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Abstract— 1 Serverless distributed computing has received sig-
nificant attention from both the industry and the research com-
munity. Among the most popular applications are the wide area
network file systems, exemplified by CFS, Farsite and OceanStore.
These file systems store files on a large collection of untrusted
nodes that form an overlay network. They use cryptographic
techniques to maintain file confidentiality and integrity from
malicious nodes. Unfortunately, cryptographic techniques cannot
protect a file holder from a Denial-of-Service (DoS) or a host
compromise attack. Hence, most of these distributed file systems
are vulnerable to targeted file attacks, wherein an adversary
attempts to attack a small (chosen) set of files by attacking the
nodes that host them. This paper presentsLocationGuard− a
location hiding technique for securing overlay file storage systems
from targeted file attacks. LocationGuard has three essential
components: (i) location key, consisting of a random bit string
(e.g., 128 bits) that serves as the key to the location of a file, (ii)
routing guard, a secure algorithm that protects accesses to a file
in the overlay network given its location key such that neither
its key nor its location is revealed to an adversary, and (iii) a set
of location inference guards, which refer to an extensible com-
ponent of the LocationGuard. Our experimental results quantify
the overhead of employing LocationGuard and demonstrate its
effectiveness against DoS attacks, host compromise attacks and
various location inference attacks.

Keywords: File Systems, Overlay Networks, Denial of Service
Attacks, Performance & Scalability, Location Hiding

I. I NTRODUCTION

Several serverless file storage services, like CFS [6], Farsite
[1], OceanStore [16] and SiRiUS [12], have recently emerged.
In contrast to traditional file systems, they harness the resources
available at desktop workstations that are distributed over a wide-
area network. The collective resources available at these desktop
workstations amount to several peta-flops of computing power
and several hundred peta-bytes of storage space [1].

These emerging trends have motivated serverless file storage
as one of the most popular application over decentralized over-
lay networks. An overlay network is a virtual network formed
by nodes (desktop workstations) on top of an existing TCP/IP-
network. Overlay networks typically support a lookup protocol. A
lookup operation identifies the location of a file given its filename.
Location of a file denotes the IP-address of the node that currently
hosts the file. There are four important issues that need to be
addressed to enable wide deployment of serverless file systems
for mission critical applications.

1A preliminary version of this paper appeared in USENIX Security Sym-
posium 2005 [28]

Efficiency of the lookup protocol.There are two kinds of lookup
protocol that have been commonly deployed: the Gnutella-like
broadcast based lookup protocols [11] and the distributed hash
table (DHT) based lookup protocols [29] [23] [25]. File systems
like CFS, Farsite and OceanStore use DHT-based lookup pro-
tocols because of their ability to locate any file in a small and
bounded number of hops.
Malicious and unreliable nodes.Serverless file storage services
are faced with the challenge of having to harness the collective
resources of loosely coupled, insecure, and unreliable machines to
provide a secure, and reliable file-storage service. To complicate
matters further, some of the nodes in the overlay network could
be malicious. CFS employs cryptographic techniques to maintain
file data confidentiality and integrity. Farsite permits filewrite
and update operations by using a Byzantine fault-tolerant group
of meta-data servers (directory service). Both CFS and Farsite
use replication as a technique to provide higher fault-tolerance
and availability.
Targeted File Attacks. A major drawback with serverless file
systems is that they are vulnerable to targeted attacks on files.
In a targeted attack, an adversary is interested in compromising a
small set of target files through a denial of service (DoS) attack or
a host compromise attack. A DoS attack would render the target
file unavailable; a host compromise attack could corrupt allthe
replicas of a file thereby effectively wiping out the target file from
the file system. The fundamental problem with these systems is
that: (i) the number of replicas (R) maintained by the system is
usually much smaller than the number of malicious nodes (B),
and (ii) the replicas of a file are stored atpublicly knownlocations,
that is, given the file namef , an adversary (including users who
may not have access to filef ) can determine the IP-addresses of
nodes that hostf ’s replicas. Hence, malicious nodes can easily
launch DoS or host compromise attacks on the set ofR replica
holders of a target file (R � B).
Efficient Access Control.A read-only file system like CFS can
exercise access control by simply encrypting the contents of each
file, and distributing the keys only to the legal users of thatfile.
Farsite, a read-write file system, exercises access controlusing
access control lists (ACL) that are maintained using a Byzantine
fault tolerant (BFT) protocol. However, access control is not truly
distributed in Farsite because all users are authenticatedby a small
collection of directory group servers. Further, PKI (public-key
Infrastructure) based authentication and Byzantine faulttolerance
based authorization are known to be more expensive than a simple
and fast capability-based access control mechanism [5].

Bearing these issues in mind, in this paper we presentLoca-
tionGuard as an effective technique for countering targeted file
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attacks. The fundamental idea behind LocationGuard is tohide
the very location of a file and its replicas such that, a legal user
who possesses a file’slocation keycan easily and securely locate
the file on the overlay network; but without knowing the file’s
location key, an adversary would not be able to even locate the
file, let alone access it or attempt to attack it. LocationGuard
implements an efficient capability-based file access control mech-
anism through three essential components. The first component of
LocationGuard is a location key, which is a random bit string(128
bits) used as a key to the location of a file in the overlay network,
and addresses the capability revocation problem by periodic or
conditional rekeying mechanisms. A file’s location key is used
to generate legal capabilities (tokens) that can be used to access
its replicas. The second component is the routing guard, a secure
algorithm to locate a file in the overlay network given its location
key such that neither the key nor the location is revealed to an
adversary. The third component is an extensible collectionof
location inference guards, which protect the system from traffic
analysis based inference attacks, such as lookup frequencyinfer-
ence attacks, end-user IP-address inference attacks, file replica
inference attacks, and file size inference attacks.

In addition to providing an efficient file access control mecha-
nism with traditional cryptographic guarantees like file confiden-
tiality and integrity, LocationGuard mitigates Denial-of-Service
(DoS) and host compromise attacks, while adding minimal per-
formance overhead and small storage overhead to the file system.
Our initial experiments quantify the overhead of employingLoca-
tionGuard and demonstrate its effectiveness against DoS attacks,
host compromise attacks and various location inference attacks.

The rest of the paper is organized as follows. Section II pro-
vides terminology and background on overlay network and server-
less file systems like CFS and Farsite. Section III describesour
threat model in detail. We present the core techniques of Lo-
cationGuard in Sections IV, V, VI and VII. We present a con-
crete implementation and a thorough experimental evaluation of
LocationGuard in Section VIII, related work in Section IX, and
conclude the paper in Section X.

II. BACKGROUND AND TERMINOLOGY

In this section, we give a brief overview on the vital properties
of DHT-based overlay networks and their lookup protocols (e.g.,
Chord [29], CAN [23], Pastry [25]). All these lookup protocols
are fundamentally based on distributed hash tables, but differ in
algorithmic and implementation details. All of them store the
mapping between a particularsearch keyand its associateddata

(file) in a distributed manner across the network, rather than
storing them at a single location like a conventional hash table.
Given a search key, these techniques locate its associateddata

(file) in a small and bounded number of hops within the overlay
network. This is realized using three main steps. First, nodes and
search keys are hashed to a common identifier space such that
each node is given a unique identifier and is made responsiblefor
a certain set of search keys. Second, the mapping of search keys to
nodes uses policies like numerical closeness or contiguousregions
between two node identifiers to determine the (non-overlapping)
region (segment) that each node will be responsible for. Third, a
small and bounded lookup cost is guaranteed by maintaining a
tiny routing table and a neighbor list at each node.

In the context of a file system, the search key can be a file-
name. All the available node’s IP addresses are hashed usinga

hash function and each of them store a small routing table (for
example, Chord’s routing table has onlym entries for anm-bit
hash function and typicallym = 128) to locate other nodes. Now,
to locate a particular file, its filename is hashed using the same
hash function and the node responsible for that file is obtained
using the concrete mapping policy. This operation of locating the
appropriate node is called alookup.

Serverless file system like CFS, Farsite and OceanStore are lay-
ered on top of DHT-based protocols. These file systems typically
provide the following properties: (1) A file lookup is guaranteed
to succeed if and only if the file is present in the system, (2) A
file lookup terminates in a small and bounded number of hops,
(3) The files are uniformly distributed among all active nodes,
and (4) The system handles dynamic node joins and leaves.

In the rest of this paper, we assume that Chord [29] is used
as the overlay network’s lookup protocol. However, the results
presented in this paper are applicable to most DHT-based lookup
protocols.

III. T HREAT MODEL

Adversary refers to a logical entity that controls and coordinates
all actions by malicious nodes in the system. A node is said tobe
malicious if the node either intentionally or unintentionally fails
to follow the system’s protocols correctly. For example, a mali-
cious node may corrupt the files assigned to them and incorrectly
(maliciously) implement file read/write operations. This definition
of adversary permits collusions among malicious nodes. We also
assume that the underlying IP-network layer may be insecure.
However, we assume that the underlying IP-network infrastructure
such as domain name service (DNS), and the network routers
cannot be subverted by the adversary.

An adversary is capable of performing two types of attacks
on the file system, namely, denial-of-service attacks, and host
compromise attacks. When a node is under denial-of-serviceat-
tack, the files stored at that node are unavailable. When a node
is compromised, the files stored at that node could be either
unavailable or corrupted. We model the malicious nodes as having
a large but bounded amount of physical resources at their disposal.
More specifically, we assume that a malicious node may be able
to perform a denial-of-service attack only on a finite and bounded
number of good nodes, denoted byα. We limit the rate at which
malicious nodes may compromise good nodes and useλ to denote
the mean rate per malicious node at which a good node can be
compromised. For instance, when there areB malicious nodes in
the system, the net rate at which good nodes are compromised
is λ ∗ B (node compromises per unit time). Every compromised
node behaves maliciously. For instance, a compromised nodemay
attempt to compromise other good nodes. Every good node that
is compromised would independently recover at rateµ. Note that
the recovery of a compromised node is analogous to cleaning up
a virus or a worm from an infected node. When the recovery
process ends, the node stops behaving maliciously. Unless and
otherwise specified we assume that the node compromise times
and recovery times follow an exponential distribution.

A. Targeted File Attacks

A targeted file attack refers to an attack wherein an adversary
attempts to attack a small (chosen) set of files in the system.An
attack on a file is successful if the target file is either rendered
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Fig. 1. LocationGuard: System Architecture

Fig. 2. LocationGuard: Conceptual Design

unavailable or corrupted. GivenR replicas of a filef , file f

is unavailable (or corrupted) if at least a thresholdcr number
of its replicas are unavailable (or corrupted). For example, for
read/write files maintained by a Byzantine quorum [1],cr =

dR/3e. For encrypted and authenticated files,cr = R, since
the file can be successfully recovered as long as at least one
of its replicas is available (and uncorrupt) [6]. Most P2P trust
management systems such as the scheme in [30] use a simple
majority vote on the replicas to compute the actual trust values
of peers, thus we havecr = dR/2e.

Distributed file systems like CFS and Farsite are highly vul-
nerable to target file attacks since the target file can be rendered
unavailable (or corrupted) by attacking avery smallset of nodes
in the system. The key problem arises from the fact that these
systems store the replicas of a filef at publicly knownlocations
[14] for easy lookup. For instance, CFS stores a filef at loca-
tions derivable from the public-key of its owner. An adversary
can attack any set ofcr replica holders of filef , to render file
f unavailable (or corrupted). Farsite utilizes a small collection
of publicly known nodes for implementing a Byzantine fault-
tolerant directory service. On compromising the directoryservice,
an adversary could obtain all replica locations for a targetfile.

Files on an overlay network have two primary attributes: (i)
contentand (ii) location. File content could be protected from an
adversary using cryptographic techniques. However, if theloca-
tion of a file on the overlay network is publicly known, then the
file holder is susceptible to DoS and host compromise attacks.
LocationGuard provides mechanisms to hide files in an overlay
network such that only a legal user who possesses a file’s location
key can easily locate it. Thus, any previously known attackson file
contents would not be applicable unless the adversary succeeds
in locating the file. It is important to note that LocationGuard is
oblivious to whether or not file contents are encrypted.

IV. L OCATIONGUARD

A. Overview

We first present a high level overview of LocationGuard. Fig-
ure 1 shows an architectural overview of a file system powered

by LocationGuard. LocationGuard operates on top of an overlay
network ofN nodes. Figure 2 provides a sketch of the conceptual
design of LocationGuard. LocationGuard scheme guards the loca-
tion of each file and its access with two objectives: (1) to hide the
actual location of a file and its replicas such that only legalusers
who hold the file’s location key can easily locate the file on the
overlay network, and (2) to guard lookups on the overlay network
from being eavesdropped by an adversary. LocationGuard consists
of three core components. The first component islocation key,
which controls the transformation of a filename into its location
on the overlay network, analogous to a traditionalcryptographic
key that controls the transformation of plaintext into ciphertext.
The second component is therouting guard, which makes the
location of a file unintelligible. The routing guard is, to some
extent, analogous to a traditionalcryptographic algorithmwhich
makes a file’s contents unintelligible. The third componentof Lo-
cationGuard includes an extensible package of location inference
guards that protect the file system from indirect attacks. Indirect
attacks are those attacks that exploit a file’s metadata information
such as file access frequency, end-user IP-address, equivalence of
file replica contents and file size to infer the location of a target
file on the overlay network.

In the following subsections, we first present the main concepts
behind location keys and location hiding (Section IV-B) andde-
scribe a reference model for serverless file systems that operate
on LocationGuard (Section IV-C). Then we present the concrete
design of LocationGuard’s three core components: the location
key (Section V), the routing guard (Section VI) and a suite of
location inference guards (Section VII).

B. Concepts and Definitions

In this section we define the concept of location keys and
its location hiding properties. We discuss the concrete design of
location key implementation and how location keys and location
guards protect a file system from targeted file attacks in the
subsequent sections.

Consider an overlay network of sizeN with a Chord-like lookup
protocol Γ. Let f1, f2, · · · , fR denote theR replicas of a file
f . Location of a replicaf i refers to the IP-address of the node
(replica holder) that stores replicaf i. A file lookup algorithm is
defined as a function that acceptsf i and outputs its location on
the overlay network. Formally we haveΓ : f i → loc maps a
replicaf i to its locationloc on the overlay networkP .

Definition 1 Location Key:A location key lk of a file f is a
relatively small amount (m-bit binary string, typicallym = 128) of
information that is used by a Lookup algorithmΨ : (f, lk) → loc

to customize the transformation of a file into its location such
that the following three properties are satisfied:

1) Given the location key of a filef , it is easyto locate the
R replicas of filef .

2) Without knowing the location key of a filef , it is hard for
an adversary to locate any of its replicas.

3) The location keylk of a file f should not be exposed to an
adversary when it is used to access the filef .

Informally, location keys arekeys with location hiding property.
Each file in the system is associated with a location key that is
kept secret by the users of that file. A location key for the file
f determines the locations of its replicas in the overlay network.
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Note that the lookup algorithmΨ is publicly known; only a file’s
location key is kept secret.

Property 1 ensures that valid users of a filef can easily access
it provided they know its location keylk. Property 2 guarantees
that illegal users who do not have the correct location key will
not be able to locate the file on the overlay network, making it
harder for an adversary to launch a targeted file attack. Property 3
warrants that no information about the location keylk of a file f

is revealed to an adversary when executing the lookup algorithm
Ψ.

Having defined the concept of location key, we present a refer-
ence model for a file system that operates on LocationGuard.
We use this reference model to present a concrete design of
LocationGuard’s three core components: the location key, the
routing guard and the location inference guards.

C. LocationGuard File System

A serverless file system may implement read/write operations
by exercising access control in a number of ways. For example,
Farsite [1] uses an access control list maintained among a small
number of directory servers through a Byzantine fault tolerant
protocol. CFS [6], a read-only file system, may implement access
control by encrypting the files and distributing the file encryption
keys only to the legal users of a file. In this section we show how
a LocationGuard based file system exercises access control.

In contrast to other serverless file systems, a LocationGuard
based file system does not directly authenticate an user attempting
to access a file. Instead, it uses location keys to implement a
capability-based access control mechanism, that is, any user who
presents the correct file capability (token) is permitted access
to that file. Furthermore, it utilizes routing guard and location
inference guards to secure the locations of files being accessed
on the overlay network. Our access control policy is simple:if you
can name a file, then you can access it. However, we do not use
a file name directly; instead, we use a pseudo-filename (128-bit
binary string) generated from a file’s name and its location key
(see Section V for detail). The responsibility of access control
is divided among the file owner, the legal file users, and the file
replica holders and is managed in a decentralized manner.
File Owner. Given a filef , its owneru is responsible for securely
distributing f ’s location key lk (only) to those users who are
authorized to access the filef .
Legal User.A useru who has obtained the valid location key of
file f is called a legal user off . Legal users are authorized to
access any replica of filef . Given a filef ’s location keylk, a
legal useru can generate the replica location tokenrlti for its ith

replica. Note that we userlti as both the pseudo-filename and
the capability off i. The useru now uses the lookup algorithm
Ψ to obtain the IP-address of noder = Ψ(f, lk). User u gains
access to replicaf i by presenting the tokenrlti to noder. Note
thatrlti acts as a pseudo-filename during lookup and a capability
during access control.
Good Replica Holder. Assume that a noder is responsible for
storing replicaf i. Internally, noder stores this file content under
its pseudo-filenamerlti. Note that noder does not need to know
the actual file name (f ) of a locally stored filerlti. Also, by
design, given the internal file namerlti, node r cannot guess
its actual file name (see Section V). When a noder receives a
read/write request on a filerlti it checks if a file namedrlti is
present locally. If so, itdirectly performs the requested operation

on the local filerlti. Access control follows from the fact that it
is very hard for an adversary to guess correct file tokens.
Malicious Replica Holder. Let us consider the case where the
noder that stores a replicaf i is malicious. Note that noder’s
response to a file read/write request can be undefined. Note that
we have assumed that the replicas stored at malicious nodes
are always under attack (recall that up tocr − 1 out of R file
replicas could be unavailable or corrupted). Hence, the fact that
a malicious replica holder incorrectly implements file read/write
operation or that the adversary is aware of the tokens of those file
replicas stored at malicious nodes does not harm the system.Also,
by design, an adversary who knows one tokenrlti for replicaf i

would not be able to guess the file namef or its location keylk
or the tokens for others replicas of filef (see Section V).
Adversary. An adversary cannot access any replica of filef

stored at a good node simply because it cannot guess the token
rlti without knowing its location key. However, when a good node
is compromised an adversary would be able to directly obtainthe
tokens for all files stored at that node. In general, an adversary
could compile a list of tokens as it compromises good nodes,
and corrupt the file replicas corresponding to these tokens at
any later point in time. Eventually, the adversary would succeed
in corrupting cr or more replicas of a filef without knowing
its location key. LocationGuard addresses such attacks using a
location rekeying technique discussed in Section VII-C.

In the subsequent sections, we show how to generate a replica
location tokenrlti (1 ≤ i ≤ R) from a file f and its location
key (Section V), and how the lookup algorithmΨ performs a
lookup on a pseudo-filenamerlti without revealing the capability
rlti to malicious nodes in the overlay network (Section VI). It
is important to note that the ability to guard the lookup from
attacks like eavesdropping is critical to the file location hiding
scheme, since a lookup operation (using a lookup protocol such as
Chord) on identifierrlti typically proceeds in plain-text through
a sequence of nodes on the overlay network. Hence, an adversary
may collect file tokens by simply sniffing lookup queries overthe
overlay network. The adversary could use these stolen file tokens
to perform write operations on the corresponding file replicas,
and thus corrupt them, without the knowledge of their location
keys.

V. L OCATION KEYS

The first and most simplistic component of LocationGuard is
the concept of location keys. The design of location key needs to
address the following two questions: (1) How to choose a location
key? (2) How to use a location key to generate a replica location
token− the capability to access a file replica?

The first step in designing location keys isto determining the
type of string used as the identifier of a location key.Let useru
be the owner of a filef . Useru should choose a long random bit
string (128-bits)lk as the location key for filef .

The second step isto find a pseudo-random functionto derive
the replica location tokensrlti (1 ≤ i ≤ R) from the filenamef
and its location keylk. The pseudo-filenamerlti is used as a file
replica identifier to locate theith replica of filef on the overlay
network. LetElk(x) denote a keyed pseudo-random function with
input x and a secret keylk and ‖ denotes string concatenation.
We derive the location tokenrlti = Elk(f ‖ i). Given a replica’s
identifier rlti, one can use the lookup protocolΨ to locate it
on the overlay network. We use a fast and efficient keyed-hash
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function like HMAC-MD5 [15] since it satisfies the following
conditions:

1a) Given(f ‖ i) and lk it is easy to computeElk(f ‖ i).
2a) Given(f ‖ i) it is hard to guessElk(f ‖ i) without knowing

lk.
2b) GivenElk(f ‖ i) it is hard to guess the file namef .
2c) GivenElk(f ‖ i) andf it is hard to guesslk.

Condition 1a ensures that it is very easy for a valid user to
locate a filef as long as it is aware of the file’s location keylk.
Condition 2a states that it should be very hard for an adversary to
guess the location of a target filef without knowing its location
key. Condition 2b ensures that even if an adversary obtains the
identifierrlti of replicaf i, he/she cannot deduce the file namef .
Finally, Condition 2c requires that even if an adversary obtains
the identifiers of one or more replicas of filef , he/she would
not be able to derive the location keylk from them. Hence, the
adversary still has no clue about the remaining replicas of the
file f (by Condition 2a). Conditions 2b and 2c play an important
role in ensuring good location hiding property. This is because
for any given filef , some of the replicas of filef could be stored
at malicious nodes. Thus an adversary could be aware of some
of the replica identifiers. Finally, observe that Condition1a and
Conditions{2a, 2b, 2c} map to Property 1 and Property 2 in
Definition 1 (in Section IV-B) respectively. In the remaining part
of this paper, we usekhash to denote a keyed pseudo-random
function that is used to derive a file’s replica location tokens from
its name and its secret location key.

VI. ROUTING GUARD

The second component of LocationGuard is the routing guard.
The design of routing guard aims at securing the lookup of file
f such that it will be very hard for an adversary to obtain the
replica location tokens by eavesdropping on the overlay network.
Concretely, letrlti (1 ≤ i ≤ R) denote a replica location token
derived from the file namef , the replica numberi, and f ’s
location keylk. We need to secure the lookup algorithmΨlk(rlti)

such that the lookup on pseudo-filenamerlti does not reveal the
capabilityrlti to other nodes on the overlay network. Note that a
file’s capabilityrlti does not reveal the file’s name; but it allows
an adversary to write on the file and thus corrupt it (see reference
file system in Section IV-C).

There are two possible approaches to implement a secure lookup
algorithm: (1) centralized approach and (2) decentralizedapproach.
In the centralized approach, one could use a trusted location server
[13] to return the location of any file on the overlay network.
However, such a location server would become a viable target
for DoS and host compromise attacks.

In this section, we present a decentralized secure lookup pro-
tocol that is built on top of the Chord protocol. Note that a
naive Chord-like lookup protocolΓ(rlti) cannot be directly used
because it reveals the tokenrlti to other nodes on the overlay
network.

A. Overview

The fundamental idea behind the routing guard is as follows.
Given a filef ’s location keylk and replica numberi, we want to
find a safe region in the identifier space where we can obtain a
huge collection ofobfuscated tokens, denoted by{OTKi}, such
that, with high probability,Γ(otki) = Γ(rlti), ∀otki ∈ OTKi.
We call otki ∈ OTKi an obfuscated identifier of the tokenrlti.

rr’

1

2

rlt

otk

otk

Fig. 3. Lookup Using File Identifier Obfuscation:r: hosting node;r′:
previous node tor on the Chord ring;otk ∼= rlt−rand(0, srg); otk1

∈ (ID(r′), ID(r)] is safe whileotk2 < ID(r′) is unsafe; hence, safe
obfuscation rangesrg = rlt−ID(r′)

1 − prsq 2−10 2−15 2−20 2−25 2−30

srg 298 293 288 283 278

E[retries] 2−10 2−15 2−20 2−25 2−30

hardness (years) 238 233 228 223 218

TABLE I

LOOKUP IDENTIFIER OBFUSCATION

Each time a useru wishes to lookup a tokenrlti, it performs a
lookup on some randomly chosen tokenotki from the obfuscated
identifier setOTKi. Routing guard ensures that even if an adver-
sary were to observe obfuscated identifiers from the setOTKi

for one full year, it would be highly infeasible for the adversary
to guess the tokenrlti.

We now describe the concrete implementation of the routing
guard. For the sake of simplicity, we assume a unit circle forthe
Chord’s identifier space; that is, node identifiers and file identifiers
are real values from 0 to 1 that are arranged on the Chord ring
in the anti-clockwise direction. LetID(r) denote the identifier of
noder. If r is the destination node of a lookup on file identifier
rlti, i.e.,r = Γ(rlti), thenr is the node that immediately succeeds
rlti in the anti-clockwise direction on the Chord ring. Formally,
r = Γ(rlti) if ID(r) ≥ rlti and there exists no other nodes, say
v, on the Chord ring such thatID(r) > ID(v) ≥ rlti.

We first introduce the concept ofsafe obfuscationto guide us
in finding an obfuscated identifier setOTKi for a given replica
location tokenrlti. We say that an obfuscated identifierotki is a
safe obfuscation of identifierrlti if and only if a lookup on both
rlti and otki result in the same physical noder. For example,
in Figure 3, identifierotki

1 is a safe obfuscation of identifierrlti

(Γ(rlti) = Γ(otki
1) = r), while identifierotki

2 is unsafe (Γ(otki
2)

= r′ 6= r).
We define the setOTKi as a set of all identifiers in the range

(rlti − srg, rlti), where srg denotes a safe obfuscation range
(0 ≤ srg < 1). When a user intends to query for a replica location
tokenrlti, the user actually performs a lookup on an obfuscated
identifier otki = obfuscate(rlti) = rlti−random(0, srg). The
function random(0, srg) returns a number chosen uniformly and
randomly in the range(0, srg).

We choose a safe valuesrg such that:

(C1) With high probability, any obfuscated identifierotki is a safe
obfuscation of the tokenrlti.

(C2) Given a large collection of obfuscated identifiers{otki} it is
very hard for an adversary to guess the actual identifierrlti.

Note that if srg is too small condition C1 is more likely to
hold, while condition C2 is more likely to fail. In contrast,if
srg is too big, condition C2 is more likely to hold but condition
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C1 is more likely to fail. In our first prototype development of
LocationGuard, we introduce a system defined parameterprsq to
denote the minimum probability that any obfuscation is required
to be safe. In the subsequent sections, we present a technique to
derivesrg as a function ofprsq. This permits us to quantify the
tradeoff between condition C1 and condition C2.

B. Determining the Safe Obfuscation Range

Observe from Figure 3 that a obfuscationrand on identifier
rlti is safe if rlti−rand > ID(r′), wherer′ is the immediate
predecessor of noder on the Chord ring. Thus, we haverand

< rlti−ID(r′). The expressionrlti−ID(r′) denotes the distance
between identifiersrlti and ID(r′) on the Chord identifier ring,
denoted bydist(rlti, ID(r′)). Hence, we say that a obfuscation
rand is safe with respect to identifierrlti if and only if rand <

dist(rlti, ID(r′)), or equivalently,rand is chosen from the range
(0, dist(rlti, ID(r′))).

We use Theorem 6.1 to show that Pr(dist(rlti, ID(r′)) > x)
= e−x∗N , whereN denotes the number of nodes on the overlay
network andx denotes any value satisfying0 ≤ x < 1. Informally,
the theorem states that the probability that the predecessor node
r′ is further away from the identifierrlti decreases exponentially
with the distance. Since an obfuscationrand is safe with respect
to rlti if dist(rlti, ID(r′)) > rand, the probability that a obfus-
cationrand is safe can be calculated usinge−rand∗N .

Now, one can ensure that the minimum probability of any ob-
fuscation being safe isprsq as follows. We first useprsq to obtain
an upper bound onrand: By e−rand∗N ≥ prsq, we have,rand ≤
−loge(prsq)

N . Hence, ifrand is chosen from a safe range(0, srg),
wheresrg = −loge(prsq)

N , then all obfuscations are guaranteed to
be safe with a probability greater than or equal toprsq.

For instance, when we setprsq = 1− 2−20 andN = 1 million
nodes,srg = −

loge(prsq)
N = 2−40. Hence, on a 128-bit Chord ring

rand could be chosen from a range of sizesrg = 2128 ∗ 2−40 =

288. Table I shows the size of aprsq−safe obfuscation rangesrg
for different values ofprsq. Observe that if we setprsq = 1,
thensrg = −

loge(prsq)
N = 0. Hence, if we want 100% safety, the

obfuscation rangesrg must be zero, i.e., the tokenrlti cannot be
obfuscated.

Theorem 6.1:Let N denote the total number of nodes in the
system. Letdist(x, y) denote the distance between two identifiers
x and y on a Chord’s unit circle. Let noder′ be the node that
is the immediate predecessor for an identifierrlti on the anti-
clockwise unit circle Chord ring. LetID(r′) denote the identifier
of the noder′. Then, the probability that the distance between
identifiers rlti and ID(r′) exceedsrg is given by Pr(dist(rlti,
ID(r′)) > x) = e−x∗N for some0 ≤ x < 1.

Proof: Let Z be a random variable that denotes the distance
between an identifierrlti and noder′. Let fZ(x) denote the
probability distribution function (pdf) that the noder′ is at a
distancex from the identifierrlti, i.e., dist(ID(r′), rlti) = x.
We first derive the probability distributionfZ(x) and use it to
compute Pr(Z > x) = Pr(dist(rlti, ID(r′)) > x).

By the uniform and random distribution properties of the hash
function the identifier of a node will be uniformly and randomly
distributed between (0, 1). Hence, the probability that theidenti-
fier of any node falls in a segment of lengthx is equal tox. Hence,
with probability 4x, a given node exists between a distance of
(x, x+4x) from the identifierrlti (for any arbitrarily small region

4x). When there areN nodes in the system, the probability that
one of them exists between a distance(x, x + 4x) is N ∗ 4x.
Similarly, the probability that none of other nodeN −1 nodes lie
within a distancerg from identifierrlti is (1−x)N−1. Therefore,
fZ(x) is given by Equation 1.

fZ(x) = N ∗ (1 − x)N−1 (1)

Now, using the probability density function in Equation 1 one
can derive the cumulative distribution function (cdf), Pr(Z > x)
= (1 − x)N ≈ e−x∗N (for small values ofx) using standard
techniques in probability theory.

C. Ensuring Safe Obfuscation

Given that whenprsq < 1, there is small probability that an
obfuscated identifier is not safe, i.e.,1−prsq > 0. We first discuss
the motivation for detecting and repairing unsafe obfuscations and
then describe how to guarantee good safety by our routing guard
through a self-detection and self-healing process.

Let noder be the result of a lookup on identifierrlti and nodev
(v 6= r) be the result of a lookup on an unsafe obfuscated identifier
otki. To perform a file read/write operation after locating the node
that stores the filef , the user has to present the location tokenrlti

to nodev. If a user does not check for unsafe obfuscation, then
the file tokenrlti would be exposed to some other nodev 6= r.
If node v were malicious, then it could misuse this information
to corrupt the file replica actually stored at noder (using the
capabilityrlti).

We require a user to verify whether an obfuscated identifier is
safe or not using the following check: An obfuscated identifier
otki is consideredsafeif and only if rlti ∈ (otki, ID(v)), where
v = Γ(otki). By the definition ofv and otki, we haveotki ≤

ID(v) and otki ≤ rlti (rand ≥ 0). By otki ≤ rlti ≤ ID(v),
nodev should be the immediate successor of the identifierrlti

and thus be responsible for it. If the check failed, i.e.,rlti >

ID(v), then nodev is definitely not a successor of the identifier
rlti. Hence, the user can flagotki as an unsafe obfuscation of
rlti. For example, referring Figure 3,otki

1 is safe because,rlti ∈
(otki

1, ID(r)) and r = Γ(otki
1), andotki

2 is unsafe because,rlti

/∈ (otki
2, ID(r′)) andr′ = Γ(otki

2).
When an obfuscated identifier is flagged as unsafe, the user

needs to retry the lookup operation with a new obfuscated identi-
fier. This retry process continues untilmaxretries rounds or until
a safe obfuscation is found. Thanks to the fact that the probability
of an unsafe obfuscation can be extremely small, the call for
retry rarely happens. We also found from our experiments that
the number of retries required is almost always zero and seldom
exceeds one. We believe that usingmaxretriesequal to two would
suffice even in a highly conservative setting. Table I shows the
expected number of retries required for a lookup operation for
different values ofprsq.

D. Strength of Routing guard

The strength of a routing guard refers to its ability to counter
lookup sniffing based attacks. A typical lookup sniffing attack
is called therange sieving attack. Informally, in a range sieving
attack, an adversary sniffs lookup queries on the overlay network,
and attempts to deduce the actual identifierrlti from its multiple
obfuscated identifiers. We show that an adversary would haveto
expend228 years to discover a replica location tokenrlti even if
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it has observed225 obfuscated identifiers ofrlti. Note that225

obfuscated identifiers would be available to an adversary ifthe
file replica f i was accessed once a second for one full year by
some legal user of the filef .

One can show that given multiple obfuscated identifiers it is
non-trivial for an adversary to categorize them into groupssuch
that all obfuscated identifiers in a group are actually obfuscations
of one identifier. To simplify the description of a range sieving
attack, we consider the worst case scenario where an adversary is
capable of categorizing obfuscated identifiers (say, basedon their
numerical proximity).

We first concretely describe the range sieving attack assuming
thatprsq andsrg (from Theorem 6.1) are publicly known. When
an adversary obtains an obfuscated identifierotki, the adversary
knows that the actual capabilityrlti is definitely within the range
RG = (otki, otki + srg), where (0, srg) denotes aprsq−safe
range. In fact, if obfuscations are uniformly and randomly cho-
sen from(0, srg), then given an obfuscated identifierotki, the
adversary knowsnothing morethan the fact that the actual iden-
tifier rlti could be uniformly and randomly distributed over the
rangeRG = (otki, otki +srg). However, if a persistent adversary
obtains multiple obfuscated identifiers{otki

1, otki
2, · · · , otki

nid}

that belong to the same target file, the adversary cansieve the
identifier space as follows. LetRG1, RG2, · · · , RGnid denote the
ranges corresponding tonid random obfuscations on the identifier
rlti. Then the capability of the target file is guaranteed to lie in
the sieved rangeRGs = ∩nid

j=1RGj . Intuitively, if the number of
obfuscated identifiers (nid) increases, the size of the sieved range
RGs decreases. For all tokenstk ∈ RGs, the likelihood that the
obfuscated identifiers{otki

1, otki
2, · · · , otki

nid} are obfuscations
of the identifiertk is equal. In fact, the probability of observing
otki

j for some1 ≤ j ≤ nid given that the actual token istk
is Pr(otki

j | tk) = 1
srg , ∀ tk ∈ RGs. Also, the probability of

observing the obfuscated identifiers{otki
1, otki

2, · · · , otki
nid}

given that the actual token istk is Pr({otki
1, otki

2, · · · , otki
nid}

| tk) = 1
srgCnid

, ∀ tk ∈ RGs. Note thatsrgCnid denotes the
number of ways of choosingnid balls from a pool ofsrg non-
identical balls. Hence, the adversary is left with no smart strategy
for searching the sieved rangeRGs other than performing a brute
force attack on some random enumeration of identifierstk ∈ RGs.

Let E[RGs] denote the expected size of the sieved range. The-
orem 6.2 shows thatE[RGs] = srg

nid . Hence, if the safe range
srg is significantly larger thannid then the routing guard can
tolerate the range sieving attack. Recall the example in Section
VI where prsq = 1 − 2−20, N = 106, the safe rangesrg = 288.
Suppose that a target file is accessed once per second for one
year; this results in225 file accesses. An adversary who logs
all obfuscated identifiers over a year could sieve the range to
aboutE[|RGs|] = 263. Assuming that the adversary performs a
brute force attack on the sieved range, by attempting a file read
operation at the rate of one read per millisecond, the adversary
would have tried235 read operations per year. Thus, it would
take the adversary about263/235 = 228 years to discover the
actual file identifier. Table I summarizes the hardness of breaking
the obfuscation scheme for different values ofprsq (minimum
probability of safe obfuscation), assuming that the adversary has
logged225 file accesses (one access per second for one year) and
that the nodes permit at most one file access per millisecond.
Discussion.An interesting observation follows from the above
discussion: the amount of time taken to break the file identifier

obfuscation technique is almost independent of the number of at-
tackers. This is a desirable property. It implies that as thenumber
of attackers increases in the system, the hardness of breaking the
file capabilities will not decrease. The reason for locationkey
based systems to have this property is because the time takenfor
a brute force attack on a file identifier is fundamentally limited by
the rate at which a hosting node permits accesses on files stored
locally. On the contrary, a brute force attack on a cryptographic
key is inherently parallelizable and thus becomes more powerful
as the number of attackers increases.

Theorem 6.2:Let nid denote the number of obfuscated iden-
tifiers that correspond to a target file. LetRGs denote the sieved
range using the range sieving attack. Letsrg denote the maximum
amount of obfuscation that could beprsq−safely added to a file
identifier. Then, the expected size of rangeRGs can be calculated
by E[|RGs|] = srg

nid .
Proof: Let otki

min = rlti − randmax andotki
max = rlti −

randmin denote the minimum and the maximum value of an ob-
fuscated identifier that has been obtained by an adversary, where
randmax and randmin are chosen from the safe range(0, srg).
Then, we have the sieved rangeRGs = (otki

max, otki
min + srg),

namely, from the highest lower bound to the lowest upper bound.
The sieved rangeRGs can be partitioned into two rangesRGmin

and RGmax, where RGmin = (otki
max, rlti) and RGmax =

(rlti, otki
min + srg). Thus we haveE[|RGs|] = E[|RGmin|] +

E[|RGmax|].
The size of the rangeRGmin, denoted as|RGmin|, equals to

randmin since isrlti − otki
max = randmin. We show that the

cumulative distribution function ofrandmin is given by Equation
2.

Pr(randmin > rg) =

(

1 −
rg

srg

)nid

(2)

Since an obfuscationrand is chosen uniformly and randomly
over a range(0, srg), for 0 ≤ rg ≤ srg, the probability that any
obfuscationrand is smaller thanrg, denoted byPr(rand ≤ rg),
is rg

srg . Hence, the probability that any obfuscationrand is greater
thanrg is Pr(rand > rg) = 1−Pr(rand ≤ rg) = 1− rg

srg . Now
we compute the probability thatrandmin = min{rand1, rand2,

· · · , randnid} is greater thanrg. We havePr(randmin > rg)

= Pr((rand1 > rg) ∧ (rand2 > rg) ∧ · · · ∧ (randnid > rg)) =
∏nid

j=1 Pr(randj > rg) =
(

1 − rg
srg

)nid
.

Now, using standard techniques from probability theory and
Equation 2, one can derive the expected value ofrandmin: E[|RGmin|]

= E[randmin] ≈ srg
nid . Symmetrically, one can show that the

expected size of rangeRGmax is E[|RGmax|] ≈ srg
nid . Hence

the expected size of sieved range isE[|RGs|] = E[|RGmin|] +
E[|RGmax|] ≥

srg
nid .

VII. L OCATION INFERENCEGUARDS

Location inference attacks refer to those attacks wherein an
adversary attempts to infer the location of a file usingindirect
techniques that exploit file metadata information such as file ac-
cess frequency, file size, and so forth. LocationGuard includes
a suite of four fundamental and inexpensive inference guards:
lookup frequency inference guard, end-user IP-address inference
guard, file replica inference guard and file size inference guard.
LocationGuard also includes a capability revocation basedloca-
tion rekeying mechanism as a general guard against any inference
attack. In this section, we present the four fundamental inference
guards and the location rekeying technique in detail.
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A. Passive Inference Guards

Passive inference attacks refer to those attacks wherein anad-
versary attempts to infer the location of a target file by pas-
sively observing the overlay network. We present two inference
guards: lookup frequency inference guard and end-user IP-address
inference guard to guard the file system against two common
passive inference attacks. The lookup frequency inferenceattack
is based on the ability of malicious nodes to observe the frequency
of lookup queries on the overlay network. Assuming that the
adversary knows the relative file popularity, it can use the target
file’s lookup frequency to infer its location. The end-user IP-
address inference attack is based on assumption that the identity
of the end-user can be inferred from its IP-address by an overlay
network noder, when the user requests noder to perform a
lookup on its behalf. The malicious noder could log and report
this information to the adversary.

1) Lookup Frequency Inference Guard:In this section we present
lookup frequency inference attack that would help a strategic
adversary to infer the location of a target file on the overlay
network. It has been observed that the general popularity ofthe
web pages accessed over the Internet follows a Zipf-like distribu-
tion [30]. An adversary may study the frequency of file accesses
by sniffing lookup queries and match the observed file access
frequency profile with a actual (pre-determined) frequencyprofile
to infer the location of a target file2. Note that if the frequency
profile of the files stored in the file system is flat (all files are
accessed with the same frequency) then an adversary will notbe
able to infer any information. Lemma 7.1 formalizes the notion
of perfectly hiding a file from a frequency inference attack.

Lemma 7.1:Let F denote the collection of files in the file
system. Letλ′

f denote the apparent frequency of accesses to file
f as perceived by an adversary. Then, the collection of files is
perfectly hidden from frequency inference attack ifλ′

f = c: ∀f ∈

F and some constantc.
Corollary 7.2: A collection of read-only files can be perfectly

hidden from frequency inference attack.
Proof: Let λf denote the actual frequency of accesses on

a file f . Set the number replicas for filef to be proportional to
its access frequency, namelyRf = 1

c ∗ λf (for some constant
c > 0). When a user wishes to read the filef , the user randomly
chooses one replica of filef and issues a lookup query on it.
From an adversary’s point of view it would seem that the access
frequency to all the file replicas in the system is identical,namely,
∀f λ′

fi =
λf

Rf
= c (1 ≤ i ≤ Rf for file f ). By Lemma 7.1, an

adversary would not be able to derive any useful informationfrom
a frequency inference attack.
Interestingly, the replication strategy used in Corollary7.2 im-
proves the performance and load balancing aspect of the file
system as well. However, it is not applicable to read-write files
since an update operation on a file may need to update all the
replicas of a file. In the following portions of this section,we
propose two techniques to flatten theapparentfrequency profile
of read/write files.
Guard by Result Caching. The first technique to mitigate the
frequency inference attack is to obfuscate the apparent fileaccess
frequency with lookupresult caching. Lookup result caching,
as the name indicates, refers to caching the results of a lookup

2This is analogous to performing a frequency analysis attack on old
symmetric key ciphers like the Caesar’s cipher [17]

query. Recall that wide-area network file systems like CFS, Far-
site and OceanStore permit nodes to join and leave the overlay
network. Let us for now consider only node departures. Consider
a file f stored at noden. Let λf denote the rate at which users
accesses the filef . Let µdep denote the rate at which a node
leaves the overlay network (rates are assumed to be exponentially
distributed). The first time the user accesses the filef , the lookup
result (namely, noden) is cached. The lookup result is implicitly
invalidated when the user attempts to access filef the first time
after noden leaves the overlay network. When the lookup result
is invalidated, the user issues a fresh lookup query for filef . One
can show that the apparent frequency of file access as observed by
an adversary isλ′

f =
λf µdep

λf+µdep
(assuming exponential distribution

for λf andµdep). The probability that any given file access results
is a lookup is equal to the probability that the node responsi-
ble for the file leaves before the next access and is given by
Prlookup =

µdep

λf+µdep
. Hence, the apparent file access frequency

is equal to the product of the actual file access frequency (λf )
and the probability that a file access results in a lookup operation
(Prlookup). Intuitively, in a static scenario where nodes never
leave the network (µdep � λf ), λ′

f ≈ µdep; and when nodes
leave the network very frequently (µdep � λf ), λ′

f ≈ λf . Hence,
more static the overlay network is, harder it is for an adversary to
perform a frequency inference attack since it would appear as if
all files in the system are accessed at an uniform frequencyµdep.

It is very important to note that a nodem storing a filef may
infer f ’s name since the user has to ultimately access nodem to
operate on filef . Hence, an adversary may infer the identities of
files stored at malicious nodes. However, it would be very hard for
an adversary to infer the identities of files stored at good nodes.
Guard by File Identifier Obfuscation. The second technique
that makes the frequency inference attack harder is based onthe
file identifier obfuscation technique described in Section VI. Let
f1, f2, · · · , fnf denote the files stored at some noden. Let the
identifiers of these replicas berlt1, rlt2, · · · rltnf . Let the target
file bef1. The key idea is to obfuscate the identifiers such that an
adversary would not be able to distinguish between an obfuscated
identifier intended for locating filef1 and that for some other file
fj (2 ≤ j ≤ nf ) stored at noden.

More concretely, when a user performs a lookup forf1, the
user would choose some random identifier in the rangeR1 =

(rlt1−srg, rlt1). A clever adversary mayclusteridentifiers based
on their numerical closeness and perform a frequency inference
attack on these clusters. However, one could defend the system
against such a clustering technique by appropriately choosing a
safe obfuscation range. Figure 4 presents the key intuitionbehind
this idea diagrammatically. As the rangeR1 overlaps with the
ranges of more and more files stored at noden, the clustering
technique and consequently the frequency inference attackwould
perform poorly. LetR1 ∩ R2 denote the set of identifiers that
belongs the intersection of rangesR1 and R2. Then, given an
identifier otk ∈ R1 ∩ R2, an adversary would not able to distin-
guish whether the lookup was intended for filef1 or f2; but the
adversary would definitely know that the lookup was intendedei-
ther for filef1 or f2. Observe that amount of information inferred
by an adversary becomes poorer and poorer as more and more
ranges overlap. Also, as the number of files (nf ) stored at node
n increases, even a small obfuscation might introduce significant
overlap between the ranges of different files stored at noden.
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(i)

X X Y Y Z Z1 2 1 2 1 2

srg

ZY Z YX

(ii)

X 1 1 1 2 2 2

srg

Fig. 4. Countering Frequency Analysis Attack by file identifier obfuscation.
X1X2, Y1Y2 andZ1Z2 denote the ranges of the obfuscated identifiers of files
f1, f2, f3 stored at noden. Frequency inference attacks works in scenario
(i), but not in scenario (ii). Given an identifierotk ∈ Y1Z1, it is hard for an
adversary to guess whether the lookup was for filef1 or f2.

The apparent access frequency of a filef is computed as a
weighted sum of the actual access frequencies of all files that
share their range with filef . For instance, the apparent access
frequency of filef1 (see Figure 4) is given by Equation 3.

λ′

f1
=

X1Y1 ∗ λf1
+ Y1Z1 ∗

(

λf1
+λf2

2

)

+ Z1X2 ∗
(

λf1
+λf2

+λf3

3

)

srg
(3)

The apparent access frequency of a file evens out the sharp vari-
ations between the frequencies of different files stored at anode,
thereby making frequency inference attack significantly harder.
We discuss more on how to quantify the effect of file identifier
obfuscation on frequency inference attack in our experimental
section VIII.

2) End-User IP-Address Inference Guard:In this section, we
describe an end-user IP-address inference attack that assumes
that the identity of an end-user can be inferred from his/her
IP-address. Note that this is a worst-case-assumption; in most
cases it may not possible to associate a user with one or a small
number IP-addresses. This is particularly true if the user obtains
IP-address dynamically (DHCP [7]) from a large ISP (Internet
Service Provider).

A user typically locate their files on the overlay network by
issuing a lookup query to some noder on the overlay network. If
noder were malicious then it may log the file identifiers looked
up by a user. Assuming that a user accesses only a small subset
of the total number of files on the overlay network (includingthe
target file) the adversary can narrow down the set of nodes on
the overlay network that may potentially hold the target file. One
possible solution is for users to issue lookup queries through a
trustedanonymizer. The anonymizer accepts lookup queries from
users and dispatches it to the overlay network without reveal-
ing the user’s IP-address. However, the anonymizer could itself
become a viable target for the adversary.

A more promising solution is for the user to join the overlay
network (just like other nodes hosting files on the overlay net-
work). When the user issues lookup queries, it is routed through
some of its neighbors; if some of its neighbors are malicious, then
they may log these lookup queries. However, it is non-trivial for
an adversary to distinguish between the queries thatoriginatedat
the user and those that were simplyrouted through it.

For the sake of simplicity, let us assume thatq denotes the
number of lookups issued per user per unit time. Assuming there
areN users, the total lookup traffic isNq lookups per unit time.
Each lookup on an average requires1

2 log2 N hops on Chord.
Hence, the total lookup traffic isNq * 1

2 log2 N hops per unit
time. By the design of the overlay network, the lookup traffic
is uniformly shared among all nodes in the system. Hence the
number of lookup queries (per unit time) routed through any node

u is 1
N * 1

2qN log2 N = q * 1
2 log2 N . Therefore, the ratio of

lookup queries that originate at a node to that routed through
it is q

q∗ 1

2
log

2
N

= 2
log

2
N . For N = 106, this ratio is about 0.1,

thereby making it hard for an adversary to selectively pick only
those queries that originated at a particular node. Further, not
all neighbors of a node are likely to be bad; hence, it is rather
infeasible for an adversary to collect all lookup traffic flowing
through an overlay node.

B. Host Compromise based Inference Guards

Host compromise based inference attacks require the adversary
to perform an active host compromise attack before it can infer
the location of a target file. We present two inference guards: file
replica inference guard and file size inference guard to guard the
file system against two common host compromise based infer-
ence attacks. The file replica inference attack attempts to infer
the identity of a file from its contents. Note that an adversary
can reach the contents of a file only after it compromises the
replica holder (unless the replica holder is malicious). The file
size inference attack attempts to infer the identity of a filefrom
its size. If the sizes of files stored on the overlay network are
sufficiently skewed, the file size could by itself be sufficient to
identify a target file.

1) File Replica Inference Guard:Despite making the file capa-
bilities and file access frequencies appear random to an adversary,
the contents of a file could by itself reveal the identity of the file
f . The file f could be encrypted to rule out the possibility of
identifying a file from its contents. Even when the replicas are
encrypted, an adversary can exploit the fact that all the replicas of
file f are identical. When an adversary compromises a good node,
it can extract a list of identifier and file content pairs (or a hash of
the file contents) stored at that node. Note that an adversarycould
perform a frequency inference attack on the replicas storedat
malicious nodes and infer their filenames. Hence, if an adversary
were to obtain the encrypted contents of one of the replicas of a
target filef , it could examine the extracted list of identifiers and
file contents to obtain the identities of other replicas. Once, the
adversary has the locations ofcr copies of a filef , thef could be
attacked easily. This attack is especially more plausible on read-
only files since their contents do not change over a long period
of time. On the other hand, the update frequency on read-write
files might guard them from the file replica inference attack.

We guard read-only files (and files updated very infrequently)
by making their replicas non-identical; this is achieved byencrypt-
ing each replica with a different cryptographic key. We derive the
cryptographic key for theith replica of file f using its location
key lk aski = khashlk(f ‖ i ‖ ‘cryptkey’). Further, if one uses
a symmetric key encryption algorithm in cipher-block-chaining
mode (CBC mode [19] [10]), then we could reduce the encryp-
tion cost by using the same cryptographic key, but a different
initialization vector (iv) for encrypting different file replicas:ki

= khashlk(f ‖ ‘cryptkey’) and ivi = khashlk(f ‖ i ‖ ‘ivec’).
We show in our experimental section that even a small update

frequency on read-write files is sufficient to guard them the file
replica inference attack. Additionally, one could also choose to
encrypt read-write file replicas with different cryptographic keys
(to make the replicas non-identical) to improve their resilience to
file replica inference attack.

2) File Size Inference Guard:File size inference attack is based
on the assumption that an adversary might be aware of the target
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file’s size. Malicious nodes (and compromised nodes) reportthe
size of the files stored at them to an adversary. If the size of files
stored on the overlay network follows a skewed distribution, the
adversary would be able to identify the target file (much likethe
lookup frequency inference attack). We guard the file systemfrom
this attack by fragmenting files into multiple file blocks of equal
size. For instance, CFS divides files into blocks of 8 KBytes each
and stores each file block separately. We hide the location ofthe
jth block in theith replica of filef using its location keylk and
token rlt(i,j) = khashlk(f ‖ i ‖ j). Note that the last file block
may have to be padded to make its size 8 KBytes. Now, since
all file blocks are of the same size, it would be vary hard for an
adversary to perform file size inference attack. It is interesting
to note that dividing files into blocks is useful in minimizing the
communication overhead for small reads/writes on large files.

C. Location Rekeying

In addition to the inference attacks listed above, there could
be other possible inference attacks on a LocationGuard based
file system. In due course of time, the adversary might be able
to gather enough information to infer the location of a target
file. Location rekeying is a general defense against bothknown
and unknowninference attacks. Users can periodically choose
new location keys so as to renderall past inferences made by an
adversaryuseless. This is analogous to periodic rekeying of cryp-
tographic keys. Unfortunately, rekeying is an expensive operation:
rekeying cryptographic keys requires data to be re-encrypted;
rekeying location keys requires files to be relocated on the overlay
network. Hence, it is important to keep the rekeying frequency
small enough to reduce performance overheads and large enough
to secure files on the overlay network. In our experiments section,
we estimate the periodicity with which location keys have tobe
changed in order to reduce the probability of an attack on a target
file.

VIII. E XPERIMENTAL EVALUATION

In this section, we report two sets of results. The first set of
results is obtained from our prototype implementation of Loca-
tionGuard. The second of results is from simulation based ex-
periments to evaluate the LocationGuard approach for building
secure wide-area network file systems.

A. Implementation-Based Experiments

In this section we briefly sketch our implementation of Loca-
tionGuard and quantify the overhead added by LocationGuardto
the file system.
Implementation. We have implemented a prototype of Loca-
tionGuard on a publicly available Java code for the Chord lookup
protocol [26]. We used AspectJ [9] to modify the Chord lookup
protocol to include routing guard and lookup result caching. The
methodobfuscateimplements lookup identifier obfuscation. The
methodchecksafeobfuscationimplements our check for safe ob-
fuscation; if the check fails then it callsobfuscatefollowed by the
Chord lookup protocol. The AspectJ compiler statically weaves
the obfuscatemethod and thechecksafeobfuscationmethod be-
fore and after all method calls to the Chord lookup protocol
respectively.

The file system is implemented on top of the overlay network.
We split files into blocks of 8KBytes and store each block at a

File Type Description
T0 no cryptography
T1 integrity only
T2 confidentiality only
T3 confidentiality and integrity

TABLE II

LOCATIONGUARD FILE TYPES

location determined by the file’s location key. The file system is
assumed to be flat (no directory hierarchy). The file names are
simply the 32 Byte hexadecimal representation of the 128-bit file
identifier. Access control in our system is implicit; if the file exists
then the requested read/write operation is performed else an error
is returned.

LocationGuard permits files to be any one of the four types:
no cryptographic security (T0), integrity only (T1), confidentiality
only (T2), and confidentiality and integrity (T3). To ensurefile
integrity, the file includes a keyed message authenticationcode
using the HMAC-MD5 keyed hash function. To ensure file con-
fidentiality, the file is encrypted using the AES-128 encryption
algorithm. Finally, adding message authentication code (using
MD5 [24] or SHA1 [8]) followed by encryption (using AES-
128) guarantees both file confidentiality and integrity. We assume
that the file owners distribute location keys and cryptographic
keys through a secure out-of-band mechanism. Figure 5 shows
our implementation architecture and Table II shows the fourfile
types.
Operational Overhead.We ran our prototype implementation on
eight machines each with 8-processors (550MHz Intel Pentium
III Xeon processor running RedHat Linux 9.0) connected via a
high speed LAN. In reality the nodes would be distributed on a
wide-area network. However, we believe that this setup would be
equally insightful in providing us the percentage overheadadded
by LocationGuard.

We first quantify the performance and storage overheads in-
curred by LocationGuard. Let us consider a typical file read/write
operation. The operation consists of the following steps: (i) gen-
erate the replica location tokens, (ii) lookup the replica holders
on the overlay network, and (iii) process the request at replica
holders. Step (i) requires computations using the keyed-hash func-
tion with location keys, which otherwise would have required
computations using a normal hash function. We found that the
computation time difference between HMAC (a keyed pseudo-
random function) and MD5 (a pseudo-random function) is neg-
ligibly small (order of a few microseconds) using the standard
OpenSSL library [20]. Step (ii) involves a pseudo-random number
generation (few microseconds using the OpenSSL library) and
may require lookups to be retried in the event that the obfuscated
identifier turns out to be unsafe. Given that unsafe obfuscations
are extremely rare (see Table I) retries are only required oc-
casionally and thus this overhead is negligible. Step (iii)adds
no overhead because our access check is almost free. As long
as the user can present the correct pseudo-filename (token),the
replica holder would honor a request on that file. Figures 6 and 7
shows the overhead of LocationGuard for file read and file write
operations respectively. Each value reported in this experiment has
been averaged over 64 runs. Note that file read/write operations of
size greater than one block were parallelized, with each fileblock
operation proceeding in parallel. Observe that the latencyfor file
operations in a naive file system (FS) and LocationGuard (LGFS)
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Fig. 5. Implementation Architecture
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Fig. 6. File Read Overhead
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Fig. 7. File Write Overhead

is almost the same. For read operations maximum overhead dueto
LocationGuard was about 1.5ms (relative overhead of 0.4%) and
that for write operation was 1.6ms (relative overhead of 0.3%).

Now, let us compare the storage overhead at the users and the
nodes that are a part of the overlay network. Users need to store
only an additional 128-bit location key (16 Bytes) along with
other file meta-data for each file they want to access. Even a user
who uses 1 million files on the overlay network needs to store
only an additional 16MBytes of location keys. Further, there is
no extra storage overhead on the rest of the nodes on the overlay
network.

B. Simulation-Based Experiments

We implemented our simulator using a discrete event simu-
lation [10] model. We simulate the Chord lookup protocol [29]
on the overlay network compromising ofN = 1024 nodes. In
all experiments reported in this paper, a randomp = 10% of N

nodes are chosen to behave maliciously (the trends reportedin
this paper apply to all values ofp). We set the number of replicas
of a file to beR = 7 and vary the corruption thresholdcr in
our experiments. We simulated the bad nodes as having large but
bounded power based on the parametersα (DoS attack strength),
λ (node compromise rate) andµ (node recovery rate) (see the
threat model in Section III). We demonstrate the effectiveness of
LocationGuard against DoS and host compromise based target
file attacks.
Denial of Service Attacks.Figure 8 shows the probability of an
attack for varyingα and different values of corruption threshold
(cr). Without the knowledge of the location of file replicas an
adversary is forced to attack (DoS) a random collection of nodes
in the system andhopethat that at leastcr replicas of the target
file is attacked. Observe that if the malicious nodes are morepow-
erful (largerα) or if the corruption thresholdcr is very low, then
the probability of an attack is higher. If an adversary were aware
of the R replica holders of a target file then a weak collection
of B malicious nodes, such asB = 102 (i.e., 10% ofN ) with
α = R

B = 7
102 = 0.07, can easily attack the target file. Also, for a

file system to handle the DoS attacks on a file withα = 1, it would
require a large number of replicas (R close toB) to be maintained
for each file. For example, in the case whereB = 10% × N and
N = 1024, the system needs to maintain as large as 100+ replicas
for each file. Clearly, without LocationGuard, the effort required
for an adversary to attack a target file is dependent only onR, but
is independent of the number of good nodes (G) in the system. On
the contrary, LocationGuard based techniques scale the hardness
of an attack with the number of good nodes in the system. Thus
even with a very smallR, a LocationGuard based system can

ρ 0.5 1.0 1.1 1.2 1.5 3.0
G′ 0 0 0.05 0.44 0.77 0.96

TABLE III

MEAN FRACTION OF GOOD NODES IN UNCOMPROMISEDSTATE (G′)

make it very hard for any adversary to launch a targeted file
attack.
Host Compromise Attacks.To further evaluate the effectiveness
of LocationGuard against targeted file attacks, we evaluateLoca-
tionGuard against host compromise attacks. Our first experiment
on host compromise attack shows the probability of an attack
on the target file assuming that the adversary does not collect
capabilities (tokens) stored at the compromised nodes. Hence, the
target file is attacked ifcr or more of its replicas are stored at
either malicious nodes or compromised nodes. Figure 9 showsthe
probability of an attack for different values of corruptionthreshold
(cr) and varyingρ = µ

λ (measured in number of node recoveries
per node compromise). We ran the simulation for a duration of
100
λ time units. Recall that1λ denotes the mean time required for

one malicious node to compromise a good node. Note that if the
simulation were run for infinite time then the probability ofattack
is always one. This is because, at some point in time,cr or more
replicas of a target file would be assigned to malicious nodes(or
compromised nodes) in the system.

From Figure 9 we observe that whenρ ≤ 1, the system is
highly vulnerable since the node recovery rate is lower thanthe
node compromise rate. Note that while a DoS attack could tolerate
powerful malicious nodes (α > 1), the host compromise attack
cannot tolerate the situation where the node compromise rate is
higher than their recovery rate (ρ ≤ 1). This is primarily because
of the cascading effect of host compromise attack. The larger the
number of compromised nodes we have, the higher is the rate
at which other good nodes are compromised (see the adversary
model in Section III). Table III shows the mean fraction of good
nodes (G′) that are in an uncompromised state for different values
of ρ. Observe from Table III that whenρ = 1, most of the good
nodes are in a compromised state.

As we have mentioned in Section IV-C, the adversary could
collect the capabilities (tokens) of the file replicas stored at com-
promised nodes; these tokens can be used by the adversary at
any point in future to corrupt these replicas using a simple write
operation. Hence, our second experiment on host compromise
attack measures the probability of a attack assuming that the
adversary collects the file tokens stored at compromised nodes.
Figure 10 shows the mean effort required to locate all the replicas
of a target file (cr = R). The effort required is expressed in terms
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N = 1024 nodes andR = 7 using DoS Attack
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ρ 0.5 1.0 1.1 1.2 1.5 3.0
Rekeying Interval 0 0 0.43 1.8 4.5 6.6

TABLE IV

TIME INTERVAL BETWEEN LOCATION REKEYING (NORMALIZED BY 1

λ

TIME UNITS)

µdep 0 1/256 1/16 1 16 256 4096 ∞

S 15 12.64 11.30 10.63 10.00 9.71 9.57 9.55

TABLE V

COUNTERING LOOKUP FREQUENCY INFERENCEATTACK APPROACHI:

RESULT CACHING (WITH 32K FILES)

of the fraction of good nodes that need to be compromised by
the adversary to attack the target file.

Note that in the absence of LocationGuard, an adversary needs
to compromise at mostR good nodes in order to succeed a
targeted file attack. Clearly, LocationGuard based techniques in-
crease the required effort by several orders of magnitude. For
instance, whenρ = 3, an adversary has to compromise 70% of the
good nodes in the system in order to increase the probabilityof an
attack to a nominal value of0.1, even under the assumption that
an adversary collects file capabilities from compromised nodes.
Observe that if an adversary compromises every good node in
the system once, it gets to know the tokens of all files stored
on the overlay network. In Section VII-C we had proposed lo-
cation rekeying to protect the file system from such attacks.The
exact period of location rekeying can be derived from Figure10.
For instance, whenρ = 3, if a user wants to retain the attack
probability below 0.1, the time interval between rekeying should
equal the amount of time it takes for an adversary to compromise
70% of the good nodes in the system. Table IV shows the time
taken (normalized by1λ ) for an adversary to increase the attack
probability on a target file to 0.1 for different values ofρ. Observe
that asρ increases, location rekeying can be more and more
infrequent.

C. Location Inference Guards

In this section we show the effectiveness of location inference
guards against the lookup frequency inference attack, and the file
replica inference attack.
Lookup Frequency Inference Guard.We have presented lookup
result caching and file identifier obfuscation as two techniques to
thwart the frequency inference attack. Recall that our solutions

attempt to flatten the frequency profile of files stored in the system
(see Lemma 7.1). Note that we do not change the actual frequency
profile of files; instead we flatten the apparent frequency profile
of files as perceived by an adversary. We assume that files are
accessed in proportion to their popularity. File popularities are
derived from a Zipf-like distribution [30], wherein, the popularity
of the ith most popular file in the system is proportional to1iγ

with γ = 1.
Our first experiment on inference attacks shows the effective-

ness of lookup result caching in mitigating frequency analysis
attack by measuring theentropy [18] of the apparent frequency
profile (measured as number of bits of information). Given the
apparent access frequencies ofF files, namely,λ′

f1
, λ′

f2
, · · · , λ′

fF
,

the entropyS is computed as follows. First the frequencies are
normalized such that

∑F
i=1 λ′

fi
= 1. Then, S = −

∑F
i=1 λ′

fi
∗

log2 λ′

fi
. When all files are accessed uniformly and randomly,

that is, λ′

fi
= 1

F for 1 ≤ i ≤ F , the entropyS is maximum
Smax = log2 F . The entropyS decreases as the access profile
becomes more and more skewed. Note that ifS = log2 F , no
matter how clever the adversary is, he/she cannot derive any
useful information about the files stored at good nodes (from
Lemma 7.1). Table VI shows the maximum entropy (Smax) and
the entropy of a zipf-like distribution (Szipf ) for different values
of F . Note that every additional bit of entropy, doubles the effort
required for a successful attack; hence, a frequency inference
attack on a Zipf distributed 4K files is about 19 times (212−7.75)
easier than the ideal scenario where all files are uniformly and
randomly accessed.

Table V shows the entropy of apparent file access frequency
as perceived by an adversary when lookup result caching is em-
ployed by the system forF = 32K files. We assume that the
actual access frequency profile of these files follows a Zipf distri-
bution with the frequency of access to the most popular file (f1)
normalized to one access per unit time. Table V shows the entropy
of the apparent lookup frequency for different values ofµdep (the
mean rate at which a node joins/leaves the system). Observe if
µdep is large, the entropy of apparent file access frequency is quite
close to that of Zipf-distribution (see Table VI for 32K files); and
if the nodes are more stable (µdep is small), then the apparent
frequency of all files would appear to be identically equal toµdep.

In our second experiment, we show the effectiveness of file
identifier obfuscation in mitigating frequency inference attack.
Figure 11 shows the entropy of the apparent file access frequency
for varying values ofprsq (the probability that obfuscated queries
are safe, see Theorem 6.1) for different values ofnf , the mean
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F 4K 8K 16K 32K
Smax 12 13 14 15
Szipf 7.75 8.36 8.95 9.55

TABLE VI

ENTROPY (IN NUMBER OF BITS) OF A
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number of files per node. Recall that an obfuscated identifieris
safe if both the original identifier and the obfuscated identifier
are assigned to the same node in the system. Higher the value
prsq, smaller is the safe obfuscation range (srg); and thus, the
lookup queries for a replica location token are distributedover a
smaller region in the identifier space. This decreases the entropy
of the apparent file access frequency. Also, as the number of files
stored at a node increases, there would be larger overlaps between
the safe ranges of different files assigned to a node (see Figure
4). This evens out (partially) the differences between different
apparent file access frequencies and thus, increases the entropy.
File Replica Inference Guard. We study the severity of file
replica inference attack with respect to the update frequency of
files in the file system. We measured the probability that an adver-
sary may be able to successfully locate all the replicas of a target
file using the file replica inference attack when all the replicas of a
file are encrypted with the same key. We assume that the adversary
performs a host compromise attack withρ = 3. Figure 12 shows
the probability of a successful attack on a target file for different
values of its update frequency and different values of rekeying
durations. Note that the time period at which location keys are
changed and the time period between file updates are normalized
by 1

λ (mean time to compromise a good node). Observe the
sharp knee in Figure 12; once the file update frequency increases
beyond3λ (thrice the node compromise rate) then probability of
a successful attack is very small.

Note thatλ, the rate at which a node can be compromised
by one malicious node is likely to be quite small. Hence, even
if a file is infrequently updated, it could survive a file replica
inference attack. However, read-only files need to be encrypted
with different cryptographic keys to make their replicas non-
identical. Figure 12 also illustrates that lowering the time period
between key changes lowers the attack probability significantly.
This is because each time the location key of a filef is changed
all the information collected by an adversary regardingf would
be rendered entirely useless.
Inference Attacks Discussion.We have presented techniques to
mitigate some popular inference attacks. There could be other
inference attacks that have not been addressed in this paper. Even
the location inference guards presented in this paper does not en-
tirely rule out the possibility of an inference attack. For instance,
even when we used result caching and file identifier perturbation
in combination, we could not increase the entropy of apparent
lookup frequency to the theoretical maximum (Smax in Table
VI). Identifying other potential inference attacks and developing

better defenses against the inference attacks that we have already
pointed out in this paper is a part of our ongoing work.

IX. RELATED WORK

Serverless distributed file systems like CFS [6], Farsite [1],
OceanStore [16] and SiRiUS [12] have received significant atten-
tion from both the industry and the research community. These
file systems store files on a large collection of untrusted nodes
that form an overlay network. They use cryptographic techniques
to secure files from malicious nodes. Unfortunately, cryptographic
techniques cannot protect a file holder from DoS or host compro-
mise attacks. LocationGuard presents low overhead and highly
effective techniques to guard a distributed file system fromsuch
targeted file attacks.

The secure Overlay Services (SOS) paper [14] presents an
architecture that proactively prevents DoS attacks using secure
overlay tunneling and routing via consistent hashing. However,
the assumptions and the applications in [14] are noticeablydiffer-
ent from that of ours. For example, the SOS paper uses the overlay
network for introducing randomness and anonymity into the SOS
architecture to make it difficult for malicious nodes to attack
target applications of interest. LocationGuard treats theoverlay
network as a part of the target applications we are interested in and
introduce randomness and anonymity through location key based
hashing and lookup based file identifier obfuscation, makingit
difficult for malicious nodes to target their attacks on a small
subset of nodes in the system, who are the replica holders of the
target file of interest.

While we have described LocationGuard for a Chord [29] over-
lay network, we note that it also applies Pastry [25] and Tapestry
[4]. An identity in Pastry (or Tapestry) can be obfuscated (using
the same technique described in this paper) while being to pre-
serve the lookup property. We note that within a small obfuscation
range both identitiesid and id + srg in Pastry (and Tapestry)
are mapped to the same target node. On the other hand, it may
be non-trivial to extend this scheme to d-dimensional CAN [23]
network.

The Hydra OS [5] proposed a capability-based file access con-
trol mechanism. LocationGuard implements a simple and efficient
capability-based access control on a wide-area network filesys-
tem. The most important challenge for LocationGuard is thatof
keeping a file’s capability secret and yet being able to perform a
lookup on it (see Section VI).

Indirect attacks such as attempts to compromise cryptographic
keys from the system administrator or use fault attacks likeRSA
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timing attacks, glitch attacks, hardware and software implemen-
tation bugs [21] have been the most popular techniques to attack
cryptographic algorithms. Similarly, attackers might resort to in-
ference attacks on LocationGuard since a brute force attack(even
with range sieving) on location keys is highly infeasible.

A major overhead for LocationGuard arises from key distri-
bution and key management. In particular, one can envision sce-
narios wherein (i) an owner owns several thousand files, and (ii)
the set of legal users for a file vary significantly over time. In
the former scenario, the file owner could reduce the key man-
agement cost by assigning one location key for a group of files
(and directories). Additionally, one could leverage literature on
key management algorithms for access control hierarchies [2]
to encode *nix-like access control policies. Note that *nix-like
access control is essentially hierarchical since a user canread
a file f only if it has execute (+x) permission on the parent
directory containing filef . Inductively, the user must have execute
permission on all directories in the absolute path to filef , and
thus represented as hierarchical access control policies [2].

In the later scenario, one could use efficient group key man-
agement protocols to accommodate dynamic group membership
updates (detailed survey in [22]). Such protocols typically incur
a key update cost that is logarithmic in the number of users.
Additionally, one could leverage recent advances in key manage-
ment algorithms for temporal access control [3], wherein a user
leases access to a file for some contracted time period(a, b).
[3] requires no key update cost, a constant key distributioncost
per lease and a public storage that isO(T ∗ log log T ) (where
T denotes number of time units of interest). We note that while
LocationGuard mechanisms incur low overhead, the choice ofkey
management protocols may significantly impact the file system’s
performance metrics.

Other issues that are not discussed in this paper include the
problem of a valid user illegally distributing the capabilities (to-
kens) to an adversary, and the robustness of the lookup protocol
and the overlay network in the presence of malicious nodes. In
this paper we assume that all valid users are well behaved andthe
lookup protocol is robust. Readers may refer to [27] for detailed
discussion on the robustness of lookup protocols on DHT based
overlay networks.

X. CONCLUSION

We have described LocationGuard− a technique for securing
wide area serverless file sharing systems from targeted file attacks.
Analogous to traditional cryptographic keys that hide the contents
of a file, LocationGuard hides the location of a file on an overlay
network. LocationGuard protects a target file from DoS attacks,
host compromise attacks, and file location inference attacks by
providing a simple and efficient access control mechanism with
minimal performance and storage overhead. The unique charac-
teristics of LocationGuard approach is the careful combination of
location key, routing guard, and an extensible package of location
inference guards, which makes it very hard for an adversary to
infer the location of a target file by either actively or passively
observing the overlay network. Our experimental results quantify
the overhead of employing location guards and demonstrate the
effectiveness of the LocationGuard scheme against DoS attacks,
host compromise attacks and various location inference attacks.
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