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Abstract—* Serverless distributed computing has received sig- Efficiency of the lookup protocol. There are two kinds of lookup
nificant attention from both the industry and the research com-  protocol that have been commonly deployed: the Gnutetta-li
munity. Among the most popular applications are the wide area proadcast based lookup protocols [11] and the distributesh h
network file systems, exemplified by CFS, Farsite and OceanStore.table (DHT) based lookup protocols [29] [23] [25]. File ssts

These file systems store files on a large collection of untrusted . :
nodes that form an overlay network. They use cryptographic like CFS, Farsite and OceanStore use DHT-based lookup pro-

techniques to maintain file confidentiality and integrity from tocols because of their ability to locate any file in a smalil an
malicious nodes. Unfortunately, cryptographic techniques canrio bounded number of hops.

protect a file holder from a Denial-of-Service (DoS) or a host Malicious and unreliable nodes.Serverless file storage services
compromise attack. Hence, most of these distributed file systems gre faced with the challenge of having to harness the cilect
are vulnerable to targeted file attacks, wherein an adversary reqoyrces of loosely coupled, insecure, and unreliabléines to
attempts to attack a small (chosen) set of files by attacking the provide a secure, and reliable file-storage service. To tioatp

nodes that host them. This paper presentd ocationGuard— a .
location hiding technique for securing overlay file storage systems Matters further, some of the nodes in the overlay networkdcou

from targeted file attacks. LocationGuard has three essential be malicious. CFS employs cryptographic techniques to taiain
components: (i) location key, consisting of a random bit string file data confidentiality and integrity. Farsite permits filgite
(e.g., 128 bits) that serves as the key to the location of a file, (i) and update operations by using a Byzantine fault-toleramiig
routing guard, a secure algorithm that protects accesses to a file of meta-data servers (directory service). Both CFS anditEars

in the overlay network given its location key such that neither oo ronjication as a technique to provide higher faultesiee
its key nor its location is revealed to an adversary, and (iii) a set and availability

of location inference guards, which refer to an extensible com- s . . .
ponent of the LocationGuard. Our experimental results quantify Targeted File Attacks. A major drawback with serverless file

the overhead of employing LocationGuard and demonstrate its Systems is that they are vulnerable to targeted attacks es fil
effectiveness against DoS attacks, host compromise attackada In a targeted attack, an adversary is interested in comgingna
various location inference attacks. small set of target files through a denial of service (DoScktor

Keywords: File Systems, Overlay Networks, Denial of Servicé host compromise attack. A DoS attack would render the ttarge
Attacks, Performance & Scalability, Location Hiding file unavailable; a host compromise attack could corrupttel
replicas of a file thereby effectively wiping out the targét from

| INTRODUCTION the fllg system. The fundamental pr(.)ble.m with these systems i
) . ) . that: (i) the number of replicask) maintained by the system is

Several serverless file stc_)ra_lge services, like CFS [6],|tEars1J3ua||y much smaller than the number of malicious nodek (
[1], OceanStore [16] and SIRIUS [12], have recently emergednq i) the replicas of a file are storedpatblicly knowrlocations,

In contrast to traditional file systems, they hamness theu®s 4 js given the file namg, an adversary (including users who
available at desktop workstations that are distributed awside- may not have access to fil§ can determine the IP-addresses of
area network. The collective resources available at thqsktdp nodes that hosf’s replicas. Hence, malicious nodes can easily
workstations amount to several peta-flops of computing POWg,nch DoS or host compromise attacks on the sek aEplica
and several hundred peta-bytes of storage space [1]. holders of a target filek < B).

These emerging trends have motivated serverless file §t0rggicient Access Control. A read-only file system like CFS can
as one of the most popular appllcguon over decentralize-oV gy arcise access control by simply encrypting the contenesich
lay networks. An overlay network is a virtual network formegjie anq distributing the keys only to the legal users of tiilat
by nodes (desktop workstations) on top of an existing TGP/IRsjte a read-write file system, exercises access comsing
network. Overlay networks typically support a lookup prtb A 5cess control lists (ACL) that are maintained using a Bgjman
Iookup operau_on identifies the location of a file given itefidme. ¢, it tolerant (BFT) protocol. However, access controlds tnuly
Location of a file denotes the IP-address of the node thaéotyr  yistibuted in Farsite because all users are authentitgtedsmall
hosts the file. There are four important issues that need to Q§jaction of directory group servers. Further, PKI (pakiey
addressed to enable wide deployment of serverless filersgstqnsastructure) based authentication and Byzantine falgrance
for mission critical applications. based authorization are known to be more expensive thanmesim

1A preliminary version of this paper appeared in USENIX SeguBlym- and fas't Capablllty-baseq acgess ,ContrOI mechanism [5].
posium 2005 [28] Bearing these issues in mind, in this paper we preteca-
tionGuard as an effective technique for countering targeted file



attacks. The fundamental idea behind LocationGuard ikide hash function and each of them store a small routing table (fo
the very location of a file and its replicas such that, a lega&lru example, Chord’s routing table has only entries for anm-bit
who possesses a filelgcation keycan easily and securely locatehash function and typically. = 128) to locate other nodes. Now,
the file on the overlay network; but without knowing the file'¢o locate a particular file, its flename is hashed using thmeesa
location key, an adversary would not be able to even locae thash function and the node responsible for that file is obthin
file, let alone access it or attempt to attack it. Location@uausing the concrete mapping policy. This operation of lozathe
implements an efficient capability-based file access cbmiezh- appropriate node is calledlaokup

anism through three essential components. The first conmpofe  Serverless file system like CFS, Farsite and OceanStorare |
LocationGuard is a location key, which is a random bit st{ifhg8 ered on top of DHT-based protocols. These file systems tiipica
bits) used as a key to the location of a file in the overlay nétwo provide the following properties: (1) A file lookup is guateed

and addresses the capability revocation problem by periodi to succeed if and only if the file is present in the system, (2) A
conditional rekeying mechanisms. A file’s location key ieds file lookup terminates in a small and bounded number of hops,
to generate legal capabilities (tokens) that can be useddesa (3) The files are uniformly distributed among all active nede
its replicas. The second component is the routing guardcarse and (4) The system handles dynamic node joins and leaves.
algorithm to locate a file in the overlay network given itsdtion In the rest of this paper, we assume that Chord [29] is used
key such that neither the key nor the location is revealednto as the overlay network’s lookup protocol. However, the ltssu
adversary. The third component is an extensible collectbn presented in this paper are applicable to most DHT-basddifpo
location inference guards, which protect the system fraaffitr protocols.

analysis based inference attacks, such as lookup frequefey

ence attacks, end-user IP-address inference attacksgfilea I1l. THREAT MODEL

inference attacks, and file size inference attacks. Adversary refers to a logical entity that controls and couatks

In ad_dr;tlondt_o_ pr0\|/|d|ng an eff;]c_nent file accesls_kcofr_}tr(;tldnmch all actions by malicious nodes in the system. A node is salgbto
nism with traditional cryptographic guarantees like fil\boen- — 5jicioys if the node either intentionally or unintentitpeails

tiality and integrity, Locati_onGuard mitigqtes Dgniak@é_rvice to follow the system’s protocols correctly. For example, alim
(DoS) and host compromise attacks, while adding minimal PRious node may corrupt the files assigned to them and indtyrrec

formance overhead and small storage overhead to the fiIerE'ySt(maIiciously) implement file read/write operations. Théfidition

Our initial experiments quantify the overhead of employinga- of adversary permits collusions among malicious nodes. M& a

tionGuard and_demonstrate its eff_ectwenes_s aga'”S‘ DiaSkat assume that the underlying IP-network layer may be insecure
host compromise attacks and various location infereneelkat However, we assume that the underlying IP-network inf e

The rest of the paper is organized as follows. Section Il Pr'%ch as domain name service (DNS), and the network routers
vides terminology and background on overlay network andeser cannot be subverted by the adversary.
less file systems like CFS and Farsite. Section Il descrigs An adversary is capable of performing two types of attacks

threat model in detail. We present the core techniques of Lgr ha file system, namely, denial-of-service attacks, aost h

cationGuard in Sections IV, V, VI and VII. We present a cong,nnromise attacks. When a node is under denial-of-sentice
crete implementation and a thorough experimental evainaif 5. e files stored at that node are unavailable. When a nod

LocationGuard in Section VIIl, related work in Section X i compromised, the files stored at that node could be either

conclude the paper in Section X. unavailable or corrupted. We model the malicious nodes @sta
a large but bounded amount of physical resources at theiosiz.
Il. BACKGROUND AND TERMINOLOGY More specifically, we assume that a malicious node may be able

In this section, we give a brief overview on the vital propest to perform a denial-of-service attack only on a finite andriztad
of DHT-based overlay networks and their lookup protocolg.(e number of good nodes, denoted byWe limit the rate at which
Chord [29], CAN [23], Pastry [25]). All these lookup protdso malicious nodes may compromise good nodes and\usalenote
are fundamentally based on distributed hash tables, bigrdif the mean rate per malicious node at which a good node can be
algorithmic and implementation details. All of them stolet compromised. For instance, when there Brenalicious nodes in
mapping between a particulaearch keyand its associatedata the system, the net rate at which good nodes are compromised
(file) in a distributed manner across the network, rathenthds ) x B (node compromises per unit tilmeEvery compromised
storing them at a single location like a conventional hastleta node behaves maliciously. For instance, a compromised mage
Given asearch keythese techniques locate its associafeth attempt to compromise other good nodes. Every good node that
(file) in a small and bounded number of hops within the overlag compromised would independently recover at gat®lote that
network. This is realized using three main steps. Firstesathd the recovery of a compromised node is analogous to clearpng u
search keys are hashed to a common identifier space such thairus or a worm from an infected node. When the recovery
each node is given a unique identifier and is made resporfsible process ends, the node stops behaving maliciously. Unleds a
a certain set of search keys. Second, the mapping of seayshde otherwise specified we assume that the node compromise times
nodes uses policies like numerical closeness or contigiegisns and recovery times follow an exponential distribution.
between two node identifiers to determine the (non-oveitepp
region (segment) that each node will be responsible fordlfa A Targeted File Attacks
small and bounded lookup cost is guaranteed by maintaining
tiny routing table and a neighbor list at each node.

In the context of a file system, the search key can be a fil
name. All the available node’s IP addresses are hashed asin

a , .

A targeted file attack refers to an attack wherein an adwersar
%t_tempts to attack a small (chosen) set of files in the sysfem.
%ttack on a file is successful if the target file is either reade



by LocationGuard. LocationGuard operates on top of an ayerl
network of N nodes. Figure 2 provides a sketch of the conceptual
design of LocationGuard. LocationGuard scheme guardsottee |
tion of each file and its access with two objectives: (1) teehiae
actual location of a file and its replicas such that only legadrs
who hold the file’s location key can easily locate the file oa th
overlay network, and (2) to guard lookups on the overlay nétw
from being eavesdropped by an adversary. LocationGuarsisten
of three core components. The first componenloisation key
which controls the transformation of a filename into its loma
Fig. 1. LocationGuard: System Architecture on the overlay network, analogous to a traditiooglptographic
key that controls the transformation of plaintext into cipleatt
The second component is theuting guard which makes the
location of a file unintelligible. The routing guard is, tonse
extent, analogous to a traditionatyptographic algorithmwhich
makes a file’s contents unintelligible. The third comporafito-
cationGuard includes an extensible package of locaticerémice
guards that protect the file system from indirect attackdiréct
attacks are those attacks that exploit a file’s metadatanrgton
such as file access frequency, end-user IP-address, emaeabf
file replica contents and file size to infer the location of myea
file on the overlay network.
unavailable or corrupted. GiveR replicas of a filef, file f In the following subsections, we first present the main cptee
is unavailable (or corrupted) if at least a thresheldnumber behind location keys and location hiding (Section 1V-B) atet
of its replicas are unavailable (or corrupted). For examfide scribe a reference model for serverless file systems thatitpe
read/write files maintained by a Byzantine quorum [&}, = on LocationGuard (Section IV-C). Then we present the cdacre
[R/3]. For encrypted and authenticated files, = R, since design of LocationGuard’s three core components: the ilmtat
the file can be successfully recovered as long as at least d&eg (Section V), the routing guard (Section VI) and a suite of
of its replicas is available (and uncorrupt) [6]. Most P2Bstr location inference guards (Section VII).
management systems such as the scheme in [30] use a simple
majority vote on the replicas to compute the actual trustesl g Concepts and Definitions
of peers, thus we have = [R/2].

Distributed file systems like CFS and Farsite are highly vu
nerable to target file attacks since the target file can beeredd
unavailable (or corrupted) by attackingvary smallset of nodes
in the system. The key problem arises from the fact that th
systems store the replicas of a fifeat publicly knownlocations
[14] for easy lookup. For instance, CFS stores a filat loca-
tions derivable from the public-key of its owner. An adveys
can attack any set ofr replica holders of filef, to render file
f unavailable (or corrupted). Farsite utilizes a small ailtn
of publicly known nodes for implementing a Byzantine fault
tolerant directory service. On compromising the directewice,
an adversary could obtain all replica locations for a tafiet

Files on an overlay network have two primary attributes: (iDefinition 1 Location Key:A location key !k of a file f is a
contentand (ii) location File content could be protected from arvelatively small amount{-bit binary string, typicallym = 128) of
adversary using cryptographic techniques. However, iflitita- information that is used by a Lookup algorithin: (f,1k) — loc
tion of a file on the overlay network is publicly known, thereth to customize the transformation of a file into its locatiorclsu
file holder is susceptible to DoS and host compromise attackisat the following three properties are satisfied:

LocationGuard provides mechanisms to hide files in an oyerla 1) Gijven the location key of a filg, it is easyto locate the
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TCP/IP Network
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Network
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Fig. 2. LocationGuard: Conceptual Design

I- In this section we define the concept of location keys and
its location hiding properties. We discuss the concretégdesf
location key implementation and how location keys and locat
e%ards protect a file system from targeted file attacks in the
subsequent sections.

Consider an overlay network of si2é with a Chord-like lookup
g Protocol T Let f1 2, ff denote theR replicas of a file
f. Location of a replicaf* refers to the IP-address of the node
(replica holder) that stores repligd. A file lookup algorithm is
defined as a function that acceptsand outputs its location on
the overlay network. Formally we have : f* — loc maps a
replica f* to its locationioc on the overlay networkP.

network such that only a legal user who possesses a file’idoca R replicas of file .

key can easily locate it. Thus, any previously known attawkéle 2) Without knowing the location key of a filg, it is hard for
contents would not be applicable unless the adversary sdsce an adversary to locate any of its replicas.

in locating the file. It is important to note that LocationGaids 3) The location keyk of a file f should not be exposed to an
oblivious to whether or not file contents are encrypted. adversary when it is used to access the file

Informally, location keys ar&eys with location hiding property

. Each file in the system is associated with a location key that i

A. Overview kept secret by the users of that file. A location key for the file
We first present a high level overview of LocationGuard. Figf determines the locations of its replicas in the overlay oetw

ure 1 shows an architectural overview of a file system powered

IV. LOCATIONGUARD



Note that the lookup algorithn¥ is publicly known; only a file’s on the local filerlt’. Access control follows from the fact that it

location key is kept secret. is very hard for an adversary to guess correct file tokens.
Property 1 ensures that valid users of a filean easily access Malicious Replica Holder. Let us consider the case where the

it provided they know its location keyi. Property 2 guaranteesnoder that stores a replicg® is malicious. Note that node’s

that illegal users who do not have the correct location kelf wresponse to a file read/write request can be undefined. Nate th

not be able to locate the file on the overlay network, makingte have assumed that the replicas stored at malicious nodes

harder for an adversary to launch a targeted file attack.@Ptp@ are always under attack (recall that updo— 1 out of R file

warrants that no information about the location kéyof a file f  replicas could be unavailable or corrupted). Hence, the tfat

is revealed to an adversary when executing the lookup dfgori a malicious replica holder incorrectly implements file reatte

v, operation or that the adversary is aware of the tokens ogtfiles
Having defined the concept of location key, we present arefeeplicas stored at malicious nodes does not harm the systsm.

ence model for a file system that operates on LocationGuahy. design, an adversary who knows one tokéf for replica f°

We use this reference model to present a concrete designwaiuld not be able to guess the file narher its location keyik

LocationGuard’s three core components: the location Keg, tor the tokens for others replicas of fife(see Section V).

routing guard and the location inference guards. Adversary. An adversary cannot access any replica of ffle
stored at a good node simply because it cannot guess the token
C. LocationGuard File System rit* without knowing its location key. However, when a good node

hc, compromised an adversary would be able to directly oliten

A serverless file system may implement read/write operatio K ¢ I fil tored at that node. | | d
by exercising access control in a number of ways. For exampﬁg ens for all fies stored at that node. In general, an aavers

Farsite [1] uses an access control list maintained amongad srr?OUId compile a l!St of tgkens as it CoMPromises good nodes,
number of directory servers through a Byzantine fault tobér and corrupt'thg f|!e replicas corresponding to these tokens a
protocol. CFS [6], a read-only file system, may implementasc any later pomt In time. Event_ually, the gdvers_ary W°”'d°‘?“"
control by encrypting the files and distributing the file gition in corruptmg cr Or more replicas of a filef without knowmg_
keys only to the legal users of a file. In this section we show ho'S Io_catlon ke_y. Locatlc_)nGua_rd addres_;ses su_ch attackey usi
a LocationGuard based file system exercises access control. location rekeying technlql_Je discussed in Section VII-C. .
In contrast to other serverless file systems, a Locatiom.‘auafr In .the subsequient segtlons, we show .hOW to generate a replica
based file system does not directly authenticate an usenatiteg ocation tgkenrlt (1 < i< R)irom a file f.and its location
to access a file. Instead, it uses location keys to implemenﬁk‘%\y (Section V), and_ how thie I(_)okup algon_thm performs_ _a
capability-based access control mechanism, that is, agrywiso ooikup on a pseudo-fllen_amet without revealing the C‘.”‘pab"'ty
presents the correct file capability (token) is permittedeas _rlt_ to malicious nodes in the oy(_arlay network (Section VI). It
to that file. Furthermore, it utilizes routing guard and loma IS |mport_ant to note th?‘ th_e ab_|I'|ty 0 guard_ the quk_up from
inference guards to secure the locations of files being aedesattaCkS like eavesdropping is critical to the file locatiddiy

on the overlay network. Our access control policy is simipigou scheme, S".‘CG a I'ooku_p opgration (using allooku'p protoati as
can name a file, then you can accessHowever, we do not use Chord) on identifier-it* typically proceeds in plain-text through

a file name directly; instead, we use a pseudo-filename (it2g-$ S€duence of nodes on the overlay network. Hence, an adversa

binary string) generated from a file’s name and its locatiegy k may collect file tokens by simply sniffing lookup queries oties

(see Section V for detail). The responsibility of accesstrdn overlay networ_k. The ad_v ersary could use these_stolgn m
fo perform write operations on the corresponding file resjc

is divided among the file owner, the legal file users, and tlee fi ; : .
replica holders and is managed in a decentralized manner and thus corrupt them, without the knowledge of their lamati
., keys.

File Owner. Given afilef, its owneru is responsible for securely
distributing f’s location keylk (only) to those users who are
authorized to access the fife

Legal User. A useru who has obtained the valid location key of The first and most simplistic component of LocationGuard is
file f is called a legal user of. Legal users are authorized tothe concept of location keys. The design of location key seed
access any replica of fil¢g. Given a file f's location keylk, a address the following two questions: (1) How to choose ationa
legal useru can generate the replica location toketf for its it”  key? (2) How to use a location key to generate a replica loaati
replica. Note that we uselt’ as both the pseudo-filename andoken— the capability to access a file replica?

the capability of /. The useru now uses the lookup algorithm  The first step in designing location keystis determining the

¥ to obtain the IP-address of node= V(f,1k). Userw gains type of string used as the identifier of a location Kegt useru
access to replica’ by presenting the tokerit’ to noder. Note be the owner of a filgf. Useru should choose a long random bit
thatrit* acts as a pseudo-filename during lookup and a capabilitiring (128-bits)lk as the location key for filef.

during access control. The second step i® find a pseudo-random functido derive
Good Replica Holder. Assume that a node is responsible for the replica location tokens/t’ (1 < i < R) from the filenamef
storing replicaf’. Internally, node- stores this file content underand its location keyk. The pseudo-filenamet’ is used as a file

its pseudo-filenamelt’. Note that node does not need to know replica identifier to locate thé” replica of file f on the overlay

the actual file namef) of a locally stored filerit’. Also, by network. LetE;;(z) denote a keyed pseudo-random function with
design, given the internal file namét’, noder cannot guess input 2 and a secret keyk and|| denotes string concatenation.
its actual file name (see Section V). When a nedeceives a We derive the location tokerit’ = Ey,.(f || i). Given a replica’s
read/write request on a filelt’ it checks if a file named¢’ is identifier »it!, one can use the lookup protocdl to locate it
present locally. If so, itirectly performs the requested operatioron the overlay network. We use a fast and efficient keyed-hash

V. LOCATION KEYS



function like HMAC-MD5 [15] since it satisfies the following

conditions:
la) Given(f | i) andlk it is easy to computds;,(f || 7). Otk2
2a) Given(f || ¢) itis hard to gues#;;(f || ¢) without knowing
Ik. , r
r

2b) GivenEy,(f || i) it is hard to guess the file namye
2c) GivenEy,(f | 4) and f it is hard to guessk.
Condition la ensures that it is very easy for a valid user to otk rlt
locate a filef as long as it is aware of the file’s location k& 1
Condition 2a states that it should be very hard for an advetsa Fig. 3.  Lookup Using File Identifier Obfuscation: hosting node;’:
guess the location of a target fifewithout knowing its location previous node tor on the Chord ringiotk = rit—rand(0,srg); otk:
key. Condition 2b ensures that even if an adversary obtdias £ (/D(r'), ID(r)] is safe whileotk; < ID(r') is unsafe; hence, safe
. . ; . ; . obfuscation rangerg = rit—ID(r’)
identifierrit* of replica f*, he/she cannot deduce the file najhe
Finally, Condition 2c requires that even if an adversaryaotst

1 — Prag 2710 2715 2720 2725 2730
the identifiers of one or more replicas of file he/she would srg 27 293 2% 23 27
not be able to derive the location ke from them. Hence, the Blretries] | 2770 [ 2715 [ 2720 ] 972 ] =%
adversary still has no clue about the remaining replicashef t hardness (years] 27" | 9% | 2% [ 2% | o
file f (by Condition 2a). Conditions 2b and 2c play an important TABLE |
role in ensuring good location hiding property. This is hesa LOOKUP IDENTIFIER OBFUSCATION

for any given filef, some of the replicas of fil¢ could be stored
at malicious nodes. Thus an adversary could be aware of some

of the replica identifiers. Finally, observe that Conditiba and Each time a usen wishes to lookup a tokenit’, it performs a

Conditions {2a, 2b, 2¢ map to Property 1 and Property 2 Ir]Iookup on some randomly chosen tokeit’ from the obfuscated

Deﬂmuon 1 (in Section 1V-B) respectively. In the remaigipart identifier setOT K*. Routing guard ensures that even if an adver-
of this paper, we usé&hash to denote a keyed pseudo-random . o i

. ; . - . ; sary were to observe obfuscated identifiers from theEK
function that is used to derive a file’s replica location tog&dérom

its name and its secret location key. for one full year, it V\{ould be highly infeasible for the adsary
to guess the tokenit’.
We now describe the concrete implementation of the routing
guard. For the sake of simplicity, we assume a unit circletlier
The second component of LocationGuard is the routing guaighord's identifier space; that is, node identifiers and figntifiers
The design of routing guard aims at securing the lookup of filge real values from 0 to 1 that are arranged on the Chord ring
f such that it will be very hard for an adversary to obtain thg the anti-clockwise direction. LetD(r) denote the identifier of
replica location tokens by eavesdropping on the overlawo®t oge;. If 1 is the destination node of a lookup on file identifier
Concretely, letit* (1 < i < R) denote a replica location token, ;i je. = I(rit'), thenr is the node that immediately succeeds
derived from the file namef, the replica numbet, and f's ;i iy the anti-clockwise direction on the Chord ring. Formally
location keylk. We need to secure the lookup algorithim, (rit") . — T(rlt') if ID(r) > rit" and there exists no other nodes, say
such that the lookup on pseudo-filenani¢ does not reveal the ,, on the Chord ring such thatD(r) > ID(v) > rit'.
capabilityrit* to other nodes on the overlay network. Note that a \ye first introduce the concept shfe obfuscatiotto guide us
file’s capabilityrit* does not reveal the file's name; but it allowsp, finding an obfuscated identifier ST’k for a given replica
an adversary to write on the file and thus corrupt it (see eefe? |ocation tokenrit?. We say that an obfuscated identifigk’ is a
file system in Section IV-C). safe obfuscation of identifiert’ if and only if a lookup on both
There are two possible approaches to implement a securefook;i and otk? result in the same physical node For example,
algorithm: (1) centralized approach and (2) decentralgggatoach. iy Figure 3, identifierotk! is a safe obfuscation of identifief’
In the centralized approach, one could use a trusted locsgiover (D(rit") = T(otk?) = r), while identifier otk is unsafe [(otk?)
[13] to return the location of any file on the overlay network. ./ £ 7).
However, such a location server would become a viable targetye define the seDT K" as a set of all identifiers in the range
for DoS and host compromise attacks. (rit" — srg, rit'), where srg denotes a safe obfuscation range
In this section, we present a decentralized secure lookap p(y < s¢ < 1). When a user intends to query for a replica location
tocol that is built on top of the Chord protocol. Note that goken i/, the user actually performs a lookup on an obfuscated
naive Chord-like lookup protocdf(rit') cannot be directly used jgentifier otk’ = obfuscate(rit’) = rit'—random(0, srg). The

because it reveals the tokeft’ to other nodes on the overlayfynction random(0, srg) returns a number chosen uniformly and

VI. ROUTING GUARD

network. randomly in the rango, srg).
_ We choose a safe valugg such that:
A. Overview (C1) With high probability, any obfuscated identifigt’ is a safe

The fundamental idea behind the routing guard is as follows. obfuscation of the tokenit’. )
Given a file f's location keylk and replica numbei, we want to (C2) Given a large collection of obfuscated identifi¢osk’} it is
find a safe region in the identifier space where we can obtain a Very hard for an adversary to guess the actual identitier
huge collection obbfuscated tokepslenoted by{OT'K}, such Note that if srg is too small condition C1 is more likely to
that, with high probability,l'(otk?) = T'(rit'), Yotk' € OTK®. hold, while condition C2 is more likely to fail. In contrasf,
We call otk! € OTK® an obfuscated identifier of the tokeit’. srg is too big, condition C2 is more likely to hold but condition



C1 is more likely to fail. In our first prototype developmerft o Az). When there arev nodes in the system, the probability that
LocationGuard, we introduce a system defined parametgrto one of them exists between a distar@ex + Az) is N x Az.
denote the minimum probability that any obfuscation is regfi  Similarly, the probability that none of other no@e— 1 nodes lie
to be safe. In the subsequent sections, we present a teehimiquwithin a distance-g from identifierrit’ is (1—z)N . Therefore,
derive srg as a function ofprsq. This permits us to quantify the f(z) is given by Equation 1.

tradeoff between condition C1 and condition C2. (@) = N x(1— m)N_l o

B. Determining the Safe Obfuscation Range Now, using the probability density function in Equation leon
Observe from Figure 3 that a obfuscatieand on identifier can derive the cumulative distribution function (cdf), Pre )

— N . _—xxN i

rit' is safe if rit'—rand > ID(r"), wherer' is the immediate _ (1 —a)” ~ e " (for small values ofz) using standard
predecessor of node on the Chord ring. Thus, we havend techniques in probability theory. | .
< rlit'—ID(+"). The expressionit'—ID(r') denotes the distance
between identifiersit’ and ID(r') on the Chord identifier ring, C. Ensuring Safe Obfuscation
denoted bydist(rit, ID(r")). Hence, we say that a obfuscation Given that wherprs, < 1, there is small probability that an
rand is safe with respect to identifiedt" if and only if rand < obfuscated identifier is not safe, i.¢+ prsq > 0. We first discuss
dist(rit', ID(r")), or equivalently;and is chosen from the range the motivation for detecting and repairing unsafe obftiscatand
(0, dist(rit*, ID(r"))). , then describe how to guarantee good safety by our routingdgua

We use Theorem 6.1 to show that @s{(rit', ID(r')) > x) through a self-detection and self-healing process.
= e~*N where N denotes the number of nodes on the overlay Let noder be the result of a lookup on identifiett’ and node
network and: denotes any value satisfying< = < 1. Informally, (v + ) be the result of a lookup on an unsafe obfuscated identifier
the theorem states that the probability that the predecesste o¢4*. To perform a file read/write operation after locating thel@o
r' is further away from the identifierit’ decreases exponentiallythat stores the fil¢f, the user has to present the location tok&h
with the distance. Since an obfuscatiomd is safe with respect to nodew. If a user does not check for unsafe obfuscation, then
to rit" if dist(rit', ID(r")) > rand, the probability that a obfus- the file tokenrit* would be exposed to some other nade r.
cationrand is safe can be calculated usiag™®"®*V . If node v were malicious, then it could misuse this information

Now, one can ensure that the minimum probability of any ole corrupt the file replica actually stored at nodeusing the
fuscation being safe igrs, as follows. We first users, to obtain  capability ri¢?).

an upper bound orand: By e~ "*"*N > pr ., we haveyand < We require a user to verify whether an obfuscated identi§ier i
%. Hence, ifrand is chosen from a safe range, srg), safe or not using the following check: An obfuscated ideentifi
wheresrg = —129:{P"=a) then all obfuscations are guaranteed totk’ is consideredsafeif and only if rit’ € (otk’, ID(v)), where
be safe with a probability greater than or equapto,. v = T'(otk"). By the definition ofv and otk’, we haveotk' <
For instance, when we sgts, = 1—2720 and N = 1 million  ID(v) and otk® < rit' (rand > 0). By otk" < rit" < ID(v),
nodessrg = ,% = 2740, Hence, on a 128-bit Chord ring Node v should be the immediate successor of the identifier
rand could be chosen from a range of size; = 2128 , o—40 _  and thus be responsible for it. If the check failed, i€t >

288 Table | shows the size of ars,—safe obfuscation range-g ID(v), then nodev is definitely not a successor of the identifier
for different values ofprs,. Observe that if we seprs; = 1, rit'. Hence, the user can flagk' as an unsafe obfuscation of
thensrg = ,% = 0. Hence, if we want 100% safety, the”!t'- For example, referring Figure 3¢k is safe because/t’ €
obfuscation rangerg must be zero, i.e., the tokett! cannot be (0tki, ID(r)) andr = I'(otki), andotk; is unsafe becausejt’
obfuscated. ¢ (otky, ID(r")) andr’ = T'(otk}).

Theorem 6.1:Let N denote the total number of nodes in the When an obfuscated identifier is flagged as unsafe, the user
system. Letdist(z,y) denote the distance between two identifier§€€ds to retry the lookup operation with a new obfuscateutiide
z andy on a Chord’s unit circle. Let node’ be the node that fier. This retry process continues untilaxretries rounds or until
is the immediate predecessor for an identifié’ on the anti- & Safe obfuscation is found. Thanks to the fact that the jmibtya
clockwise unit circle Chord ring. LetD(+') denote the identifier Of @n unsafe obfuscation can be extremely small, the call for
of the noder’. Then, the probability that the distance betweefftry rarely happens. We also found from our experiments tha
identifiers rit* and ID(r’) exceedsrg is given by Prdist(rit’, the number of retries required is almost always zero ancdseld
ID()) > z) = e~ **N for some0 < z < 1. exc_eeds one. We bglieve that us'mg_x.retries_equal to two would

Proof: Let Z be a random variable that denotes the distan&/ffice even in a highly conservative setting. Table | shoes t

between an identifierit’ and noder’. Let f;(x) denote the e?<pected number of retries required for a lookup operatmn f
probability distribution function (pdf) that the nod€ is at a different values ofprsq.
distancez from the identifierrit®, i.e., dist(ID(r'), rit?) = x.
We first derive the probability distributiorf,(z) and use it to D. Strength of Routing guard

compute Prg > x) = Pr(dist(rit', ID(r')) > z). The strength of a routing guard refers to its ability to ceunt
By.the unnform .a.nd random dlst.rlbutlon .propertles of therhaqookup sniffing based attacks. A typical lookup sniffing ekta
function the identifier of a node will be uniformly and randym s cajled therange sieving attackinformally, in a range sieving
distributed between (0, 1). Hence, the probability thatitienti-  4tack, an adversary sniffs lookup queries on the overlayark,
fier of any node falls in a segment of lengtlis equal tar. Hence, - anq attempts to deduce the actual identifief from its multiple
with probability Az, a given node exists between a distance Qfyfscated identifiers. We show that an adversary would kave
(z, z+Ax) from the identifier-it* (for any arbitrarily small region expend2?® years to discover a replica location tokehi even if



it has observe@?® obfuscated identifiers oflt’. Note that2?®  obfuscation technique is almost independent of the numbat-o
obfuscated identifiers would be available to an adversathaf tackers. This is a desirable property. It implies that asiinaber
file replica f* was accessed once a second for one full year loj attackers increases in the system, the hardness of hrettie
some legal user of the filg. file capabilities will not decrease. The reason for locati@y
One can show that given multiple obfuscated identifiers it Isased systems to have this property is because the time fiaken
non-trivial for an adversary to categorize them into groapsh a brute force attack on a file identifier is fundamentally tediby
that all obfuscated identifiers in a group are actually otditisns the rate at which a hosting node permits accesses on filesdstor
of one identifier. To simplify the description of a range &gy locally. On the contrary, a brute force attack on a cryptpgm@a
attack, we consider the worst case scenario where an advéssakey is inherently parallelizable and thus becomes more fae
capable of categorizing obfuscated identifiers (say, baseitieir as the number of attackers increases.
numerical proximity). Theorem 6.2:Let nid denote the number of obfuscated iden-
We first concretely describe the range sieving attack assyumiifiers that correspond to a target file. LRG s denote the sieved
thatprs, andsrg (from Theorem 6.1) are publicly known. Whenrange using the range sieving attack. kej denote the maximum
an adversary obtains an obfuscated identifigf, the adversary amount of obfuscation that could he,,—safely added to a file
knows that the actual capabilityt’ is definitely within the range identifier. Then, the expected size of range's can be calculated
RG = (otk',otk" + srg), where (0,srg) denotes aprsg—safe by E[|RGs|] = 225, _ _ _
range. In fact, if obfuscations are uniformly and randonthp- Proof: Let otk ;, = rit" — randmaz andotky,q, = rit" —
sen from (0, srg), then given an obfuscated identifietk?, the rand,,;, denote the minimum and the maximum value of an ob-
adversary knowsothing morethan the fact that the actual iden-fuscated identifier that has been obtained by an adversésten
tifier rit’ could be uniformly and randomly distributed over theandmaqz andrand,,;, are chosen from the safe rangeg srg).
rangeRG = (otk', otk’ + srg). However, if a persistent adversaryThen, we have the sieved ran@e&'s = (otkiyqx, otkl,in + 579),

obtains multiple obfuscated identifiefstk}, otks, ---, otk!,,} namely, from the highest lower bound to the lowest upper Houn
that belong to the same target file, the adversary siawethe The sieved rang&G. can be partitioned into two rangeé&’, i,
identifier space as follows. L&G1, RGo, - -- , RG,;q denote the and RGmaz, Where RG i, = (otkmaq, rlt') and RGmaz =

ranges corresponding tod random obfuscations on the identifier(rlt’, otk’,;, + srg). Thus we haveE[|RGs|] = E[|RGmin|] +

rit'. Then the capability of the target file is guaranteed to lie iF[|RGmaz|]-

the sieved rang&kGs = ﬂ?ileGj. Intuitively, if the number of The size of the rang&G in, denoted as$RG,,»|, equals to

obfuscated identifiers:{d) increases, the size of the sieved rangeand,,, since isrit® — otkyqe = randpy:,. We show that the

RGs decreases. For all tokems € RGs, the likelihood that the cumulative distribution function ofand,.,, is given by Equation

obfuscated identifier§otk?, otks, -- -, otk®,,;} are obfuscations 2. o

of phe identifiertk is .equal‘. In _fact, the probability of obse_rvmg Pr(randmin > rg) = (1 _ Q) ©)

otk for somel < j < nid given that the actual token is: srg

is Pr(otk;» | tk) = %g V tk € RGs. Also, the probability of Since an obfuscatiomand is chosen uniformly and randomly

observing the obfuscated identifiefstk}, otkb, ---, otk’,,} oOver arang€go,srg), for 0 < rg < srg, the probability that any

given that the actual token i% is Pr({otk}, otk}, ---, otk!,,} obfuscationrand is smaller tharrg, denoted byPr(rand < rg),

| tk) = ﬁ Y tk € RGs. Note that*"9C,,;; denotes the is % Hence, the probability that any obfuscatiamd is greater

number of ways of choosingid balls from a pool ofsrg non- thanrg is Pr(rand > rg) =1— Pr(rand <rg) =1— %. Now

identical balls. Hence, the adversary is left with no smaettegy we compute the probability thatind,,;, = min{rand;, rands,

for searching the sieved rang&=s other than performing a brute - - - , rand,;q} is greater tharg. We havePr(rand,i, > r9)

force attack on some random enumeration of identifiers RGs. = Pr((randy > rg) A (randz > rg) A -+ A (rand,q > rg)) =
Let E[RGs] denote the expected size of the sieved range. Thﬁ-;l;dl Pr(rand; > rg) = gl _rg \Md

orem 6.2 shows tha’[RGs] = 279. Hence, if the safe range Now, using standard techniqaes from probability theory and

srg is significantly larger thamid then the routing guard can gquation 2, one can derive the expected value@ti, ., : E[|RGymin|]

tolerate the range sieving attack. Recall the example ii®ec _ g qnd,,,,] ~ 519 Symmetrically, one can show that the
—20 6 88 nid i

Vi whereprsg =1-277", N = 107, the safe rangerg = 2°".  expected size of rang&@Gmaz 1S E[|[RGmas|] ~ 4. Hence

Suppose that a target file is accessed once per second for gReexpected size of sieved rangeA§ RG] = E[|RGymin|] +

year; this results ire?® file accesses. An adversary who IOQ%HRGmazH > g m
all obfuscated identifiers over a year could sieve the ramge t - mid
about E[|RG5|] = 2%3. Assuming that the adversary performs a VII. L OCATION INFERENCEGUARDS

brute force attack on the sieved range, by attempting a fdd re | gcation inference attacks refer to those attacks wherain a
operation at the rate of one read per millisecond, the adwers agversary attempts to infer the location of a file usindirect
would have tried2®® read operations per year. Thus, it wouldechniques that exploit file metadata information such asafi-
take the adversary aboaf?®/2%> = 2% years to discover the cess frequency, file size, and so forth. LocationGuard desu
actual file identifier. Table | summarizes the hardness ailirg 5 suite of four fundamental and inexpensive inference guard
the obfuscation scheme for different values oty (minimum |ookup frequency inference guard, end-user IP-addresseinte
probability of safe obfuscation), assuming that the adgrsas guard, file replica inference guard and file size inferencardu
logged2*° file accesses (one access per second for one year) @BgationGuard also includes a capability revocation bdeed-
that the nodes permit at most one file access per mi”isecond.tion rekeying mechanism as a genera| guard against anwi’n:fer

Discussion.An interesting observation follows from the aboveyttack. In this section, we present the four fundamentairéxfce



A. Passive Inference Guards guery. Recall that wide-area network file systems like CR8; F

Passive inference attacks refer to those attacks whereian Site and OceanStore permit nodes to join and leave the gverla
versary attempts to infer the location of a target file by pag_etwork. Let us for now consider only node departures. Clamsi
sively observing the overlay network. We present two infeee @ file f stored at node.. Let A, denote the rate at which users
guards: lookup frequency inference guard and end-useddireas accesses the filg. Let 4., denote the rate at which a node
inference guard to guard the file system against two comml§fves the overlay network (rates are assumed to be expaihent
passive inference attacks. The lookup frequency infereiizek distributed). The first ti.me the user accesses theftilﬂaje.loolgup
is based on the ability of malicious nodes to observe thairagy "€Sult (namely, node) is cached. The lookup result is implicitly
of lookup queries on the overlay network. Assuming that tH@validated when the user attempts to accessffitee first time
adversary knows the relative file popularity, it can use trgdt after noden leaves the overlay network. When the lookup result
file's lookup frequency to infer its location. The end-usé* | is invalidated, the user issues a fresh lookup query forffil®ne
address inference attack is based on assumption that thetyde can show that the apgarent frequency of file access as ohbideyve
of the end-user can be inferred from its IP-address by arlaweran adversary is'; = " fE4- (assuming exponential distribution
network noder, when the user requests nodeto perform a for Ay andpgep). The probaf)ility that any given file access results
lookup on its behalf. The malicious nodecould log and report 1S @ lookup is equal to the probability that the node responsi
this information to the adversary. ble for the file leaves before the next access and is given by

1) Lookup Frequency Inference Guarth this section we preserftTiookup = 57152 - Hence, the apparent file access frequency
lookup frequency inference attack that would help a stiategs €qual to the product of the actual file access frequengy (
adversary to infer the location of a target file on the overlagnd the probability that a file access results in a lookup atjmer
network. It has been observed that the general popularithef (Priookup)- INtuitively, in a static scenario where nodes never
web pages accessed over the Internet follows a Zipf-likeidis  leave the network e, < Ay), A} = paep; and when nodes
tion [30]. An adversary may study the frequency of file acesssléave the network very frequentlyf., > As), Ay ~ A;. Hence,
by sniffing lookup queries and match the observed file accdg®re static the overlay network is, harder it is for an adagrso
frequency profile with a actual (pre-determined) frequepmfile ~ Perform a frequency inference attack since it would appedf a
to infer the location of a target file. Note that if the frequency all files in the system are accessed at an uniform frequengy.
profile of the files stored in the file system is flat (all files are It is very important to note that a node storing a filef may
accessed with the same frequency) then an adversary wibeotinfer f's name since the user has to ultimately access mode
able to infer any information. Lemma 7.1 formalizes the moti OPerate on filef. Hence, an adversary may infer the identities of
of perfectly hiding a file from a frequency inference attack. files stored at malicious nodes. However, it would be veryl fier

Lemma 7.1:Let F denote the collection of files in the file @n adversary to infer the identities of files stored at goodeso
System_ Let)\’f denote the apparent frequency of accesses to fﬁyard by File Identifier Obfuscation. The second teChnique
f as perceived by an adversary. Then, the collection of files tlat makes the frequency inference attack harder is basédeon
perfectly hidden from frequency inference attack}\j[f: c:vf e file identifier obfuscation technique described in Sectidnl\ét

F and some constant f1, f2,---, fny denote the files stored at some nodelet the
Corollary 7.2: A collection of read-only files can be perfectlyidentifiers of these replicas bét,,rits, - rit, . Let the target
hidden from frequency inference attack. file be f1. The key idea is to obfuscate the identifiers such that an

Proof: Let A denote the actual frequency of accesses alversary would not be able to distinguish between an obfedc
a file f. Set the number replicas for filg to be proportional to identifier intended for locating fil¢; and that for some other file
its access frequency, namely; = 1 « A (for some constant fj (2 <j < nf) stored at node.
¢ > 0). When a user wishes to read the flethe user randomly ~ More concretely, when a user performs a lookup for the
chooses one replica of filg and issues a lookup query on it.user would choose some random identifier in the rafige=
From an adversary’s point of view it would seem that the acce§'lt1 —srg, rit1). A clever adversary maglusteridentifiers based
frequency to all the file replicas in the system is identinalnely, ©n their numerical closeness and perform a frequency inéere
vf xfi - %f — ¢ (1 <i< Ry forfile f). By Lemma 7.1, an attack on these clusters. However, one could defend themyst

adversary would not be able to derive any useful informafiom @agdainst such a clustering technique by appropriately shgaes

a frequency inference attack. [ m safe obfuscation range. Figure 4 presents the key intuiitégrind
Interestingly, the replication strategy used in Corolld im- this idea diagrammatically. As the rande; overlaps with the
proves the performance and load balancing aspect of the figges of more and more files stored at nedehe clustering
system as well. However, it is not applicable to read-writesfi technique and consequently the frequency inference attackd
since an update operation on a file may need to update all f#fform poorly. LetR; N Ry denote the set of identifiers that
replicas of a file. In the following portions of this sectiome belongs the intersection of rangés and Ry. Then, given an
propose two techniques to flatten tapparentfrequency profile identifier otk € R; N Ra, an adversary would not able to distin-
of read/write files. guish whether the lookup was intended for fjfle or f2; but the
Guard by Result Caching. The first technique to mitigate the @dversary would definitely know that the lookup was inteneied
frequency inference attack is to obfuscate the appareraditess ther for file f1 or f2. Observe that amount of information inferred
frequency with lookupresult caching Lookup result caching, Oy an adversary becomes poorer and poorer as more and more

as the name indicates, refers to caching the results of aippok@nges overlap. Also, as the number of fileg’( stored at node
n increases, even a small obfuscation might introduce sagmifi

2This is analogous to performing a frequency analysis attackold overlap between the ranges of different files stored at node
symmetric key ciphers like the Caesar’s cipher [17]



! . uis & * $gNlogy N = ¢ * $logy N. Therefore, the ratio of
rone l(i) 2 "1 "2 lookup queries that originate at a node to that routed tHroug
. . q - 2 _ 6 . . .
L srg | it is Tl N~ g, N For N = 10°, this ratio is about 0.1,

T 1 1 X2 2 thereby making it hard for an adversary to selectively piokyo
@ those queries that originated at a particular node. Fyrtinar

Fig. 4. Countering Frequency Analysis Attack by file idestifobfuscation. f’j‘" neigthfS of a node are "ke'y to be bad; hence, .it is rathe
X1Xo,Y1Ys andZ; Z, denote the ranges of the obfuscated identifiers of fileiifeasible for an adversary to collect all lookup traffic flogy
J1, f2, f3 stored at noden. Frequency inference attacks works in scenarighrough an overlay node.
(i), but not in scenario (ii). Given an identifietk € Y7271, it is hard for an
adversary to guess whether the lookup was for fileor f2. )
B. Host Compromise based Inference Guards
Host compromise based inference attacks require the adyers
The apparent access frequency of a filés computed as a to perform an active host compromise attack before it caerinf
weighted sum of the actual access frequencies of all files thhe location of a target file. We present two inference gudilds
share their range with filgf. For instance, the apparent accesgeplica inference guard and file size inference guard todytrae
frequency of filef, (see Figure 4) is given by Equation 3. file system against two common host compromise based infer-
Af1+,\f2) (A_f1+A_,-2+Af3>ence attacks. The file replica inference attack attemptsifer i
Ve XV Ay + 2+ < 2 T hXax 3 the identity of a file from its contents. Note that an adversar
h srg can reach the contents of a file only after it compromises the

) (3_) replica holder (unless the replica holder is malicious)e Tite
The apparent access frequel_’lcy of a file evens out the sharp V&Ye inference attack attempts to infer the identity of a ffiten
ations between the frequencies of different files storedraide, its size. If the sizes of files stored on the overlay networ ar

thereby making frequency inference attack significantlydbe. g riciently skewed, the file size could by itself be suffitién
We discuss more on how to quantify the effect of file identifie

. . ) |Bentify a target file.
obfuscation on frequency inference attack in our expertalen 1) File Replica Inference GuardDespite making the file capa-
section VIII.

i ) bilities and file access frequencies appear random to amrsatye
2) End-User IP-Address Inference Guarth this section, we

3 ) the contents of a file could by itself reveal the identity of file
describe an end-user IP-address inference attack thamassuf_ The file f could be encrypted to rule out the possibility of

that the identity of an end-user can be inferred from his/hge iifving a file from its contents. Even when the replicas a
IP-address. Note that. this is a qust-case-assympt|on;ost Mencrypted, an adversary can exploit the fact that all thécapof
cases It may not p055|ble.to. assoqate a user W'th one or a S f are identical. When an adversary compromises a good node,
number IP-addresses. This is particularly true if the usgaios it can extract a list of identifier and file content pairs (oreesl of

IP-andress d_ynamically (DHCP [7]) from a large ISP (Intémey,, contents) stored at that node. Note that an advecsary
Service Prow_der). — perform a frequency inference attack on the replicas stated
_ A_user typically locate their files on the overlay network by, icious nodes and infer their filenames. Hence, if an advgr
ISSuIng a Iookup.q.uery to some noden the (.)ve.rlay pgtwork. If were to obtain the encrypted contents of one of the replitas o
noder were maI|C|ou§ then it may log the file identifiers I()Ol(eqar et file f, it could examine the extracted list of identifiers and
up by a user. Assummg that a user accesses only_a small SUBEEl. o ntents to obtain the identities of other replicas. rtbe

of the total number of files on the overlay network (includihg adversary has the locations ef copies of a filef, the f could be
target file) the adversary can narrow down the set of nodes Macked easily. This attack is especially more plausibleead-
the overlay network that may potentially hold the target fime only files since their contents do not change over a long gderio

possible solution is for users to issue lookup queries tioa of time. On the other hand, the update frequency on readwrit
trustedanonymizerThe gnonymizer accepts lookup gueries frorﬂles might guard them from the file replica inference attack.
users and dylspatches it to the overlay network _Wlthout rIe\_/ea We guard read-only files (and files updated very infrequintly
ing the users IP-address. However, the anonymizer costlfit by making their replicas non-identical; this is achievedhgrypt-
become a viable target for the adversary. ing each replica with a different cryptographic key. We deithe

A more_ promising solution is for f[he qser to join the ove”a&yptographic key for thet” replica of file f using its location
network (just like other nodes hosting files on the overlay naKey Ik aski = khashy,(f | i || ‘cryptkey’). Further, if one uses

work). When t.he user .issues Ioo!<up q.ueries, it is rou'Fe.cl@fno a symmetric key encryption algorithm in cipher-block-ctiag
some of its neighbors; if some of its neighbors are maligitiusn mode (CBC mode [19] [10]), then we could reduce the encryp-

they may log thes_,e _Iook_up queries. However,_ it is_non-trifm tion cost by using the same cryptographic key, but a differen
an adversary to distinguish between the queriesdhiginatedat  jpisiajization vector {v) for encrypting different file replicask’

the user and those that were simpbyted through it. = khashy,(f || ‘cryptkey’) andivi = khashy,(f || i || ‘ivec’).

For the sake of §|mpl|0|ty, let us assumg ttqadenotes. the We show in our experimental section that even a small update
number of lookups issued per usgr per unit time. Assu,m',n@th?requency on read-write files is sufficient to guard them the fi
are N users, the total lookup traffic i&q lookups per unit time. o jic4 inference attack. Additionally, one could also a® to
Each lookup on an average rgqU|r§$c1>g2N hops on Chord. gnerynt read-write file replicas with different cryptoghép keys
Hence, the total lookup traffic i8¢ * 5logy N hops per unit (¢4 make the replicas non-identical) to improve their ieaite to
time. By the design of the overlay network, the lookup traffigo replica inference attack.
is uniformly shared among all nodes in the system. Hence they) Fije Size Inference GuardFile size inference attack is based
number of lookup queries (per unit time) routed through amyen o the assumption that an adversary might be aware of thettarg
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file's size. Malicious nodes (and compromised nodes) refhert Fle lype Sl
size of the files stored at them to an adversary. If the sizdes fi T1 integrity only
stored on the overlay network follows a skewed distributithe L confidentially oY _
adversary would be able to identify the target file (much tike ! Ci;;:'?“y anc Integrty

lookup frequency inference attack). We guard the file system
this attack by fragmenting files into multiple file blocks afual
size. For instance, CFS divides files into blocks of 8 KBytashe
and stores each file block separately. We hide the locatidheof

J" block(_in)thez'th replica of file f using its location keyk and |,c4ti0n determined by the file's location key. The file systis
tokenrit'™?" = khashy,(f || i || j). Note that the last file block yoymed to be flat (no directory hierarchy). The file names are
may have to be padded to make its size 8 KBytes. Now, Singg oy the 32 Byte hexadecimal representation of the 128tbi
all file blocks are of the same size, it would be vary hard for e nifier. Access control in our system is implicit; if thésfexists

adversary to perform file size inference attack. It is ir8Mg hop, the requested read/write operation is performed elgerar
to note that dividing files into blocks is useful in minimigithe g ot med

communication overhead for small reads/writes on largs.file LocationGuard permits files to be any one of the four types:
no cryptographic security (T0), integrity only (T1), cordittiality

C. Location Rekeying only (T2), and confidentiality and integrity (T3). To ensuile

In addition to the inference attacks listed above, therddcountegrity, the file includes a keyed message authenticatimte
be other possible inference attacks on a LocationGuarddbassing the HMAC-MD5 keyed hash function. To ensure file con-
file system. In due course of time, the adversary might be afigentiality, the file is encrypted using the AES-128 enciypt
to gather enough information to infer the location of a targé&lgorithm. Finally, adding message authentication codgngu
file. Location rekeying is a general defense against botwn MD5 [24] or SHA1L [8]) followed by encryption (using AES-
and unknowninference attacks. Users can periodically choosk28) guarantees both file confidentiality and integrity. \&sueme
new location keys so as to rendalt past inferences made by anthat the file owners distribute location keys and cryptogiap
adversaryuselessThis is analogous to periodic rekeying of crypXkeys through a secure out-of-band mechanism. Figure 5 shows
tographic keys. Unfortunately, rekeying is an expensiveration: our implementation architecture and Table II shows the fdar
rekeying cryptographic keys requires data to be re-enedypt types.
rekeying location keys requires files to be relocated on tieelay Operational Overhead.We ran our prototype implementation on
network. Hence, it is important to keep the rekeying freqyen €ight machines each with 8-processors (550MHz Intel Pentiu
small enough to reduce performance overheads and largglenolll Xeon processor running RedHat Linux 9.0) connected via a
to secure files on the overlay network. In our experimentiaec high speed LAN. In reality the nodes would be distributed on a
we estimate the periodicity with which location keys havepe Wide-area network. However, we believe that this setup el

changed in order to reduce the probability of an attack omgeta equally insightful in providing us the percentage overhadded
file. by LocationGuard.

We first quantify the performance and storage overheads in-
VIII. EXPERIMENTAL EVALUATION curred by LocationGuard. Let us consider a typical file reaite

In this section, we report two sets of results. The first set 8 eration. The operation consists of the following stepsgen-

results is obtained from our prototype implementation otd-o erate the replica location tokens, (ii) lookup the replicidars
tionGuard. The second of results is from simulation based
periments to evaluate the LocationGuard approach for imgjld
secure wide-area network file systems.

LOCATIONGUARD FILE TYPES

on the overlay network, and (iii) process the request atigapl
Folders. Step (i) requires computations using the keyeti-hanc-
tion with location keys, which otherwise would have reqdire
computations using a normal hash function. We found that the
computation time difference between HMAC (a keyed pseudo-
A. Implementation-Based Experiments random function) and MD5 (a pseudo-random function) is neg-
In this section we briefly sketch our implementation of Localigibly small (order of a few microseconds) using the stadda
tionGuard and quantify the overhead added by LocationGteardOpenSSL library [20]. Step (ii) involves a pseudo-randormmber
the file system. generation (few microseconds using the OpenSSL librarg) an
Implementation. We have implemented a prototype of Locamay require lookups to be retried in the event that the olafiest
tionGuard on a publicly available Java code for the Chordklpo identifier turns out to be unsafe. Given that unsafe obfimsesit
protocol [26]. We used AspectJ [9] to modify the Chord lookupre extremely rare (see Table I) retries are only required oc
protocol to include routing guard and lookup result cachifige casionally and thus this overhead is negligible. Step &dps
methodobfuscateimplements lookup identifier obfuscation. Theno overhead because our access check is almost free. As long
methodchecksafeobfuscatiorimplements our check for safe ob-as the user can present the correct pseudo-filename (taken),
fuscation; if the check fails then it caltsbfuscateollowed by the replica holder would honor a request on that file. Figuresd an
Chord lookup protocol. The Aspect] compiler statically vesa shows the overhead of LocationGuard for file read and fileewrit
the obfuscatemethod and thehecksafe obfuscationmethod be- operations respectively. Each value reported in this exart has
fore and after all method calls to the Chord lookup protocdieen averaged over 64 runs. Note that file read/write ojpestf
respectively. size greater than one block were parallelized, with eaclbfidek
The file system is implemented on top of the overlay networkperation proceeding in parallel. Observe that the latéocyile
We split files into blocks of 8KBytes and store each block at @perations in a naive file system (FS) and LocationGuard @GF
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Fig. 6. File Read Overhead Fig. 7. File Write Overhead
is almost the same. For read operations maximum overheabdue Gp’ 0(')5 1(')0 01'015 01'424 01'757 03';6
LocationGuard was about 1.5ms (relative overhead of 0.4%) an ' - . .
TABLE llI

that for write operation was 1.6ms (relative overhead of4).3
Now, let us compare the storage overhead at the users and tHEAN FRACTION OF GOOD NODES INUNCOMPROMISEDSTATE (G)

nodes that are a part of the overlay network. Users need te sto

only an additional 128-bit location key (16 Bytes) along hwit

other file meta-data for each file they want to access. Everma us . .

who uses 1 million files on the overlay network needs to stof82ke it very hard for any adversary to launch a targeted file

only an additional 16MBytes of location keys. Further, thés attack. ) ]
no extra storage overhead on the rest of the nodes on themveh'OSt Compromise Attacks.To further evaluate the effectiveness
network of LocationGuard against targeted file attacks, we evaluata-

tionGuard against host compromise attacks. Our first emxysari
] ) i on host compromise attack shows the probability of an attack
B. Simulation-Based Experiments on the target file assuming that the adversary does not tollec
We implemented our simulator using a discrete event simgapabilities (tokens) stored at the compromised nodescéjehe
lation [10] model. We simulate the Chord lookup protocol][2%arget file is attacked ifr or more of its replicas are stored at
on the overlay network compromising & = 1024 nodes. In either malicious nodes or compromised nodes. Figure 9 stovs
all experiments reported in this paper, a randem 10% of N probability of an attack for different values of corruptittmeshold
nodes are chosen to behave maliciously (the trends reportedcr) and varyingp = & (measured in number of node recoveries
this paper apply to all values @). We set the number of replicasper node compromise). We ran the simulation for a duration of
of a file to be R = 7 and vary the corruption thresholet in 190 time units. Recall that denotes the mean time required for
our experiments. We simulated the bad nodes as having laiige dne malicious node to compromise a good node. Note that if the
bounded power based on the paramete(®oS attack strength), simulation were run for infinite time then the probabilityatfack
X (node compromise rate) and (node recovery rate) (see theis always one. This is because, at some point in tineyr more
threat model in Section Ill). We demonstrate the effectdgmnof replicas of a target file would be assigned to malicious ngdes
LocationGuard against DoS and host compromise based targeinpromised nodes) in the system.
file attacks. From Figure 9 we observe that when< 1, the system is
Denial of Service Attacks.Figure 8 shows the probability of anhighly vulnerable since the node recovery rate is lower tthen
attack for varyinga and different values of corruption thresholdnode compromise rate. Note that while a DoS attack couldatee
(cr). Without the knowledge of the location of file replicas ampowerful malicious nodesof > 1), the host compromise attack
adversary is forced to attack (DoS) a random collection @feso cannot tolerate the situation where the node compromiseisat
in the system andhopethat that at leastr replicas of the target higher than their recovery ratg € 1). This is primarily because
file is attacked. Observe that if the malicious nodes are mpove  of the cascading effect of host compromise attack. The tatoe
erful (largera) or if the corruption thresholdr is very low, then number of compromised nodes we have, the higher is the rate
the probability of an attack is higher. If an adversary wesa@ at which other good nodes are compromised (see the adversary
of the R replica holders of a target file then a weak collectiomodel in Section IIl). Table Il shows the mean fraction ofogo
of B malicious nodes, such a8 = 102 (i.e., 10% of N) with nodes ¢’) that are in an uncompromised state for different values
a =% =75 =0.07, can easily attack the target file. Also, for aof . Observe from Table Il that whep = 1, most of the good
file system to handle the DoS attacks on a file witk: 1, itwould  nodes are in a compromised state.
require a large number of replicaB ¢lose toB) to be maintained ~ As we have mentioned in Section IV-C, the adversary could
for each file. For example, in the case whéte= 10% x N and collect the capabilities (tokens) of the file replicas stioa¢ com-
N = 1024, the system needs to maintain as large as 100+ repligg®mised nodes; these tokens can be used by the adversary at
for each file. Clearly, without LocationGuard, the effortjuéred any point in future to corrupt these replicas using a simpiisgew
for an adversary to attack a target file is dependent onlzobut  operation. Hence, our second experiment on host compromise
is independent of the number of good nod@} if the system. On attack measures the probability of a attack assuming that th
the contrary, LocationGuard based techniques scale tlinéss adversary collects the file tokens stored at compromise@siod
of an attack with the number of good nodes in the system. ThERgyure 10 shows the mean effort required to locate all théoap
even with a very smallR, a LocationGuard based system cawf a target file r = R). The effort required is expressed in terms
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N = 1024 nodes andR = 7 using DoS Attack
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TABLE IV

TIME INTERVAL BETWEEN LOCATION REKEYING (NORMALIZED BY %
TIME UNITS)

[(faep | O [ 1/256 | 1746 | 1 | 16 | 256 | 4096 | oo

[ S [ 15| 1264 | 11.30 | 10.63 | 10.00 | 9.71 | 9.57 | 9.55 |
TABLE V

COUNTERING LOOKUP FREQUENCY INFERENCEATTACK APPROACHI:
RESULT CACHING (WITH 32K FILES)

Probability of a Target File Attack
for N = 1024 nodes andR = 7 using Host
Compromise Attack (with no token collection)

0 0.2 0.4 0.6 0.8 1

5 55 6 6.5 7 Fraction of Good Nodes Compromised

Corruption Threshold (cr)

Fig. 10. Probability of a Target File Attack
for N = 1024 nodes andR = 7 using Host
Compromise Attack with token collection from
compromised nodes

attempt to flatten the frequency profile of files stored in tystem

(see Lemma 7.1). Note that we do not change the actual freguen
profile of files; instead we flatten the apparent frequencyilpro

of files as perceived by an adversary. We assume that files are
accessed in proportion to their popularity. File popuiesitare
derived from a Zipf-like distribution [30], wherein, the palarity

of the i*" most popular file in the system is proportional £o

with v = 1.

Our first experiment on inference attacks shows the effectiv
ness of lookup result caching in mitigating frequency asialy
attack by measuring thentropy[18] of the apparent frequency
profile (measured as number of bits of information). Givea th
apparent access frequenciegofiles, namely\; , Xy, -+, X},
the entropysS is computed as follows. First the frequencies are

of the fraction of good nodes that need to be compromised Ryrmalized such thaEle )\}_ = 1. Then, S = —25:1 xf_ *

the adversary to attack the target file.

log, )\'f When all files are accessed uniformly and randomly,

i

Note that in the absence of LocationGuard, an adversarysneggh s, N, = & for1 < i< F, the entropysS is maximum
to compromise at mosk good nodes in order to succeed & = _ lgg2 F. The entropyS decreases as the access profile

targeted file attack. Clearly, LocationGuard based tealasgn-

becomes more and more skewed. Note that if= log, F, no

crease the required effort by several orders of magnitude. Fnatter how clever the adversary is, he/she cannot derive any
instance, whep = 3, an adversary has to compromise 70% of thgsefy| information about the files stored at good nodes (from
good nodes in the system in order to increase the probabfliy | emyma 7.1). Table VI shows the maximum entropyn(z) and
attack to a nominal value df.1, even under the assumption thagye entropy of a zipf-like distributions,,,) for different values

an adversary collects file capabilities from compromisedeso f 1 Note that every additional bit of entropy, doubles the rffo
Observe that if an adversary compromises every good ”Oder@huired for a successful attack; hence, a frequency infere
the system once, it gets to know the tokens of all files storggiack on a Zipf distributed 4K files is about 19 timed%~7-7)

on the overlay network. In Section VII-C we had proposed IQsasier than the ideal scenario where all files are uniformy a

cation rekeying to protect the file system from such attatke

exact period of location rekeying can be derived from Figl®e

randomly accessed.
Table V shows the entropy of apparent file access frequency

For instance, whep = 3, if a user wants to retain the attackas perceived by an adversary when lookup result caching is em

probability below 0.1, the time interval between rekeyimgsld

ployed by the system fof' = 32K files. We assume that the

equal the amount of time it takes for an adversary to commeMiacyya| access frequency profile of these files follows a Zigtfid
70% of the good nodes in the system. Table IV shows the tiggtion with the frequency of access to the most popular fil9 (
taken (normalized by}) for an adversary to increase the attackormalized to one access per unit time. Table V shows themtr
probability on a target file to 0.1 for different valuesofObserve ¢ the apparent lookup frequency for different valueg.gf, (the

that asp increases, location rekeying can be more and MOfgean rate at which a node joins/leaves the system). Obskrve i

infrequent.

C. Location Inference Guards

Kdep IS large, the entropy of apparent file access frequency te qui
close to that of Zipf-distribution (see Table VI for 32K filesind
if the nodes are more stablg, is small), then the apparent

In this section we show the effectiveness of location infeee frequency of all files would appear to be identically equake, .

guards against the lookup frequency inference attack, lrndile
replica inference attack.

In our second experiment, we show the effectiveness of file
identifier obfuscation in mitigating frequency inferenceaek.

Lookup Frequency Inference Guard.We have presented lookup Figure 11 shows the entropy of the apparent file access fnegue
result caching and file identifier obfuscation as two techedgto for varying values opr, (the probability that obfuscated queries
thwart the frequency inference attack. Recall that ourtgnis ~are safe, see Theorem 6.1) for different values:gf the mean
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ENTROPY (IN NUMBER OF BITS) OF A
ZIPF-DISTRIBUTION

Entropy (hardness of inference attack)
Probability of Attack
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Probability of Safe Perturbed Query (sq) File Update Frequency

Fig. 11. Countering Lookup Frequency Infer-Fig. 12.  Countering File Replica Frequency
ence Attack Approach II: File Identifier obfusca- Inference Attack: Location Rekeying Frequency
tion Vs File Update Frequency

number of files per node. Recall that an obfuscated identdierbetter defenses against the inference attacks that we haaeyn
safe if both the original identifier and the obfuscated idiemt pointed out in this paper is a part of our ongoing work.

are assigned to the same node in the system. Higher the value

prsq, Smaller is the safe obfuscation range); and thus, the IX. RELATED WORK

lookup queries for a replica location token are distributedr a Serverless distributed file systems like CFS [6], Farsife [1

smaller region in. the identifier space. This decreases ttremn OceanStore [16] and SIRiUS [12] have received signific t
of the apparent file access frequency. Also, as the numbelesf f'tion from both the industry and the research community. &hes

stored at a node increases, there would be larger overlape®® g0 o stems store files on a large collection of untrustedesod

the sa_fe ranges of differt_ant files as_signed to a node (se_afeFigHmt form an overlay network. They use cryptographic teghes
4). This evens out (partially) the differences betweenedeffit to secure files from malicious nodes. Unfortunately, crgpaphic

apparent file access frequencies and thus, increases topyent techniques cannot protect a file holder from DoS or host compr

File. Relplica Inference Gl_Jard' We study the severity of file \nice atacks. LocationGuard presents low overhead andyhigh
re pllga |nference attack with respect to the upcjgte freque ot ctive techniques to guard a distributed file system fsuoh
files in the file system. We measured the probability that areiad targeted file attacks.

sary may be a_lble to _suc_cessfully locate all the replicas a_fget The secure Overlay Services (SOS) paper [14] presents an
file using the file replica inference attack when all the idiof @  itecture that proactively prevents DoS attacks usEmie

file are encrypted with the same key. We assume that the a’dyersoverlay tunneling and routing via consistent hashing. Haxe

performs a host compromise attack wiih= 3. Figure 12 shows the assumptions and the applications in [14] are noticediffigr-

the probapility of a successful attack on a target file fofeq#nt ent from that of ours. For example, the SOS paper uses thiagver
values of its update frequency and different values of My noqyork for introducing randomness and anonymity into tRSS

durations. Note that the time period at which location kesss aj cpitecture to make it difficult for malicious nodes to aka

chaTged and the time period between file updates are nosdalig, oot anplications of interest. LocationGuard treats dherlay
by 5 (mean time to compromise a good node). Observe th

- . - Btwork as a part of the target applications we are intedéstand
sharp knee |n.F|gure 12; once the f"? update frequency IBEBEA;htroduce randomness and anonymity through location kegda
beyond3a (thrice the node compromise rate) then probability 0rgashing and lookup based file identifier obfuscation, making

a successful attack is very small. difficult for malicious nodes to target their attacks on a kma

Note that), the rate at which a node can be compromiseg|hset of nodes in the system, who are the replica holdetseof t
by one malicious node is likely to be quite small. Hence, evqﬂrget file of interest
if a file is infrequently updated, it could survive a file reli \ypije e have described LocationGuard for a Chord [29] over-
m_ferenpe attack. However., read-only files neeq to be_ enedyp lay network, we note that it also applies Pastry [25] and $ape
with different cryptographic keys to make their replicasnno [4]. An identity in Pastry (or Tapestry) can be obfuscatesir(g

identical. Figure 12 also illustrates that Iowering't.hedi.pe.riod the same technique described in this paper) while being de pr
between key changes lowers the attack probability sigmifiga g e the |00kup property. We note that within a small ohitiso

This is _becausg each time the location key of a filis f:hanged range both identitiesd and id + srg in Pastry (and Tapestry)
all the information collected by an adversary regardfhgould mapped to the same target node. On the other hand, it may

be rendered entlrely_ usele_ss. ) be non-trivial to extend this scheme to d-dimensional CAR] [2
Inference Attacks DiscussionWe have presented techniques tQ onvork

mitigate some popular inference attacks. Therg coyld beroth The Hydra OS [5] proposed a capability-based file access con-
inference attacks that have not been addressed in this. BEST ., mechanism. LocationGuard implements a simple andieffic

the location inference guards presented in this paper doesm capability-based access control on a wide-area networksyie
tirely rule out the possibility of an inference attack. Fostiance, tem. The most important challenge for LocationGuard is tfat
even when we used result caching and file identifier pertioat keeping a file's capability secret and yet being able to perfa
in combination, we could not increase the entropy of apparqgokup on it (see Section VI).

lookup frequency to the theoretical maximutfin(az in Table Indirect attacks such as attempts to compromise cryptbgrap

VI). Identifying other potential inference attacks and eleping keys from the system administrator or use fault attacks R
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