have a
few affixes to indicate for example pronouns, definite-
ness, prepositions and conjunctions while in English
these are separate words, the unsegmented Arabic
words serve as states in the search algorithm with
English words being aligned to them.

The link model is factored into a distortion model
and an observation model, so that the distortion
model computation, which uses information available
on the search lattice, is simplified during the search
process.
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where Z is the normalizing constant.

2.1 Distortion Model

The distortion model is a fixed distribution that tries
to capture the largely locally monotonic nature of
word alignments. The model keeps the alignments
close together by penalizing alignments in which ad-
jacent words in the target language are attached to
distant source words. Also, it penalizes many target
words coming from the same Arabic state via a state
visit penalty. It has the following parametric form :

p(li|li−1) =
1

Z(li−1)

[

1

dist(li, li−1)
+

1

ns(li)

]

(1)

where ns(i) represents the state visit penalty for
state i, Z(li−1) is the normalization constant and

dist(li, li−1) = min(|li − li−1|, |li − fi|) + a.

Here a is a penalty for a zero distance transition
and is set to 1 in the experiments below. The min
operator chooses the lowest cost transition distance
either from the previous state or the frontier state,
fi, which is the right most state that has been vis-
ited. This is a language specific criteria and intended
to model the adjective noun reversal between En-
glish and Arabic. Once the current noun phrase is
completed, the next word often aligns to the state
just beyond frontier state. As an example, in Fig-
ure 1, the verb ‘pointed’ aligns to the first Arabic
word ‘wA$Art’, and aligning the ‘to’ to its Arabic
counterpart ‘Aly’ would incur normally a distance of
3 but with the frontier notion it incurs only a penalty
of 1 on the hypothesis that aligns the word ‘second’
to ‘AlvAnyp’. In this alignment with the frontier no-
tion, there are only distance 1 transitions, whereas
the traditional shapes would incur a penalty of 2 for
alignment of ‘pointed’ and a penalty of 3 for the word
‘to’.



The state visit penalty, ns(i) is the distance be-
tween the English words aligned to this state times
the number of state visits1. This penalty controls
the fertility of the Arabic words. To determine the
English words that aligned to the Arabic position,
the search path is traced back for each hypothesis
and a sufficiently large beam is maintained so that
alignments in the future can correct past alignment
decisions. This penalty allows English determiners
and prepositions to align to the Arabic content word
while penalizing distant words from aligning to the
state.

2.2 Observation Model

The observation model measures the linkage of the
source and target using a set of feature functions de-
fined on the words and their context. In Figure 1, an
event is a single link from an English word to an Ara-
bic state and the event space is the sentence pair. We
use the maximum entropy formulation (e.g. (Berger
et al., 1996)),

f = ψ(li)

h =
[

ti−1

1
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1

]
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∑
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where Z(h) is the normalizing constant,

Z(h) =
∑

f

exp
∑

i

λiφi(h, f).

and φi(h, f) are binary valued feature functions. The
function ψ selects the Arabic word at the position
being linked or in the case of segmentation features,
one of the segmentations of that position. We re-
strict the history context to select from the current
English word and words to the left as well as the
current word’s WordNet (Miller, 1990) synset as re-
quired by the features defined below. As in (Cherry
and Lin, 2003), the above functions simplify the con-
ditioning portion, h by utilizing only the words and
context involved in the link li. Training is done us-
ing the IIS technique (Della Pietra et al., 1995) and
convergence often occurs in 3-10 iterations. The five
types of features which are utilized in the system are
described below.

Phrase to phrase (for example, idiomatic phrases)
alignments are interpreted as each English word com-
ing from each of the Arabic words.

2.2.1 Features

The features used in the baseline model are :

1We are overloading the word ‘state’ to mean Arabic
word position.

• Source/target word pair. Since training data is
limited, there is a significant out of vocabulary
(OOV) issue in the model. All singletons are
mapped to an unknown word class in order to
explicitly model connecting unknown words.

• Source segmentation features. These features
are useful in aligning unknown words since stems
might have been seen in the training corpus with
other prefixes or suffixes.

• Target WordNet features. English nouns, ad-
jectives, adverbs and verbs are mapped to their
WordNet synset id. These features helps combat
data sparseness on the English side by cluster-
ing words falling into the same synsets and are
useful to increase the aligner’s recall.

• Spelling features. These features are designed
primarily to link unknown names. They are
only applied on unknown words and measures
the string kernel distance between English and
Arabic romanized words.

• Dynamic features. These features are defined
over the search lattice and are fired when
the previous source and target word pair are
linked. For more details, refer to (Ittycheriah
and Roukos, 2005)

2.3 Smoothing the Observation Model

Since the annotated training data for word align-
ment is limited and a much larger parallel corpus
is available for other aligners, the observation model
is smoothed with an IBM Model 1 estimate,
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where β is set to 0.9 in the experiments below. In
the equation above, the s represents the Arabic word
that is being linked from the English word ti.

2.4 Search Algorithm

A beam search algorithm is utilized with the English
words consumed in sequence and the Arabic word
positions serving as states in the search process. In
order to take advantage of the transition model de-
scribed above, a large beam must be maintained. To
see this, note that English words often repeat in a
sentence and the models will tend to link the word
to all Arabic positions which have the same Ara-
bic content. In traditional algorithms, the Markov
assumption is made and hypothesis are merged if
they have the same history in the previous time step.
However, here we maintain all hypotheses and merge
only if the paths are same for 30 words which is the
average sentence length.



3 Adding syntax to the model

While the baseline distortion model can capture local
movement, it ignores the syntactic structure of the
source and target sentences. Numerous unsupervised
alignment models (Wu, 1995; Cherry and Lin, 2003;
Lopez and Resnik, 2005; DeNero and Klein, 2007)
have looked at ways of capturing these structural
movements. Typically, this involves using syntactic
knowledge on either the source side or the target side
or both. (Lopez and Resnik, 2005) propose a tree dis-
tortion model for an HMM-based aligner that, given
a dependency parse on the target side, conditions
the alignment decision on the tree distance between
each pair of target words. However, the tree distor-
tion model fails to improve upon the HMM’s surface
distortion model. More recently, (DeNero and Klein,
2007) present a generative syntax-sensitive distortion
model where the cost of transition between string po-
sitions is conditioned on the number of moves needed
while walking along the target side constituent tree.
This model too is unable to outperform the basic
HMM distortion model as measured by Aligned Er-
ror Rate (AER) metric.

3.1 Phrasal Cohesion

Our effort to incorporate an element of syntax in
the MaxEnt aligner is based around the notion of
phrasal cohesion (Fox, 2002) i.e the tendency of
words in a source side constituent to align to words in
the equivalent target side constituent. (Fox, 2002), in
an empirical study for the French-English language
pair, show that while phrasal cohesion is not system-
atic, it occurs often enough to justify being taken into
account.

Let us illustrate the notion of phrasal cohesion by
looking at part of a hand-aligned sentence pair an-
notated with automatically generated parses on both
source and target sides (Figure 2(a)). A striking fact
is that the English side parse tree is right branch-
ing while the Arabic one is flat. In spite of this
difference in annotation, cohesion is quite strong -
e.g. the prepositional phrase ‘on Tuesday’ is aligned

to the Arabic temporal noun phrase ‘ywm AlvlAvá’.
However, in the system generated alignment this co-
hesion is broken when the preposition ‘on’ crosses
a bracketing boundary to align to ‘Ely’ instead of
‘ywm’. We would like to discourage these crossing

bracket alignments. Our proposed solution is in the
form of a syntactic feature that is incorporated in
the observation model, and whose weight is learned
from labeled data.

Formally:

φcb(lj , lj−1, E,A) =



































1 if ParseChunk(E[j]) =

ParseChunk(E[j − 1])

&

ParseChunk(A[lj ]) =

ParseChunk(A[lj−1])

0 otherwise

where ParseChunk(w) is a pair defining the span of
the immediate non-unary constituent w is part of.
For example, ParseChunk(their) = (21,23) and Par-
seChunk(Tuesday) = (27,28). The feature fires when
the words in the proposed link are under the same
respective non-terminals as the words in the previous
link. This feature is therefore a dynamic feature.

While we have human aligned sentence pairs, we
do not access to gold standard parses. Instead, the
English sentences are parsed using a maximum en-
tropy parser trained on the Penn Treebank while the
Arabic parses were created using a statistical parser
trained on the Arabic Treebank. (Fox, 2002) show
that phrasal cohesion is most often violated in verb
phrases - we limit the application of the crossing
bracket feature to only NPs and PPs. The feature
is conditioned on the Arabic and English side non-
terminals as well as the POS tags of the words being
linked.

3.2 Results

We trained the MaxEnt aligner on 14500 hand
aligned sentence pairs and evaluated it on two dif-
ferent test sets - the first 50 sentences of MT03 Eval-
uation test set and 200 randomly selected sentences
from the Sakhr news site which were manually word
aligned by an in-house annotator (Refer to (Itty-
cheriah and Roukos, 2005) for the annotation guide-
lines)

In order to measure alignment performance, we
use the standard AER measure (Och and Ney, 2000)
but consider all links as sure. This measure is then
related to the F-measure which can be defined in
terms of precision and recall as

Precision The number of correct word links over
the total number of proposed links.

Recall The number of correct word links over the
total number of links in the reference.

and the usual definition of the F-measure,

F =
2PR

(R+ P )

and define the alignment error as AER = 1 − F .
In this paper, we report our results in terms of F-
measure over aligned links. Note that links to the



(a) Manually aligned sentence with parse information (b) Automatically aligned sentence with parse information

Sakhr MT 03
Model F-Score F-Score
Baseline 80.2 87.6

Crossing bracet feat, cnt ≥ 5 80.3 87.3
Crossing bracket feat, all 80.2 87.3

Table 1: F-measure for baseline model, model with
crossing bracket features with count cutoff of 5, and
model with all crossing bracket features.

NULL state (unaligned English words) are not in-
cluded in the F-measure.

We compare the baseline MaxEnt aligner to two
different syntax-enhanced aligners, one where all
crossing bracket features are kept and the other in
which we prune out crossing bracket features appear-
ing fewer than 5 times.

The baseline alignment performance on
Sakhr(80.2) is much lower than that on MT03.
In contrast to MT03 where precision and recall are
quite balanced (P=88.2% and R=87.1%), the Sakhr
recall(73.6%) is much lower than precision (88.2%).
A possible reason for this imbalance is that the
Sakhr data is less similar to the training data than
the MT03 data, leading to an out of vocabulary
(OOV) issue.

Adding the syntactic feature to the model leads to
a small but insignificant improvement in the Sakhr
dataset, but a deterioration on MT03 performance,
indicating that this feature is not very useful. We
believe that this is due to two main reasons.

Firstly, the automatic parses are often of poor
quality thus limiting their usefulness. Secondly, the

feature suffers from data sparseness. For example,
the Arabic word ‘AlvlAva” is never seen in the train-
ing data aligned to an English word in a PP and
therefore the feature is unable to correct the wrong
alignment in Figure 2(b). In another set of experi-
ments, we dropped the POS tags from the history of
the feature, but results were no better.

4 A log-linear distortion model

The fixed distortion model of the baseline aligner is
a stand alone distribution with one parameter, the
zero distance transition penalty, set by hand to opti-
mize performance on the development set. We would
like to incorporate a distortion model in the log-
linear framework so that its parameters are learned
jointly with the observation model and directly from
the training data. This in effect means turning the
MaxEnt aligner into a Maximum Entropy Markov
Model (MEMM) aligner. A MEMM is an applica-
tion of the maximum entropy classifier to sequence
labeling (Ratnaparkhi, 1996). The structure of the
MEMM is inspired by the HMM; each link decision is
conditioned on the previous link and the observation.

The distortion model is implemented in form of a
feature function such that the mathematical formu-
lation of the model (Eq 2.2) remains the same. The
distortion feature, a dynamic feature, predicts a link
decision given the previous link, the source sentence
and the target sentence. This link decision can be
viewed as jointly predicting the source word and the
jump (distance from source word aligned to previous
target word), given the target word under consider-
ation.



Formally, the feature is a triplet:

φ(fl(lj , lj−), fE(Ej), fA(Alj ))

where fl is a distortion function, fE is a function that
maps an English word to an alternative representa-
tion and fA a similar mapping over Arabic words.

4.1 Distortion function

The distortion function fl(lj , lj−) measures the jump
given the previous links lj−. Similar to the fixed dis-
tortion model, we employ the frontier node concept.

fl(lj , lj−) = min(lj − lj−1, lj − fj)

In the case of unaligned target words, we map
them to a special jump distance (ToNull). When the
previous target word is unaligned, we experimented
with a few options. In one case, we map the jump
to a special token (FromNull). Another choice was
to compute the jump distance from the source word
linked to the last aligned target word (DistLast). In a
third way of parametrizing the function, we compute
the jump from the source word aligned to the fron-
tier word (DistFront). In order to have less sparse
statistics, the jump is binned to a fixed number of
buckets. In one set of experiments, we had a bin for
every distortion in the range [-5, 5] (RegBin). Dis-
tortions greater than 5 are grouped in the 5 bucket
and similarly jumps less than -5 get grouped in the
-5 bucket. In another set of experiments, we had a
reduced number of bins with a bin for each distortion
in the range [-2,2] (RedBin).

4.2 English mapping function

Simply using the English words themselves would
lead to over-fitting the training data. We would like
our feature to generalize and therefore investigated
the use of a number of alternate formulations of the
English mapping function fE .

The function fE1(e) maps the English word e to it-
self if e is one of the 2500 most frequent words in our
training data, and otherwise maps it to its POS tag.
The intuition behind this mapping is to cluster in-
frequent words into equivalence classes that demon-
strate similar distortion behavior e.g verbs.
fE2(e) is another mapping whereby e is mapped

to its synset ID, or to itself if the synset ID cannot
be found. This mapping allows words to be clustered
along equivalent semantic classes.

4.3 Arabic mapping function

The distortion feature jointly predicts the source
word to link to and the jump. The feature can be
made to only predict the jump by using an Arabic
mapping function that ignores the identity of the
Arabic word fA0(a). In this way, the distortion fea-
ture is effectively unlexicalized.

Obviously, we do not expect the unlexicalized fea-
ture to be as beneficial as some form of lexicaliza-
tion. We experimented with two additional mapping
functions, fA1(a) - the identity function and fA2(a)
which maps the input word to its word segments and
to itself.

4.4 Training the distortion feature

4.5 Results

While adding a distortion model to the log-linear
model, we also retain the fixed distortion model from
the baseline aligner since it is a useful distortion as
well as fertility model. The results for the new pro-
posed models are presented in Table 2

Since the distortion feature gets fired for every pro-
posed link, it improves recall significantly across the
board. When the feature is unlexicalized, i.e the link
decision depends only on the target word being con-
sidered (or its POS tag) and not the source word,
precision takes a hit such that the F-Score on MT03
drops by almost 1%. On Sakhr, the increase in re-
call brought about by the feature is large enough to
bring about an improvement in F-Score despite the
drop in precision.

When the feature is lexicalized, recall drops in
comparison to the unlexicalized feature, but is still
higher than the baseline, and there is a large increase
in precision. The F-Score on MT03 rises from 86.7%
to 87.6% (same as baseline) while in Sakhr, F-Score
climbs up to 82.2%.

Using fewer bins for distortion is beneficial but
otherwise all the other parametrizations yield almost
similar results. The main axis of precision improve-
ment is by varying the way distortion is calculated
when the previous link is unaligned. On MT03, mov-
ing from FromNull to DistLast gives a significant
boost of 0.5% F-Score and a similar improvement
is obtained when going from DistLast to DistFront.
Alternating between FE1/FE2 and FA1/FA2 does not
seem to make much difference in the alignment ac-
curacy. The best distortion models give an absolute
improvement of 2.3% for Sakhr and 1% on the MT03
with respect to the baseline.

4.6 Training and feature selection

The models presented in Table 2 retained all the dis-
tortion features encountered in training. Frequently
in a discriminative training set-up, feature selection
is performed to have a smaller model which can be
trained more quickly and less prone to over-fitting.
We performed a series of feature selection experi-
ments whereby we varied the distortion feature count
cutoff for the last model in Table 2. Also, we assessed
the impact of the number of IIS training iterations
on the final alignment model.



Sakhr MT 03
P R F P R F-Score

Baseline 88.2 73.6 80.2 88.2 87.1 87.6
RegBin, FromNull, fE1, fA0 85.0 77.2 80.9* 84.5 89.0 86.7
RegBin, FromNull, fE1, fA1 88.8 76.5 82.2* 86.4 88.8 87.6
RedBin, FromNull, fE1, fA1 89.0 76.7 82.4* 86.5 88.7 87.6
RedBin, DistLast, fE1, fA1 88.7 76.5 82.2* 87.2 89.0 88.1
RedBin, DistFront, fE1, fA1 88.9 76.5 82.3* 87.8 89.3 88.6*
RedBin, DistFront, fE1, fA2 88.9 76.0 81.9* 88.4 88.7 88.6*
RedBin, DistFront, fE2, fA2 89.3 76.6 82.5* 87.9 88.9 88.4*

Table 2: MaxEnt aligner with distortion model. Results on Sakhr and MT03 datasets comparing distortion,
Arabic mapping and English mapping functions. * denote statistically significant improvements from baseline

Sakhr MT 03 # Features(K)

Iter 0 Iter 1 Iter 2 Iter0 Iter 1 Iter 2 Total Dist
All 82.5* 82.6 82.1 88.4* 88.2 88.2 226 91
≥ 2 82.7* 82.2 82.2 88.2 88.2 88.3 147 35
≥ 3 82.9* 82.2 82.0 88.1 87.8 87.9 130 20
≥ 4 82.8* 82.1 81.8 88.2 87.8 88.0 125 14
≥ 5 82.5* 81.9 81.9 87.9 87.8 88.0 121 11

Table 3: Impact of distortion feature selection on Sakhr and MT03, measured across IIS iterations. Also
included are the total number and the number of distortion features in the model.

Baseline Best model
P R F P R F

Src Func 75.8 56.2 64.6 84.4 64.7 73.2
Src Cont 88.9 74.7 81.2 89.5 77.4 83.0
Trg Func 87.7 61.6 72.3 88.8 66.5 76.0
Trg Cont 88.3 78.3 83.0 89.4 80.5 84.7

Table 4: Comparison between baseline and best dis-
tortion model for source function(Src Func) words,
source content(Src Cont) words, target function(Trg
Func) words and target content words(Trg Cont)

While for MT03 distortion feature pruning hurts
performance, gradually increasing the pruning cutoff
improves Sakhr results up to a threshold of 3 before
then starting to drop.

In contrast to our previous experiences with IIS
training, all but one of the models peaked after one
just one iteration. Experiments with varying the
Gaussian prior did not yield any improvements.

4.7 Analysis

In table 4, we present a detailed comparison be-
tween the performance of the baseline aligner and
the distortion-based aligner on the Sakhr dataset.

While the improvements are across the board, the
most dramatic ones occur for function words. The
new model proposes one extra link every two sen-
tences, with most of these links aligning source func-
tion words that were previously unaligned.

In Figure 2, we can see the impact of the distor-
tion model (Row 5 in Table 2). In the reference align-
ment, the verb mounted is aligned to the Arabic verb
SEdt, whereas in the baseline model these 2 words are
unaligned. This is because SEdt has not been seen
in the training data (maps to unknown word) and no
feature gets fired for the correct link. The distortion
model) on the other hand has learnt that unknown
Arabic words are very likely to link to English past
tense verbs with a distortion of 1.

Figure 3 illustrates the impact of using WordNet
synset ids to parametrize the English words. The
alignment in the middle of Fig 3 is obtained using the
model on Row 5 of Table 2. In that model, struggled

maps to its POS tag VBN. However, the correct Ara-
bic word kAfHt is never linked to this POS tag in the
training data. In the model with WN synsets(Table 2
- Row 7), struggled gets mapped to the same synset
ID as fight and struggle. This feature configuration
has been seen often in the training data and a distor-
tion of -4 is a very likely jump such that the model
proposes the right alignment.

5 A self-trained alignment model

While our labeled data is relatively small, we have
access to an unlabeled parallel corpus of almost
600K sentence pairs. An obvious way to exploit the
large unlabeled data-set is via bootstrapping meth-
ods which belong to the semi or weakly supervised
learning (SSL) algorithm family.



Figure 2: Alignment example. Reference alignment(left), baseline model(middle), distortion model(right)

Figure 3: Alignment example. Reference alignment(left), distortion model fE1, fA1 (middle), distortion
model fE2, fA2 (right)

5.1 Bootstrapping methods

Starting from a small set of labeled examples and
one of a few weak classifiers, the bootstrapping algo-
rithms aim to improve the system’s performance by
incorporating unlabeled data into the training set.
Two popular bootstrapping methods are self-training
and co-training.

5.1.1 Co-training

Co-training (Blum and Mitchell, 1998) works by
generating several classifiers trained on the input la-
beled data, which are then used to tag new unlabeled
data. From this newly annotated data, the most
confident predictions are sought, and subsequently
added to the set of labeled data. This process may
continue for several iterations. Co-training has suc-
cessfully been applied to many NLP tasks such as

statistical parsing (Sarkar, 2001), reference resolu-
tion (Ng and Cardie, 2003) and part of speech tag-
ging (Clark et al., 2003).

5.1.2 Self-training

A related bootstrapping method is self-training
which has been used to refer to a variety of schemes
for using unlabeled data. (Ng and Cardie, 2003) im-
plement self-training by bagging and majority vot-
ing. A committee of classifiers are trained on the
labeled examples, then classify the unlabeled exam-
ples independently. Only those examples to which
all the classifiers give the same label are added to
the training set and those classifiers are retrained.
This procedure repeats until a stop condition is met.
(Clark et al., 2003) provide a different definition -
self-training is a procedure in which ”a tagger is re-



trained on its own labeled cache on each round”. We
adopt this second definition in our work.

A single classifier can carry out its own self-
training procedure. This classifier is trained on the
initial labeled data and then applied on a set of un-
labeled data. Those examples meeting a selection
criterion are added to the labeled set and the classi-
fier is retrained on this new labeled data set. This
training procedure continues for several rounds.

While both co-training and self-training have
shown good results on many tasks, improvements
have been highly dependent on the nature of the
task, the characteristic of the data and the tuning
of parameters. Moreover, on large scale natural lan-
guage processing tasks, these algorithms have shown
limitations (Pierce and Cardie, 2001).

5.2 Previous work in word alignment

We review some previous work using semi-
supervised learning methods for the word alignment
task. (Callison-Burch et al., 2004) present a mix-
ture model where a generative (IBM Model 4) model
trained on a large unlabeled dataset is interpolated
with a small amount of automatically word aligned
data which is however treated as gold standard. To
control the relative contributions of the sentence-
aligned and word-aligned data in the parameter es-
timation procedure, they introduce a mixing weight
λ ranging between 0 and 1, with the best results ob-
tained by weighting the hand annotated data at 0.9.

(Callison-Burch et al., 2004) get good improve-
ments on both alignment (AER) and translation
quality (BLEU) on the German to English task but
their experiments are only a very limited amount
of data (16K sentences), raising the question as to
whether their approach would work for larger sized
datasets.

In (Fraser and Marcu, 2006), expectation-
maximization (EM) is used to train a generative
model of word alignment from a large parallel text.
The generative model is decomposed into several
sub-models using independence assumptions. Each
sub-model is then used in a log-linear model for word
alignment, with the weighs trained on a small set
of hand aligned sentences. The training regime it-
eratively alternated between approximate EM (Neal
and Hinton, 1998) and gradient descent until the er-
ror rate on a held-out set is minimized. The pre-
dicted Viterbi word alignments are then used to train
a phrase-based SMT system yielding significant im-
provements on BLEU for both Arabic-English and
French-English

5.3 Machine Translation experiments

Due to time constraints, we only ran a limited num-
ber of self-training experiments taking as baseline

Sakhr MT 03

P R F P R F
Iter 1 91.3 77.9 84.1 88.2 88.2 88.2
Iter 2 91.3 78.5 84.4 88.2 88.9 88.5
Iter 3 91.2 78.4 84.3 88.2 88.9 88.6

Table 5: Self-training results for 3 iterations of IIS
training

model the last aligner in Table 2. In our experi-
mental set-up we aligned 600K sentence pairs and
re-estimated a MaxEnt model by merging all of the
newly labeled data to the original 14.5K hand aligned
sentence pairs. To speed up the estimation, we par-
allelized the MaxEnt training algorithm to run on
our cluster. We only ran the self-training algorithm
for one round.

Test results are shown in Table 5. Self-training im-
proves performance on both datasets, with the ame-
lioration on Sakhr quite pronounced on both preci-
sion and recall measures. For MT03, improvements
are seen only on precision. In contrast to the super-
vised models, best self-training results are obtained
after 2 and 3 iterations of IIS training.

6 Future Work

Previous work has repeatedly shown that improved
word alignments are no guarantee for improvements
in translation quality. Due to time limitations, we
were unfortunately unable to carry out any transla-
tion experiments, leaving them for future work.

Also, we would like to carry out further self-
training experiments such as running the algorithm
for more than one rounds and varying the criteria for
choosing the newly labeled examples to add to the
training set.

7 Conclusion

We presented a number of experiments to improve
a baseline MaxEnt Arabic to English word aligner.
While our experiments to use syntactical features
were not succesful, adding a distortion feature in the
log-linear model brought about significant improve-
ments, mainly by boosting recall. In order to exploit
the large amount of unlabeled data at our disposal,
we started looking into self-training the aligner. Our
preliminary results were encouraging with increases
in precision on both our test sets. The resulting best
aligner improved the absolute F-Score by 4.2% on
Sakhr and 1% on the MT03 dataset.
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