
RC24590 (W0806-101) June 23, 2008
Computer Science

IBM Research Report

Virtualization and Hardware-Based Security

Ronald Perez, Leendert van Doorn, Reiner Sailer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Abstract

Hypervisor-based virtualization technologies are frequently

mentioned in regard to both their security-related strengths and
their weaknesses. We examine emerging hardware and software
virtualization technologies in the context of modern computing
environments and requirements, keeping in mind the history of
these technologies in order to fully appreciate them as we also
outline future directions in this space.

I. INTRODUCTION
Virtualization is the process of presenting something as

being genuine when in fact it is not – e.g., virtual reality.
Virtualization in the computer architecture domain is the
presentation of an environment to one layer in an information
technology stack which abstracts or is representative of a layer
below. The insertion of this layer of indirection between
existing layers in a hardware and/or software stack is typically
done to address specific problems such as providing support
for legacy functionality, standardizing interfaces on logical
models, or transparently load balancing usage of shared
resources.

Virtualization may involve language-level runtimes
providing high-level abstract architectures for applications, or
a thin hardware virtualization layer of software situated
between system hardware and the operating system layer
providing logical views to physical resources. In either case,
the primary justification for virtualization is efficiency, such
as the efficient use of programming resources achieved with
“write once, run everywhere” language runtimes in the first
case, or the efficient use of hardware resources that can be
gained with the thin hardware virtualization layer in the
second case. While virtualization comes in many forms,
including process, storage, and network virtualization, this
paper focuses on security and hardware support for that thin
hardware virtualization layer, often termed a virtual machine
monitor or hypervisor.

II. HYPERVISOR VIRTUALIZATION
Early virtual machines were essentially computing

environments that simulated or emulated the existing
hardware features of the host system while arbitrating access
to shared system resources. This allowed multiple instances of
operating systems to run on the same system where each
operating system was originally designed to be the sole arbiter
of system resources. This was important because systems of
the time – largely mainframes that were designed during the

mid 1960s and 1970s, such as the predecessors to the IBM
VM/370 [12]– were expensive and there were distinct
economic advantages in being able to partition one physical
system into multiple logical systems. The same advantages
exist today for the heirs to the IBM VM/370, such as the IBM
PR/SM and z/VM virtual machine monitors and the S/390 and
zSeries mainframes [13].

While hypervisors associated with high-end systems have
continued to evolve and remain critical to maximizing
utilization of these highly reliable and secure systems,
increasing the utilization of mid-range and high-volume
systems has also become a factor driving hypervisor
development and deployment. These mid-range and high-
volume systems have developed increased electrical power
requirements that rival increases in computing power and
overall performance. The expense involved with housing and
managing these systems has not kept pace with the decline of
raw hardware and software resource costs including the
increasing cost of managing the security of ever more
complex systems. Therefore, hypervisors have become an
attractive option for large datacenters and medium to small
enterprises.

In addition to increased utilization, the general flexibility
afforded by modern hypervisors and their support of systems
that have become relative commodities is also apparent.
Continuous or high-availability requirements can potentially
be achieved with greater ease and less cost with the ability to
checkpoint and replicate virtual machines in a distributed
systems environment. Emerging tool chains are enabling the
rapid provisioning of workloads to virtual machines and the
ability to essentially load-balance an enterprise’s entire
infrastructure by migrating existing virtual machines and their
workloads to more appropriate systems in support of system
maintenance cycles or to free-up resources for critical
workloads or peak usage patterns.

A. Hypervisors and Security
There are a few basic but very strong security primitives for

which hypervisors are particularly well suited, namely
separation and controlled sharing. Separation can be achieved
through the use of different hardware facilities for different
workloads (physical separation), running workloads at
different times (temporal separation), cryptographically
protecting data specific to each workload (cryptographic
separation), and logical separation or isolation, involving the
use of a reference monitor [1] (Figure 1) or security kernel to
separate workloads and the resources they use. Hypervisors
function as reference monitors, providing workload isolation

Virtualization and Hardware-Based Security
Ronald Perez, Leendert van Doorn, and Reiner Sailer

 2

on an operating system instance granularity (as opposed to
operating systems, which strive to provide isolation at the
process level).

The role of the reference monitor in secure systems designs
is to mediate all security sensitive operations such as access to
objects or communications between subjects. In hypervisors,
objects and subjects are respectively system resources and
virtual machines. The long recognized basic requirements for
a reference monitor are that it must be small enough to be
fully-tested and analyzed, it is relatively immune from
compromise, and it is impossible to bypass the reference
monitor’s mediation functionality. The hypervisor is also a
key element in the trusted computing base of the entire system
– the hardware, firmware and software components in layered
system architectures the correctness of which are necessary to
enforce the explicit or implicit system security policy.

Because the hypervisor reference monitor mediates access
to and between coarse grained entities – e.g., processors,
memory (in addition to memory management that is
performed at the operating system level), disks and virtual
machines – they are often orders of magnitude smaller in size
and less complex than modern operating systems. Thus they
are less difficult to test and analyze for correctness and to
protect from compromise. Additional protection is often
provided for hypervisors through hardware features such as
privileged operating modes and protected memory support.
Both, along with hardware architected hypervisor calls that
are similar to operating system calls, ensure that the
hypervisor mediation functionality cannot be bypassed.

Figure 1. Reference Monitor

Hypervisors such as those associated with early and current

mainframe systems have traditionally supported strong
isolation or separation of virtual machines and their
workloads, including fault isolation – limiting the effects of an
application or operating system fault within a virtual machine.
While administrators have had the ability to explicitly
configure these systems to support sharing of system
resources and communications between virtual machines,
hypervisors that support sharing based on explicit security
policies and labels associated with each virtual machine and
its resources, such as the DEC VAX VMM [14] and the
KVM/370 [15] security enhanced version of the IBM
VM/370, were not available on a large scale perhaps due in

part to the commercial requirements of the day and the high
assurance government-/military-oriented design targets for
these systems. However, policy-driven controlled sharing
requirements for commercial hypervisors on mid-range and
high-volume systems are increasingly becoming an issue
because of the need to maintain isolation while at the same
time maximizing resource utilization and support for the more
distributed and interconnected nature of contemporary
workloads.

The performance impact of security functionality has
always been an issue with applications, operating systems and
other information technology infrastructure. Whether simple
separation or controlled sharing is required, the performance
overhead associated with security functionality has and will
continue to have a major role in the acceptance of hypervisor
security. Keeping the code size of the hypervisor relatively
small, largely due to restricting functionality and complexity
in the spirit of a trusted computing base, and limiting higher-
level hypervisor management and flexibility only where it is
necessary to enforce security requirements is key to
minimizing the performance impact due to security. Hardware
support, such as management of memory and other system
and processor resources and for accelerated context switching
between protection modes, is even more critical to
maximizing overall system performance.

III. HARDWARE VIRTUALIZATION SUPPORT
Despite the obvious advantages of virtualization such as

consolidation and isolation, the major disadvantage of
virtualization is its large performance overhead. This is
especially true when interpretative or emulation techniques are
used. A single emulated machine instruction can easily expand
to thousands of real instructions and may cause significant
performance degradation. To counter this, CPU manufacturers
have been developing hardware support for virtualization
where part or all of the emulation takes place in the CPU
itself.

All major vendors are currently working on virtualization
capabilities for their systems. This includes virtualization
capabilities for the CPU, I/O, and some specialized devices.
Some of these are examined in greater detail in the following
section.

A. Architectural Overview
A traditional computer system consists of memory (RAM),

a CPU, an I/O controller (typically a PCI bridge) and one or
more I/O devices such as a disk, network and video
controllers. Virtualizing the shared resources in this
architecture, as shown in Figure 2, involves making changes
to the CPU and the bus controller that arbitrates accesses to
the I/O bus. The I/O devices themselves may also be
virtualization aware but that is beyond the scope of this paper.

A typical CPU consists of many shared resources.
Examples of these are interrupt vectors, page tables, interrupt
controllers, timers, and special descriptor tables. It is the task
of the hypervisor to virtualize these resources, but its job can

Reference
Monitor

Security
Policy

Object

Access
Allowed

Access
Request

Access
Denied

Subject

 3

be considerably easier when the right processor abstractions
are available [21].

The hypervisor has the task to provide the illusion of a
virtual machine to the guest operating system that is running
inside the VM. This involves managing physical memory,
interrupts, faults, and I/O devices.

B. Intel Vanderpool and AMD Pacifica Technology
Until recently, hardware virtualization support was only

available on mainframe computers but now some of these
capabilities have been integrated into modern processors. Both
Intel and Advanced Micro Devices (AMD) have designed and
implemented their own virtualization extensions. Intel’s
extensions are called Vanderpool Technology (VT) [5] and
AMD’s are called SVM [6].
Both VT and SVM roughly provide the same functionality.
They all create a container which is a virtual CPU. Inside the
container you can run an unmodified OS that is unaware of
the fact that it is operating in a controlled environment. The
only way out of this container is under well defined
conditions, known as exits. Exits are generated whenever the
code in the container executes privileged instructions1, such as
changing the CPU state, changing the page tables, or causing a
page fault. These exits cause a trap into the underlying
hypervisor that executes in the root container. It is then up to
the hypervisor to emulate the correct behavior such that the
OS running inside the container is unaware that it is being
virtualized.

For example, for an operating system running inside a
container to get access to a specific physical memory location,
it has to create a mapping from a virtual to physical address in
the page table structure. The OS then needs to activate the
new page table by assigning it to a special CPU register (cr3,
on x86 type processors). The assignment to this special
register causes an exit. It is now up to the hypervisor to
validate the new page table structure, check that the physical
memory addresses are really assigned to this container,
instantiate the new page table and continue execution in the
container after the assignment instruction.

The approach taken in the Power Architecture™ server
processors from IBM (e.g., POWER5™) [9] is different from
the direction taken by Intel and AMD. Rather than introducing
a heavy weight container and exit concept, the POWER
processor introduces a new hypervisor state (akin to user and
supervisor state) and duplicates certain key control registers in
hypervisor state that operate independently from their
supervisor state counter parts. In a way it is the Complex
Instruction Set Computer (CISC) versus Reduced Instruction
Set Computing (RISC) approach. POWER introduced a few
lightweight concepts to support virtualization.

C. IOMMU
There is more to virtualization than just virtualizing the

CPU, I/O is another shared resource. The goal of I/O

1 Privileged instructions are used to control critical system resources and

can only be executed by the operating system kernel.

virtualization is to give a virtual machine direct device access
such that it cannot overwrite other virtual machines. For most
devices, this is not a problem, but some have bus master
capabilities that need to be controlled. A bus master capable
device can initiate its own memory transfers and write to
every memory location in the system, including memory that
is not assigned to the virtual machine that controls the device.

This is a common problem. This is why CPUs have an
indirection layer and provide a virtual to physical memory
map abstraction. This mapping is provided by the Memory
Management Unit (MMU) that is part of the CPU. For I/O
something analogous is used, the IOMMU[18][9]. It is
typically part of the bus controller (see Figure 2). The details
will depend on the specific design, but typically, each I/O
device has its own address translation map.

Figure 2. Virtualized System Architecture Overview

The IOMMU maps I/O virtual addresses to physical

addresses. Whenever a device initiates a memory transfer, the
I/O virtual memory address is first translated into the physical
memory address before the memory transfer commences. If
the hypervisor ensures that the memory mapping for the
virtual machine corresponds with the IOMMU mappings for
the devices the virtual machine owns, then the virtual machine
can directly interact with its I/O devices without affecting
other virtual machines.

D. Intel LaGrande and AMD Presidio Technology
In 2002, Microsoft announced its Palladium initiative, a

project aimed at providing a secure client foundation for its
next version of Windows. For trademark reasons the initiative
was quickly renamed to the Next Generation Secure
Computing Base (NGSCB) and it aimed to provide the
following guarantees:

• Process isolation
• Sealed storage
• Platform attestation
• Secure I/O paths

With NGSCB Microsoft tried to define an environment that
was protected from malicious software and malicious
peripheral cards. Unfortunately, the NGSCB project was
cancelled in mid 2004 for lack of customer traction. Still, both
Intel and AMD had rallied around this initiative. Both defined
platforms that embedded these guarantees into their systems

 4

and both based it on their virtualization technology.
Intel coined its secure computing platform Lagrande

Technology or LT for short [7]. LT consists of a VT core to
provide the process isolation, special keyboard and video
capabilities for the secure I/O paths, a DMA exclusion vector
to isolate I/O devices from the security kernel, and tight
integration with the Trusted Platform Module version 1.2
specification to provide sealed storage and platform
attestation.

AMD called their secure computing platform Presidio [8]
and although it provides the same high-level functionality, its
technology roadmap is quite different from Intel’s. Unlike
Intel, AMD decided to integrate the trusted platform module
(TPM) capabilities and the DMA exclusion capabilities
directly into SVM. Consequently, Presidio consists of SVM
and a set of secure I/O capabilities.

Both Intel and AMD added two new features to their
CPUs/chipsets. One of them, the DMA exclusion vector, is an
elementary version of an IOMMU. It provides protection from
rogue DMA, but no address translation. This function will
eventually disappear and be subsumed by the IOMMU itself.

The second enhancement is the introduction of the dynamic
root of trust as defined by the Trusted Computing Group [3].
Traditional secure or authenticated boot designs start with the
assumption that the system is unmodified and preserve this
guarantee during the bootstrap into the operating system. The
dynamic root of trust design, on the other hand, enables
software to securely initialize the system at any point in time.
That is, even when the system is already running an operating
system and its applications. For this, the vendors added new
instructions to the CPU. Intel introduced the SENTER
instruction [7] and AMD the SKINIT instruction [6]. Both are
conceptually similar. For this discussion we describe the
SKINIT behavior.

Upon the execution of an SKINIT instruction, the processor
is reinitialized into a well-known state in which it can execute
a secure loader such that the loader cannot be tampered with
during its execution. This well-know state ensures that the
interrupts are disabled, DMA to the memory area where the
secure loader is located is inhibited, and that the special
purpose registers that control memory accesses are initialized
to safe values. This environment guarantees that other
programs running on the CPU or external devices cannot
modify the loader while it is running.

Once the processor has been reinitialized, a secure hash of
the 64KB loader is send to the TPM and stored in PCR[17].
This specific PCR can only be written by the CPU using
special “locality” bus cycles that cannot be generated from
software. This ensures that only the CPU SKINIT instruction
could have generated this hash value. The hash value of the
secure loader constitutes the dynamic root of trust. As soon as
the hash of the loader is stored inside the TPM, control is
transferred to the loader. The loader is arbitrary code, but it
could for example, measure the rest of the system, store the
result inside the TPM and resume execution where the
operating system that invoked SKINIT left off. These

measurements can then be used to unseal storage or attest to
remote parties the software stack that is running and the
hardware platform that it is running on.

The more challenging aspects of LT and Presidio are the
secure I/O capabilities. The first aspect of this, secure input, is
straightforward. The perceived threat is one where an
adversary taps or modifies the communication from the
keyboard and mouse into the secure environment. To prevent
this, the communication from the keyboard to the recipient of
the data, a keyboard device driver in a secure kernel, is
encrypted.

Secure output such as video suffers from the same
communication threats, but it also suffers from Trojan horse
attacks2. How can a user distinguish between the output on the
screen from a secure and insecure environment? Despite good
research in this area, no good practical solutions exist for this
yet. Intel has proposed a solution where by the secure
environment always displays on top of the current screen and
can be activated through a secure attention key mechanism.
Others have suggested that a pass-phrase that is only available
to secure kernel and user is rendered into the window’s
background to convey to the user that she is interacting with a
secure environment. This too may prove too cumbersome for
the end user to handle. While everyone agrees secure user I/O
is a critical part to a secure client system, there is not much
consensus in the industry what form that should take.

IV. SHYPE – HYPERVISOR SECURITY ARCHITECTURE
 We illustrate the sHype [4] security architecture and its

integration into a Virtual Machine Monitor environment in
Figure 3.

Figure 3. sHype Hypervisor Security Architecture

sHype is implemented in various stages for multiple

hypervisors including the Xen [11] Opensource hypervisor.
Building upon the previously described hardware support, the
major design goal for sHype is to establish a secure
foundation for server platforms, providing functions such as:
• Strong isolation and mediated sharing between Virtual

Machines, strictly controlled by a flexible access control
enforcement engine.

2 A Trojan horse is a malicious program that masquerades itself as a

legitimate program by, for example, presenting the same user interface.

 5

• Attestation and integrity guarantees for the hypervisor and
its virtual machines, supported by a virtual TPM
architecture. TPM-based attestation [16] provides the ability
to generate and report properties of the running system.

• Resource control and accurate accounting guarantees,
enabling the enforcement of quality of service agreements
between service provider and consumer.

• Secure Services, providing the base infrastructure in sHype
for refining complex monolithic run-times by moving
services such as security policy management or distributed
auditing into their own, carefully protected VM.

The sHype access control framework and the virtual TPM
architecture enabling attestation of individual virtual machines
are described in more detail in the following sections. Those
technologies form the basis for the Trusted Virtual Datacenter
[19], a new technology developed by IBM Research that
simplifies consistent and strong isolation guarantees in
distributed virtualized datacenters.

A. sHype Access control Architecture
The sHype access control framework is designed (a) to

ensure isolation of virtual machines by default and (b) to
control sharing of resources between virtual machines
(implicit isolation / explicit sharing). sHype enforces a formal
security policy (mandatory access control, MAC) on
information flow between virtual machines independently of
generic user virtual machines. It leverages existing isolation
between virtual resources and extends it with MAC features to
control shared resources.

sHype moves the state of information sharing from being
defined by a number of ad-hoc system administrator decisions
to one that is formally defined by the security policy and
enforced by sHype independently of guest virtual machines.

The major components of the access control architecture are
the Policy Manager and the access control policy, the Access
Control Module (ACM), and the mediation hooks (see

Figure 3). The Policy Manager maintains the hypervisor
security policy, which defines the rules the ACM uses to
decide which Virtual Machines can access which resources.
The Policy Manager is implemented inside a special-purpose
virtual machine to keep related complexity out of the
hypervisor. It provides the ACM inside the hypervisor with a
pre-compiled security policy. Security mediation hooks
mediate access to all resources inside the hypervisor that
enable information flow from one virtual machine to another.
Security hooks are placed both within the hypervisor to
mediate direct VM-to-VM sharing, and within the I/O and
VM-Manager VM to mediate access to virtualized resources.

Each security hook implements a redirection of access of
virtual machines to shared virtual resources implemented
inside the hypervisor or within the I/O hosting VM. This
redirection code either behaves transparently (permits) or
aborts (denies) the access request depending on the result of a
callback into the ACM. The callback returns the access
control decision of the ACM depending on the active security
policy, the type of security hook, and the security labels of
VMs or resources participating in the mediated event.

Many virtual machine monitors do not offer sufficient
information inside the hypervisor to distinguish the direction
of information flow or the semantics of higher level
operations inducing such an information flow. Therefore,
sHype aims at coarse-grained but very robust and simple
access control on VMs and resources within the hypervisor
and defers finer-grained access control to higher layers (guest
OS, middle-ware, applications). It promotes the layering of
multiple security policies over a monolithic one. To this end,
sHype explicitly supports an interface that enables higher
layer access control functions in authorized virtual machines
(e.g., OS security mechanisms) to retrieve sHype security
control information on virtual machines and resources. Higher
layer policies take advantage of lower layer security policies
and focus on refinement rather than re-implementation
[23],[24]. This strategy can be compared to communication
stacks, where higher layers usually rely on lower layer
functions to bridge physical differences (medium access, layer
2) or to limit network exposure (layer 3, IP fire-walling). Yet
they sometimes decide to re-implement some of the lower
layer functions (e.g., error checks) in higher layers based on
additional information that is not available to the lower layer
functions.

Hypervisor

ACM
(D)

VM 1 VM 2

(E)

Hypervisor

ACM
(D)

VM 1 VM 2

(E)
Hypervisor

ACM
(D)

VM 1

(E)

VM 2

(E)

VBD2

Block Device VM

VBD1

(E)

Hypervisor

ACM
(D)

VM 1

(E)

VM 2

(E)

VBD2

Block Device VM

VBD1

(E)

Hypervisor

ACM
(D)

VM 1

(E)

Hypervisor

ACM
(D)

(E)

Networking VM VM 2Networking VM

(E, D) (E, D)

Hypervisor

ACM
(D)

VM 1

(E)

Hypervisor

ACM
(D)

(E)

Networking VM VM 2Networking VM

(E, D) (E, D)

(i) (ii)

(iii)

Hypervisor

ACM
(D)

VM 1 VM 2

(E)

Hypervisor

ACM
(D)

VM 1 VM 2

(E)
Hypervisor

ACM
(D)

VM 1

(E)

VM 2

(E)

VBD2

Block Device VM

VBD1

(E)

Hypervisor

ACM
(D)

VM 1

(E)

VM 2

(E)

VBD2

Block Device VM

VBD1

(E)

Hypervisor

ACM
(D)

VM 1

(E)

Hypervisor

ACM
(D)

(E)

Networking VM VM 2Networking VM

(E, D) (E, D)

Hypervisor

ACM
(D)

VM 1

(E)

Hypervisor

ACM
(D)

(E)

Networking VM VM 2Networking VM

(E, D) (E, D)

(i) (ii)

(iii)
Figure 4. Controlled Sharing: (i) direct VM-to-VM, (ii) VM-to-VM through
local peripheral resources through resource VM, (iii) VM-to-VM through
distributed networking resources

sHype enforces mediated sharing between VMs by labeling

both VMs and resources that can be shared among virtual
machines (e.g., inter process communication, shared memory,
virtual block devices, virtual LANs). sHype then controls
information flow between virtual machines by a mandatory
access control policy (MAC) based on these labels. While
direct VM-to-VM communication and cooperation through
Inter Process Communication (IPC) and Shared Memory

 6

(SHMEM) are fully controlled by the hypervisor, the extent to
which shared peripheral resources are controlled by the
hypervisor differs greatly from VMM to VMM
implementation. Figure 4 summarizes the three major ways to
share virtual resources and the access control enforcement (E)
and decision (D) points relative to those resources.

sHype mediates security-sensitive operations that might
enable sharing of resources between virtual machines and
authorizes those operations—all operations depicted in Figure
4.i-4.iii—according to the security policy. The security
enforcement inside the hypervisor itself is protected from
attacks such as modification since the hypervisor is protected
against virtual machines.

The sHype security enforcement inside of I/O device virtual
machines (ii, iii in Figure 4) is protected against other virtual
machines by conventional isolation properties of the
hypervisor. sHype implements access controls when virtual
machines bind to resources (bind-time authorization) and
revokes access if the bind-time authorization conditions cease
to hold.

In effect, sHype acts as a reference monitor, leveraging
existing isolation between virtual resources offered by the
VMM. It achieves enterprise-grade assurance guarantees with
minimal changes to the underlying VMM infrastructure and
minimal performance overhead.

B. TPM Virtualization
The Trusted Platform Module [3] is an emerging security

building block, introduced to offer a system-wide hardware
root of trust that cannot be compromised by the system
software. The sHype architecture includes a design that
virtualizes the hardware TPM by creating software TPM
instances that are assigned to virtual machines. Based on this
TPM device virtualization, TPM-based attestation [16]
provides the ability to generate and report run-time
measurements of executable code on the hypervisor and
virtual machines and to infer properties of the running system.

Figure 5 shows the generic TPM virtualization built on top
of (i) a cryptographic coprocessor or (ii) a hardware Trusted
Platform Module. Either creates a hardware root-of-trust [19].
The hardware root of trust is extended through the hypervisor
to build trust into the individual software TPM instances
(virtual TPMs), which in turn serve as roots of trust for the
individual guest virtual machines.

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

PCIXCC - vTPM

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

PCIXCC - vTPM

MPLEX

sw
TPM

A
pplication

Application

Application

Guest OS

/dev/TPM

Application

A
pplication

Application

Guest OS

/dev/TPM

Hypervisor

TPM

TPM
VM

vTP
M

M

anager

…

MPLEX

sw
TPM

A
pplication

Application

Application

Guest OS

/dev/TPM

Application

A
pplication

Application

Guest OS

/dev/TPM

Hypervisor

TPM

TPM
VM

vTP
M

M

anager

…

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

PCIXCC - vTPM

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

MPLEX

Application

Application

Application

Guest OS

/dev/TPM

Application

Application

Application

Guest OS

/dev/TPM

Hypervisor

TPM VM

…

PCIXCC - vTPM

MPLEX

sw
TPM

A
pplication

Application

Application

Guest OS

/dev/TPM

Application

A
pplication

Application

Guest OS

/dev/TPM

Hypervisor

TPM

TPM
VM

vTP
M

M

anager

…

MPLEX

sw
TPM

A
pplication

Application

Application

Guest OS

/dev/TPM

Application

A
pplication

Application

Guest OS

/dev/TPM

Hypervisor

TPM

TPM
VM

vTP
M

M

anager

…

Figure 5. TPM Virtualization Based on PCIX-Crypto Coprocessor (left) and
TPM VM (right)

The TPM VM must start first on such a system, even before

any privileged I/O-VM. The TPM VM communicates either
with a dedicated TPM instance on the PCIX-Crypto
Coprocessor (Figure 5 left) or with the hardware TPM (Figure
5 right). Guest virtual TPM instances are created on demand
whenever a guest virtual machine with configured TPM
support is created. The guest virtual TPM instance is
contained within (i) the coprocessor or (ii) the TPM VM.

This architecture enables the use of a Trusted Platform
Module (TPM) on systems where multiple Operating Systems
are running concurrently and require TPM support. The TPM
is designed to support a single operating system at a time.
Therefore, virtual TPM management extensions have been
proposed [17] that specify the creation, deletion, and secure
migration of independent instances of virtual TPMs, based on
the current configuration requirements of the platform. In this
model, each created instance of a virtual TPM is associated
with a single virtual machine and is securely migrated with its
associated virtual machine.

The tamper-sensing and responding IBM Cryptographic
Coprocessor (PCIXCC [20]) offers an ideal platform for
hosting virtual TPM functionality (cf. Figure 5 left) where the
highest degree of security is required. The built-in tamper
sensitivity of the PCIXCC makes it impossible for intruders
with physical access to the device to gain access to sensitive
data (e.g., private keys) on the device. It is powerful enough to
run multiple virtual TPM instances at the same time. It
includes hardware acceleration for cryptographic operations
such as RSA key generation, encryption and decryption. In
this case, the multi-purpose PCIXCC replaces the hardware
TPM.

Figure 5 (right) shows virtual TPMs running in a TPM VM.
The TPM VM itself is associated with the system's hardware
TPM. In this solution, the software TPM instances rely on the
security of the TPM VM.

Another approach leveraging virtualization and trusted
computing to create protected systems is Terra [22]. Terra
partitions a tamper-resistant hardware platform into multiple,
isolated virtual machines, providing the appearance of
multiple boxes on a single, general-purpose platform.
Compared to Terra, sHype defines TPM virtualization and a
complete MAC enforcement mechanism and basic MAC
policies for mediated sharing in distributed systems

V. FUTURE DIRECTIONS
The purpose of virtualization and hypervisor security, as

discussed in this paper, is the development of secure
computing foundations – combining coarse grained isolation
and trusted computing technologies in order to provide
verifiable containment and trust properties across large
distributed environments. In such environments, hardware
provides the basis for these properties. The promise of
realizing quantifiable security and simplified operational
security management for business and IT services will drive
progress across the spectrum, from low-level hardware-related
developments, to high-level distributed systems management.

 7

At the processor and chip-set level, continued acceleration
of security and virtualization features are expected in the near
term. Examples include the acceleration of exits and the
propagation of page table entry changes when access bits are
modified in order to maintain consistency between virtual
machine and hypervisor shadow page table entries. Multi-core
processors are emerging in the high-volume market and
security and trusted computing functions such as
cryptographic acceleration engines and trusted platform
modules will be integrated into the processor complex. This
trend may well continue into the embedded processor and
microcontroller space in support of peripheral as well as
mobile and pervasive devices that must interact with the rest
of the virtualized infrastructure. As hypervisors mature,
processor support for recursive virtualization, the ability for a
hypervisor to operate within a virtual machine that is itself
supported by a hypervisor, may be necessary to preserve the
investment made in these mature solutions.

It is likely that an increasing number of peripherals will
support self-virtualization, capable of supporting multiple
logical adaptor instances within one physical adaptor.
Additionally, peripherals will support trusted computing
authentication and integrity goals with the incorporation of
Trusted Platform Modules and attestation capabilities. The
combination of these developments will lead to the emergence
of peripherals that are capable of enforcing system-wide
access control and information flow security policies in a
verifiable manner, thus becoming an extended part of the
trusted computing base while relieving the hypervisor of the
policy enforcement obligations associated with these
resources.

Utility and other distributed computing models, such as
cloud computing, will also continue to gain acceptance. This
is due in part to the economic advantages of having access to
essentially unlimited computing resources, paying for only
what is used and being able to stipulate service level
agreements or quality of service guarantees with little or no
up-front investment. Such infrastructure usage scenarios will
require reliable and secure resource monitoring and metering
that can be trusted by both the owner of the workloads and the
owner of the infrastructure. Hardware support for low-level
monitoring and metering, such as virtual processor cycle or
storage bandwidth, will be necessary to support business-level
requirements with minimum overhead. This same hardware
support for resource control will be required in order to
enforce resource usage limits that will defend against denial of
service attacks in mixed use environments – those with
workloads from competing interests that are potentially hostile
to each other. Hardware support for reliable sanitization of
resources that are frequently reused, such as accelerated
zeroization of memory pages and various system buffers, is
also required for fast and efficient provisioning of workloads
into virtual environments.

Enabling and managing what will essentially become a
distributed trusted computing base, built upon the secure
hardware and virtualization foundations discussed throughout

this paper, is the greatest promise of these technologies. The
academic research and industry communities must leverage
emerging trusted computing technologies and virtualization
capabilities to further bridge the middleware-to-systems gap
and to relieve application developers from the burden of
implementing and verifying security-related functionality.

ACKNOWLEDGEMENTS
The authors would like to thank their colleagues Stefan

Berger, Kenneth Goldman, and Ray Valdez for their valuable
discussions and support as well as their contributions in
implementing and improving sHype and vTPM for the Xen
Opensource hypervisor.

REFERENCES
[1] J. P. Anderson et al: Computer security technology planning study.

Tech. Rep. ESD-TR-73-51, Vol. I+II, Air Force Systems Command,
USAF, 1972.

[2] D. E. Bell and L. J. LaPadula: Secure computer systems: Unified
exposition and multics interpretation. Tech. Rep., MITRE MTR-2997,
March 1976.

[3] Trusted Computing Group: TCG Specification Architecture Overview.
Specification, Revision 1.2, April 2004.

[4] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J.
Griffin, L. van Doorn: Building a MAC-Based Security Architecture for
the Xen Open-Source Hypervisor. 21st Annual Computer Security
Applications Conference (ACSAC), December 5-9, Tucson, Arizona,
2005

[5] Intel: Intel® Virtualization Technology Specification for the IA-32
Intel® Architecture. C97063-002, April 2005

[6] AMD: AMD64 Virtualization Codenamed ‘Pacifica’ Technology,
Secure Virtual Machine Architecture Reference Manual. Publication no.
33047, revision 3.01, May 2005.

[7] D. Grawrock: LaGrande Architecture SCMS – 18. Intel Developer
Forum, September 2003.

[8] M. LaPedus: AMD tips ’Pacifica’ and ’Presidio’ processors for ’06.
http://www.eetimes.com/semi/news/showArticle.jhtml?articleID=52601
317, Nov. 2004.

[9] W. Armstrong, R. Amdt, D. Boutcher, R. Kovacs, D. Larson, K. Lucke,
N. Nayar, and R. Swanberg: Advanced Virtualization Capabilities of
POWER5 Systems. IBM Journal of Research and Development,
July/September 2005. 49(4/5): p. 523-532.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield: Xen and the art of virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, October 2003.

[11] XenSource. http://xenbits.xensource.com/xen-unstable.hg.
[12] R. J. Creasy: The Origin of the VM/370 Time-Sharing System. IBM

Journal of Research and Development, 25(5): 483-490, September 1981
[13] IBM Processor Resource/Systems Managsement (PR/SM) Planning

Guide, SB10-7036-01, eServer zSeries 990.
[14] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn:

A VMM Security Kernel for the VAX Architecture. In Proc. IEEE
Symposium on Security and Privacy, May 1990.

[15] B. D. Gold, R. R. Linde, and P. F. Cudney: KVM/370 in Retrospect. In
Proc. IEEE Symposium on Security and Privacy, 1984.

[16] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn: Design and
Implementation of a TCG-based Integrity Measurement Architecture. In
Thirteenth USENIX Security Symposium, August 2004.

[17] S. Berger, R. Cáceres, K. Goldman, R. Perez, R. Sailer and L. van
Doorn: vTPM – Virtualizing the Trusted Platform Module. 15th USENIX
Security Symposium, July 2006, Vancouver, Canada.

[18] AMD I/O Virtualization Technology (IOMMU) Specification, 2006,
http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/34434.pdf.

[19] S. Berger, R. Cáceres, D. Pendarakis, R. Perez, R. Sailer, W.
Schildhauer, D. Srinivasan, E. Valdez. TVDc: Managing Security in the

 8

Trusted Virtual Datacenter. ACM SIGOPS Operating Systems Review,
Vol 42, Issue 1, January 2008.

[20] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. Smith, S.
Weingart. Building the IBM 4758 Secure Cryptographic Coprocessor.
IEEE Computer, October 2001, pp. 57-66.

[21] J.S. Robin, C.E. Irvine. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor. 9th USENIX Security
Symposium, August 2000, Denver.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A
virtual machine-based platform for trusted computing. In Proceedings of
the ACM Symposium on Operating System Principles, October 2003.

[23] B. D. Payne, R. Sailer, R. Cáceres, Ron Perez, and W. Lee. A Layered
Approach to Simplified Access Control in Virtualized Systems. ACM
SIGOPS Operating Systems Review, Vol. 41, No. 3, July 2007.

[24] J. McCune, S. Berger, R. Cáceres, T. Jaeger, R. Sailer: Shamon -- A
System for Distributed Mandatory Access Control. 22nd Annual
Computer Security Applications Conference (ACSAC), Miami Beach,
Florida, December 2006.

Ronald Perez is a Senior Manager and Senior Technical Staff Member at the
IBM T. J. Watson Research Center where he currently leads the Systems
Solutions and Architecture Department, multiple teams of research scientists
and engineers pursuing advances in a diverse set of systems technologies
including virtualization and systems management, next generation memory
subsystems, stream processing, multimedia and information theory. His
research interests also include systems security, with over ten years in this
field and having led the Secure Systems Department at Watson prior to his
current position. Ronald currently represents IBM as Vice President of the
Trusted Computing Group, a not-for-profit organization formed to develop,
define, and promote open standards for hardware-enabled trusted computing
and security technologies. Ronald received his degree in Computer Science
from The University of Texas at Austin.

Leendert van Doorn is a Senior Fellow at AMD where he runs the Software
Technology Office. There he and his team actively drive AMD’s
virtualization, platform manageability and manycore strategies. Before joining
AMD he was a senior manager at IBM’s T.J. Watson Research Center, where
he managed the secure systems and security analysis departments. He received
his Ph.D. from the Vrije Universiteit in Amsterdam where he worked on the
design and implementation of microkernels. In his former job at IBM he was
also actively involved in IBM’s virtualization strategy, created and lead IBM’s
secure hypervisor and trusted virtual data center initiatives, and was on the
board of directors for the Trusted Computing Group. Despite all these
distractions, he continued to contribute code to the Xen open-source
hypervisor, such as the integrated support code for AMD-V and Intel®VT-x.
When conference calls and meetings are getting too much for him, he finds
refuge at Rice University where he is an adjunct professor.

Reiner Sailer received his PhD degree in Electronic Engineering from the
University of Stuttgart, Germany in 1999. He joined the IBM T.J. Watson
Research Center in 1999, where currently he is a Research Staff Member and
the Manager of the Security Services (GSAL) group. He previously led the
Trusted Virtual Datacenter project at the T. J. Watson Research Center. His
current research interests include systems security, trusted computing,
virtualization infrastructure security, and virtualization-based security
services.

