
RC24590 (W0806-101) June 23, 2008
Computer Science

IBM Research Report

Virtualization and Hardware-Based Security

Ronald Perez, Leendert van Doorn, Reiner Sailer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



 1

  
Abstract 

 
Hypervisor-based virtualization technologies are frequently 

mentioned in regard to both their security-related strengths and 
their weaknesses. We examine emerging hardware and software 
virtualization technologies in the context of modern computing 
environments and requirements, keeping in mind the history of 
these technologies in order to fully appreciate them as we also 
outline future directions in this space. 
 

I. INTRODUCTION 
Virtualization is the process of presenting something as 

being genuine when in fact it is not – e.g., virtual reality. 
Virtualization in the computer architecture domain is the 
presentation of an environment to one layer in an information 
technology stack which abstracts or is representative of a layer 
below. The insertion of this layer of indirection between 
existing layers in a hardware and/or software stack is typically 
done to address specific problems such as providing support 
for legacy functionality, standardizing interfaces on logical 
models, or transparently load balancing usage of shared 
resources.  

Virtualization may involve language-level runtimes 
providing high-level abstract architectures for applications, or 
a thin hardware virtualization layer of software situated 
between system hardware and the operating system layer 
providing logical views to physical resources. In either case, 
the primary justification for virtualization is efficiency, such 
as the efficient use of programming resources achieved with 
“write once, run everywhere” language runtimes in the first 
case, or the efficient use of hardware resources that can be 
gained with the thin hardware virtualization layer in the 
second case. While virtualization comes in many forms, 
including process, storage, and network virtualization, this 
paper focuses on security and hardware support for that thin 
hardware virtualization layer, often termed a virtual machine 
monitor or hypervisor. 

II. HYPERVISOR VIRTUALIZATION 
Early virtual machines were essentially computing 

environments that simulated or emulated the existing 
hardware features of the host system while arbitrating access 
to shared system resources. This allowed multiple instances of 
operating systems to run on the same system where each 
operating system was originally designed to be the sole arbiter 
of system resources. This was important because systems of 
the time – largely mainframes that were designed during the 

mid 1960s and 1970s, such as the predecessors to the IBM 
VM/370 [12]– were expensive and there were distinct 
economic advantages in being able to partition one physical 
system into multiple logical systems. The same advantages 
exist today for the heirs to the IBM VM/370, such as the IBM 
PR/SM and z/VM virtual machine monitors and the S/390 and 
zSeries mainframes [13]. 

While hypervisors associated with high-end systems have 
continued to evolve and remain critical to maximizing 
utilization of these highly reliable and secure systems, 
increasing the utilization of mid-range and high-volume 
systems has also become a factor driving hypervisor 
development and deployment. These mid-range and high-
volume systems have developed increased electrical power 
requirements that rival increases in computing power and 
overall performance. The expense involved with housing and 
managing these systems has not kept pace with the decline of 
raw hardware and software resource costs including the 
increasing cost of managing the security of ever more 
complex systems. Therefore, hypervisors have become an 
attractive option for large datacenters and medium to small 
enterprises. 

In addition to increased utilization, the general flexibility 
afforded by modern hypervisors and their support of systems 
that have become relative commodities is also apparent. 
Continuous or high-availability requirements can potentially 
be achieved with greater ease and less cost with the ability to 
checkpoint and replicate virtual machines in a distributed 
systems environment. Emerging tool chains are enabling the 
rapid provisioning of workloads to virtual machines and the 
ability to essentially load-balance an enterprise’s entire 
infrastructure by migrating existing virtual machines and their 
workloads to more appropriate systems in support of system 
maintenance cycles or to free-up resources for critical 
workloads or peak usage patterns. 

A. Hypervisors and Security 
There are a few basic but very strong security primitives for 

which hypervisors are particularly well suited, namely 
separation and controlled sharing. Separation can be achieved 
through the use of different hardware facilities for different 
workloads (physical separation), running workloads at 
different times (temporal separation), cryptographically 
protecting data specific to each workload (cryptographic 
separation), and logical separation or isolation, involving the 
use of a reference monitor [1] (Figure 1) or security kernel to 
separate workloads and the resources they use. Hypervisors 
function as reference monitors, providing workload isolation 
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on an operating system instance granularity (as opposed to 
operating systems, which strive to provide isolation at the 
process level). 

The role of the reference monitor in secure systems designs 
is to mediate all security sensitive operations such as access to 
objects or communications between subjects. In hypervisors, 
objects and subjects are respectively system resources and 
virtual machines. The long recognized basic requirements for 
a reference monitor are that it must be small enough to be 
fully-tested and analyzed, it is relatively immune from 
compromise, and it is impossible to bypass the reference 
monitor’s mediation functionality. The hypervisor is also a 
key element in the trusted computing base of the entire system 
– the hardware, firmware and software components in layered 
system architectures the correctness of which are necessary to 
enforce the explicit or implicit system security policy. 

Because the hypervisor reference monitor mediates access 
to and between coarse grained entities – e.g., processors, 
memory (in addition to memory management that is 
performed at the operating system level), disks and virtual 
machines – they are often orders of magnitude smaller in size 
and less complex than modern operating systems. Thus they 
are less difficult to test and analyze for correctness and to 
protect from compromise. Additional protection is often 
provided for hypervisors through hardware features such as 
privileged operating modes and protected memory support. 
Both, along with hardware architected hypervisor calls that 
are similar to operating system calls, ensure that the 
hypervisor mediation functionality cannot be bypassed. 

 

 
Figure 1. Reference Monitor 

 
Hypervisors such as those associated with early and current 

mainframe systems have traditionally supported strong 
isolation or separation of virtual machines and their 
workloads, including fault isolation – limiting the effects of an 
application or operating system fault within a virtual machine. 
While administrators have had the ability to explicitly 
configure these systems to support sharing of system 
resources and communications between virtual machines, 
hypervisors that support sharing based on explicit security 
policies and labels associated with each virtual machine and 
its resources, such as the DEC VAX VMM [14] and the 
KVM/370 [15] security enhanced version of the IBM 
VM/370, were not available on a large scale perhaps due in 

part to the commercial requirements of the day and the high 
assurance government-/military-oriented design targets for 
these systems. However, policy-driven controlled sharing 
requirements for commercial hypervisors on mid-range and 
high-volume systems are increasingly becoming an issue 
because of the need to maintain isolation while at the same 
time maximizing resource utilization and support for the more 
distributed and interconnected nature of contemporary 
workloads. 

The performance impact of security functionality has 
always been an issue with applications, operating systems and 
other information technology infrastructure. Whether simple 
separation or controlled sharing is required, the performance 
overhead associated with security functionality has and will 
continue to have a major role in the acceptance of hypervisor 
security. Keeping the code size of the hypervisor relatively 
small, largely due to restricting functionality and complexity 
in the spirit of a trusted computing base, and limiting higher-
level hypervisor management and flexibility only where it is 
necessary to enforce security requirements is key to 
minimizing the performance impact due to security. Hardware 
support, such as management of memory and other system 
and processor resources and for accelerated context switching 
between protection modes, is even more critical to 
maximizing overall system performance. 

III. HARDWARE VIRTUALIZATION SUPPORT 
Despite the obvious advantages of virtualization such as 

consolidation and isolation, the major disadvantage of 
virtualization is its large performance overhead. This is 
especially true when interpretative or emulation techniques are 
used. A single emulated machine instruction can easily expand 
to thousands of real instructions and may cause significant 
performance degradation. To counter this, CPU manufacturers 
have been developing hardware support for virtualization 
where part or all of the emulation takes place in the CPU 
itself. 

All major vendors are currently working on virtualization 
capabilities for their systems. This includes virtualization 
capabilities for the CPU, I/O, and some specialized devices. 
Some of these are examined in greater detail in the following 
section. 

A. Architectural Overview 
A traditional computer system consists of memory (RAM), 

a CPU, an I/O controller (typically a PCI bridge) and one or 
more I/O devices such as a disk, network and video 
controllers. Virtualizing the shared resources in this 
architecture, as shown in Figure 2, involves making changes 
to the CPU and the bus controller that arbitrates accesses to 
the I/O bus. The I/O devices themselves may also be 
virtualization aware but that is beyond the scope of this paper. 

A typical CPU consists of many shared resources. 
Examples of these are interrupt vectors, page tables, interrupt 
controllers, timers, and special descriptor tables. It is the task 
of the hypervisor to virtualize these resources, but its job can 
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be considerably easier when the right processor abstractions 
are available [21]. 

The hypervisor has the task to provide the illusion of a 
virtual machine to the guest operating system that is running 
inside the VM. This involves managing physical memory, 
interrupts, faults, and I/O devices. 

B. Intel Vanderpool and AMD Pacifica Technology 
Until recently, hardware virtualization support was only 

available on mainframe computers but now some of these 
capabilities have been integrated into modern processors. Both 
Intel and Advanced Micro Devices (AMD) have designed and 
implemented their own virtualization extensions. Intel’s 
extensions are called Vanderpool Technology (VT) [5] and 
AMD’s are called SVM [6].  
Both VT and SVM roughly provide the same functionality. 
They all create a container which is a virtual CPU. Inside the 
container you can run an unmodified OS that is unaware of 
the fact that it is operating in a controlled environment. The 
only way out of this container is under well defined 
conditions, known as exits. Exits are generated whenever the 
code in the container executes privileged instructions1, such as 
changing the CPU state, changing the page tables, or causing a 
page fault. These exits cause a trap into the underlying 
hypervisor that executes in the root container. It is then up to 
the hypervisor to emulate the correct behavior such that the 
OS running inside the container is unaware that it is being 
virtualized. 

For example, for an operating system running inside a 
container to get access to a specific physical memory location, 
it has to create a mapping from a virtual to physical address in 
the page table structure. The OS then needs to activate the 
new page table by assigning it to a special CPU register (cr3, 
on x86 type processors). The assignment to this special 
register causes an exit. It is now up to the hypervisor to 
validate the new page table structure, check that the physical 
memory addresses are really assigned to this container, 
instantiate the new page table and continue execution in the 
container after the assignment instruction. 

The approach taken in the Power Architecture™ server 
processors from IBM (e.g., POWER5™) [9] is different from 
the direction taken by Intel and AMD. Rather than introducing 
a heavy weight container and exit concept, the POWER 
processor introduces a new hypervisor state (akin to user and 
supervisor state) and duplicates certain key control registers in 
hypervisor state that operate independently from their 
supervisor state counter parts. In a way it is the Complex 
Instruction Set Computer (CISC) versus Reduced Instruction 
Set Computing (RISC) approach. POWER introduced a few 
lightweight concepts to support virtualization. 

C. IOMMU 
There is more to virtualization than just virtualizing the 

CPU, I/O is another shared resource. The goal of I/O 

 
1 Privileged instructions are used to control critical system resources and 

can only be executed by the operating system kernel. 

virtualization is to give a virtual machine direct device access 
such that it cannot overwrite other virtual machines. For most 
devices, this is not a problem, but some have bus master 
capabilities that need to be controlled. A bus master capable 
device can initiate its own memory transfers and write to 
every memory location in the system, including memory that 
is not assigned to the virtual machine that controls the device. 

This is a common problem. This is why CPUs have an 
indirection layer and provide a virtual to physical memory 
map abstraction. This mapping is provided by the Memory 
Management Unit (MMU) that is part of the CPU. For I/O 
something analogous is used, the IOMMU[18][9]. It is 
typically part of the bus controller (see Figure 2). The details 
will depend on the specific design, but typically, each I/O 
device has its own address translation map. 

 

 
Figure 2. Virtualized System Architecture Overview 

 
The IOMMU maps I/O virtual addresses to physical 

addresses. Whenever a device initiates a memory transfer, the 
I/O virtual memory address is first translated into the physical 
memory address before the memory transfer commences. If 
the hypervisor ensures that the memory mapping for the 
virtual machine corresponds with the IOMMU mappings for 
the devices the virtual machine owns, then the virtual machine 
can directly interact with its I/O devices without affecting 
other virtual machines. 

D. Intel LaGrande and AMD Presidio Technology 
In 2002, Microsoft announced its Palladium initiative, a 

project aimed at providing a secure client foundation for its 
next version of Windows. For trademark reasons the initiative 
was quickly renamed to the Next Generation Secure 
Computing Base (NGSCB) and it aimed to provide the 
following guarantees: 

• Process isolation 
• Sealed storage 
• Platform attestation 
• Secure I/O paths 

With NGSCB Microsoft tried to define an environment that 
was protected from malicious software and malicious 
peripheral cards. Unfortunately, the NGSCB project was 
cancelled in mid 2004 for lack of customer traction. Still, both 
Intel and AMD had rallied around this initiative. Both defined 
platforms that embedded these guarantees into their systems 
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and both based it on their virtualization technology. 
Intel coined its secure computing platform Lagrande 

Technology or LT for short [7]. LT consists of a VT core to 
provide the process isolation, special keyboard and video 
capabilities for the secure I/O paths, a DMA exclusion vector 
to isolate I/O devices from the security kernel, and tight 
integration with the Trusted Platform Module version 1.2 
specification to provide sealed storage and platform 
attestation. 

AMD called their secure computing platform Presidio [8] 
and although it provides the same high-level functionality, its 
technology roadmap is quite different from Intel’s. Unlike 
Intel, AMD decided to integrate the trusted platform module 
(TPM) capabilities and the DMA exclusion capabilities 
directly into SVM. Consequently, Presidio consists of SVM 
and a set of secure I/O capabilities. 

Both Intel and AMD added two new features to their 
CPUs/chipsets. One of them, the DMA exclusion vector, is an 
elementary version of an IOMMU. It provides protection from 
rogue DMA, but no address translation. This function will 
eventually disappear and be subsumed by the IOMMU itself. 

The second enhancement is the introduction of the dynamic 
root of trust as defined by the Trusted Computing Group [3]. 
Traditional secure or authenticated boot designs start with the 
assumption that the system is unmodified and preserve this 
guarantee during the bootstrap into the operating system. The 
dynamic root of trust design, on the other hand, enables 
software to securely initialize the system at any point in time. 
That is, even when the system is already running an operating 
system and its applications. For this, the vendors added new 
instructions to the CPU. Intel introduced the SENTER 
instruction [7] and AMD the SKINIT instruction [6]. Both are 
conceptually similar. For this discussion we describe the 
SKINIT behavior. 

Upon the execution of an SKINIT instruction, the processor 
is reinitialized into a well-known state in which it can execute 
a secure loader such that the loader cannot be tampered with 
during its execution. This well-know state ensures that the 
interrupts are disabled, DMA to the memory area where the 
secure loader is located is inhibited, and that the special 
purpose registers that control memory accesses are initialized 
to safe values. This environment guarantees that other 
programs running on the CPU or external devices cannot 
modify the loader while it is running. 

Once the processor has been reinitialized, a secure hash of 
the 64KB loader is send to the TPM and stored in PCR[17]. 
This specific PCR can only be written by the CPU using 
special “locality” bus cycles that cannot be generated from 
software. This ensures that only the CPU SKINIT instruction 
could have generated this hash value. The hash value of the 
secure loader constitutes the dynamic root of trust. As soon as 
the hash of the loader is stored inside the TPM, control is 
transferred to the loader. The loader is arbitrary code, but it 
could for example, measure the rest of the system, store the 
result inside the TPM and resume execution where the 
operating system that invoked SKINIT left off. These 

measurements can then be used to unseal storage or attest to 
remote parties the software stack that is running and the 
hardware platform that it is running on. 

The more challenging aspects of LT and Presidio are the 
secure I/O capabilities. The first aspect of this, secure input, is 
straightforward. The perceived threat is one where an 
adversary taps or modifies the communication from the 
keyboard and mouse into the secure environment. To prevent 
this, the communication from the keyboard to the recipient of 
the data, a keyboard device driver in a secure kernel, is 
encrypted. 

Secure output such as video suffers from the same 
communication threats, but it also suffers from Trojan horse 
attacks2. How can a user distinguish between the output on the 
screen from a secure and insecure environment? Despite good 
research in this area, no good practical solutions exist for this 
yet. Intel has proposed a solution where by the secure 
environment always displays on top of the current screen and 
can be activated through a secure attention key mechanism. 
Others have suggested that a pass-phrase that is only available 
to secure kernel and user is rendered into the window’s 
background to convey to the user that she is interacting with a 
secure environment. This too may prove too cumbersome for 
the end user to handle. While everyone agrees secure user I/O 
is a critical part to a secure client system, there is not much 
consensus in the industry what form that should take. 

IV. SHYPE – HYPERVISOR SECURITY ARCHITECTURE 
 We illustrate the sHype [4] security architecture and its 

integration into a Virtual Machine Monitor environment in  
Figure 3.  

 
 
Figure 3. sHype Hypervisor Security Architecture 

 
sHype is implemented in various stages for multiple 

hypervisors including the Xen [11] Opensource hypervisor. 
Building upon the previously described hardware support, the 
major design goal for sHype is to establish a secure 
foundation for server platforms, providing functions such as: 
• Strong isolation and mediated sharing between Virtual 

Machines, strictly controlled by a flexible access control 
enforcement engine. 

 
2 A Trojan horse is a malicious program that masquerades itself as a 

legitimate program by, for example, presenting the same user interface. 
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• Attestation and integrity guarantees for the hypervisor and 
its virtual machines, supported by a virtual TPM 
architecture. TPM-based attestation [16] provides the ability 
to generate and report properties of the running system. 

• Resource control and accurate accounting guarantees, 
enabling the enforcement of quality of service agreements 
between service provider and consumer. 

• Secure Services, providing the base infrastructure in sHype 
for refining complex monolithic run-times by moving 
services such as security policy management or distributed 
auditing into their own, carefully protected VM. 

The sHype access control framework and the virtual TPM 
architecture enabling attestation of individual virtual machines 
are described in more detail in the following sections. Those 
technologies form the basis for the Trusted Virtual Datacenter 
[19], a new technology developed by IBM Research that 
simplifies consistent and strong isolation guarantees in 
distributed virtualized datacenters.  

A. sHype Access control Architecture 
The sHype access control framework is designed (a) to 

ensure isolation of virtual machines by default and (b) to 
control sharing of resources between virtual machines 
(implicit isolation / explicit sharing). sHype enforces a formal 
security policy (mandatory access control, MAC) on 
information flow between virtual machines independently of 
generic user virtual machines. It leverages existing isolation 
between virtual resources and extends it with MAC features to 
control shared resources. 

sHype moves the state of information sharing from being 
defined by a number of ad-hoc system administrator decisions 
to one that is formally defined by the security policy and 
enforced by sHype independently of guest virtual machines. 

The major components of the access control architecture are 
the Policy Manager and the access control policy, the Access 
Control Module (ACM), and the mediation hooks (see  

Figure 3). The Policy Manager maintains the hypervisor 
security policy, which defines the rules the ACM uses to 
decide which Virtual Machines can access which resources. 
The Policy Manager is implemented inside a special-purpose 
virtual machine to keep related complexity out of the 
hypervisor. It provides the ACM inside the hypervisor with a 
pre-compiled security policy. Security mediation hooks 
mediate access to all resources inside the hypervisor that 
enable information flow from one virtual machine to another. 
Security hooks are placed both within the hypervisor to 
mediate direct VM-to-VM sharing, and within the I/O and 
VM-Manager VM to mediate access to virtualized resources. 

Each security hook implements a redirection of access of 
virtual machines to shared virtual resources implemented 
inside the hypervisor or within the I/O hosting VM. This 
redirection code either behaves transparently (permits) or 
aborts (denies) the access request depending on the result of a 
callback into the ACM. The callback returns the access 
control decision of the ACM depending on the active security 
policy, the type of security hook, and the security labels of 
VMs or resources participating in the mediated event.  

Many virtual machine monitors do not offer sufficient 
information inside the hypervisor to distinguish the direction 
of information flow or the semantics of higher level 
operations inducing such an information flow. Therefore, 
sHype aims at coarse-grained but very robust and simple 
access control on VMs and resources within the hypervisor 
and defers finer-grained access control to higher layers (guest 
OS, middle-ware, applications). It promotes the layering of 
multiple security policies over a monolithic one. To this end, 
sHype explicitly supports an interface that enables higher 
layer access control functions in authorized virtual machines 
(e.g., OS security mechanisms) to retrieve sHype security 
control information on virtual machines and resources. Higher 
layer policies take advantage of lower layer security policies 
and focus on refinement rather than re-implementation 
[23],[24]. This strategy can be compared to communication 
stacks, where higher layers usually rely on lower layer 
functions to bridge physical differences (medium access, layer 
2) or to limit network exposure (layer 3, IP fire-walling). Yet 
they sometimes decide to re-implement some of the lower 
layer functions (e.g., error checks) in higher layers based on 
additional information that is not available to the lower layer 
functions. 
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Figure 4. Controlled Sharing: (i) direct VM-to-VM, (ii) VM-to-VM through 
local peripheral resources through resource VM, (iii) VM-to-VM through 
distributed networking resources 

 
sHype enforces mediated sharing between VMs by labeling 

both VMs and resources that can be shared among virtual 
machines (e.g., inter process communication, shared memory, 
virtual block devices, virtual LANs). sHype then controls 
information flow between virtual machines by a mandatory 
access control policy (MAC) based on these labels. While 
direct VM-to-VM communication and cooperation through 
Inter Process Communication (IPC) and Shared Memory 
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(SHMEM) are fully controlled by the hypervisor, the extent to 
which shared peripheral resources are controlled by the 
hypervisor differs greatly from VMM to VMM 
implementation. Figure 4 summarizes the three major ways to 
share virtual resources and the access control enforcement (E) 
and decision (D) points relative to those resources. 

sHype mediates security-sensitive operations that might 
enable sharing of resources between virtual machines and 
authorizes those operations—all operations depicted in Figure 
4.i-4.iii—according to the security policy. The security 
enforcement inside the hypervisor itself is protected from 
attacks such as modification since the hypervisor is protected 
against virtual machines. 

The sHype security enforcement inside of I/O device virtual 
machines (ii, iii in Figure 4) is protected against other virtual 
machines by conventional isolation properties of the 
hypervisor. sHype implements access controls when virtual 
machines bind to resources (bind-time authorization) and 
revokes access if the bind-time authorization conditions cease 
to hold. 

In effect, sHype acts as a reference monitor, leveraging 
existing isolation between virtual resources offered by the 
VMM. It achieves enterprise-grade assurance guarantees with 
minimal changes to the underlying VMM infrastructure and 
minimal performance overhead. 

B. TPM Virtualization 
The Trusted Platform Module [3] is an emerging security 

building block, introduced to offer a system-wide hardware 
root of trust that cannot be compromised by the system 
software. The sHype architecture includes a design that 
virtualizes the hardware TPM by creating software TPM 
instances that are assigned to virtual machines. Based on this 
TPM device virtualization, TPM-based attestation [16] 
provides the ability to generate and report run-time 
measurements of executable code on the hypervisor and 
virtual machines and to infer properties of the running system. 

Figure 5 shows the generic TPM virtualization built on top 
of (i) a cryptographic coprocessor or (ii) a hardware Trusted 
Platform Module. Either creates a hardware root-of-trust [19]. 
The hardware root of trust is extended through the hypervisor 
to build trust into the individual software TPM instances 
(virtual TPMs), which in turn serve as roots of trust for the 
individual guest virtual machines. 
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Figure 5. TPM Virtualization Based on PCIX-Crypto Coprocessor (left) and 
TPM VM (right) 
 

The TPM VM must start first on such a system, even before 

any privileged I/O-VM. The TPM VM communicates either 
with a dedicated TPM instance on the PCIX-Crypto 
Coprocessor (Figure 5 left) or with the hardware TPM (Figure 
5 right). Guest virtual TPM instances are created on demand 
whenever a guest virtual machine with configured TPM 
support is created. The guest virtual TPM instance is 
contained within (i) the coprocessor or (ii) the TPM VM. 

This architecture enables the use of a Trusted Platform 
Module (TPM) on systems where multiple Operating Systems 
are running concurrently and require TPM support. The TPM 
is designed to support a single operating system at a time. 
Therefore, virtual TPM management extensions have been 
proposed [17] that specify the creation, deletion, and secure 
migration of independent instances of virtual TPMs, based on 
the current configuration requirements of the platform. In this 
model, each created instance of a virtual TPM is associated 
with a single virtual machine and is securely migrated with its 
associated virtual machine. 

The tamper-sensing and responding IBM Cryptographic 
Coprocessor (PCIXCC [20]) offers an ideal platform for 
hosting virtual TPM functionality (cf. Figure 5 left) where the 
highest degree of security is required. The built-in tamper 
sensitivity of the PCIXCC makes it impossible for intruders 
with physical access to the device to gain access to sensitive 
data (e.g., private keys) on the device. It is powerful enough to 
run multiple virtual TPM instances at the same time. It 
includes hardware acceleration for cryptographic operations 
such as RSA key generation, encryption and decryption. In 
this case, the multi-purpose PCIXCC replaces the hardware 
TPM. 

Figure 5 (right) shows virtual TPMs running in a TPM VM. 
The TPM VM itself is associated with the system's hardware 
TPM. In this solution, the software TPM instances rely on the 
security of the TPM VM. 

Another approach leveraging virtualization and trusted 
computing to create protected systems is Terra [22]. Terra 
partitions a tamper-resistant hardware platform into multiple, 
isolated virtual machines, providing the appearance of 
multiple boxes on a single, general-purpose platform. 
Compared to Terra, sHype defines TPM virtualization and a 
complete MAC enforcement mechanism and basic MAC 
policies for mediated sharing in distributed systems 

V. FUTURE DIRECTIONS 
The purpose of virtualization and hypervisor security, as 

discussed in this paper, is the development of secure 
computing foundations – combining coarse grained isolation 
and trusted computing technologies in order to provide 
verifiable containment and trust properties across large 
distributed environments. In such environments, hardware 
provides the basis for these properties. The promise of 
realizing quantifiable security and simplified operational 
security management for business and IT services will drive 
progress across the spectrum, from low-level hardware-related 
developments, to high-level distributed systems management. 
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At the processor and chip-set level, continued acceleration 
of security and virtualization features are expected in the near 
term. Examples include the acceleration of exits and the 
propagation of page table entry changes when access bits are 
modified in order to maintain consistency between virtual 
machine and hypervisor shadow page table entries. Multi-core 
processors are emerging in the high-volume market and 
security and trusted computing functions such as 
cryptographic acceleration engines and trusted platform 
modules will be integrated into the processor complex. This 
trend may well continue into the embedded processor and 
microcontroller space in support of peripheral as well as 
mobile and pervasive devices that must interact with the rest 
of the virtualized infrastructure. As hypervisors mature, 
processor support for recursive virtualization, the ability for a 
hypervisor to operate within a virtual machine that is itself 
supported by a hypervisor, may be necessary to preserve the 
investment made in these mature solutions. 

It is likely that an increasing number of peripherals will 
support self-virtualization, capable of supporting multiple 
logical adaptor instances within one physical adaptor. 
Additionally, peripherals will support trusted computing 
authentication and integrity goals with the incorporation of 
Trusted Platform Modules and attestation capabilities. The 
combination of these developments will lead to the emergence 
of peripherals that are capable of enforcing system-wide 
access control and information flow security policies in a 
verifiable manner, thus becoming an extended part of the 
trusted computing base while relieving the hypervisor of the 
policy enforcement obligations associated with these 
resources. 

Utility and other distributed computing models, such as 
cloud computing, will also continue to gain acceptance. This 
is due in part to the economic advantages of having access to 
essentially unlimited computing resources, paying for only 
what is used and being able to stipulate service level 
agreements or quality of service guarantees with little or no 
up-front investment. Such infrastructure usage scenarios will 
require reliable and secure resource monitoring and metering 
that can be trusted by both the owner of the workloads and the 
owner of the infrastructure. Hardware support for low-level 
monitoring and metering, such as virtual processor cycle or 
storage bandwidth, will be necessary to support business-level 
requirements with minimum overhead. This same hardware 
support for resource control will be required in order to 
enforce resource usage limits that will defend against denial of 
service attacks in mixed use environments – those with 
workloads from competing interests that are potentially hostile 
to each other. Hardware support for reliable sanitization of 
resources that are frequently reused, such as accelerated 
zeroization of memory pages and various system buffers, is 
also required for fast and efficient provisioning of workloads 
into virtual environments. 

Enabling and managing what will essentially become a 
distributed trusted computing base, built upon the secure 
hardware and virtualization foundations discussed throughout 

this paper, is the greatest promise of these technologies. The 
academic research and industry communities must leverage 
emerging trusted computing technologies and virtualization 
capabilities to further bridge the middleware-to-systems gap 
and to relieve application developers from the burden of 
implementing and verifying security-related functionality. 
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