
RC24597 (W0807-034) July 7, 2008
Mathematics

IBM Research Report

Clearer, Simpler and More Efficient LAPACK Routines for
Symmetric Positive Definite Band Factorization

Fred G. Gustavson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí, Alfredo Remón
Depto. de Ingeniería y Ciencia de Computadores

Universidad Jaume I
12.071-Castellón

Spain

Jerzy Wasniewski
Department of Informatics and Mathematical Modeling

Technical University of Denmark
DK-2800 Lyngby

Denmark

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Clearer, Simpler and more Efficient LAPACK

Routines for Symmetric Positive Definite Band

Factorization

Fred G. Gustavson1, Enrique S. Quintana-Ort́ı2, Gregorio Quintana-Ort́ı2,
Alfredo Remón2, and Jerzy Waśniewski3

1 IBM T.J. Watson Research Center
Yorktown Heights NY 10598, USA

fg2@us.ibm.com
2 Depto. de Ingenieŕıa y Ciencia de Computadores

Universidad Jaume I, 12.071–Castellón, Spain
{quintana,gquintan,remon}@icc.uji.es

3 Department of Informatics and Mathematical Modeling
Technical University of Denmark, DK-2800 Lyngby, Denmark

jw@imm.dtu.dk

Abstract. We describe a minor format change for representing a sym-
metric band matrix AB using the same array space specified by LA-
PACK. In LAPACK, band codes operating on the lower part of a sym-
metric matrix reference matrix element (i, j) as AB1+i−j,j . The format
change we propose allows LAPACK band codes to reference the (i, j)
element as ABi,j . Doing this yields lower band codes that use standard
matrix terminology so that they become clearer and hence easier to un-
derstand. As a second contribution, we simplify the LAPACK Cholesky
Band Factorization routine pbtrf by reducing from six to three the num-
ber of subroutine calls one needs to invoke during a right-looking block
factorization step. Our new routines perform exactly the same number of
floating-point arithmetic operations as the current LAPACK routine pb-

trf. Almost always they deliver higher performance. The experimental
results show that this is especially true on SMP platforms where par-
allelism is obtained via the use level-3 multi-threaded BLAS. We only
consider the lower triangular case of the factorization here; the upper
triangular case is currently under investigation.

1 Introduction

LAPACK routine pbtrf [1] uses the Cholesky algorithm to factorize a symmetric
positive definite (SPD) band matrix AB of order n, taking into account the
band structure of matrix AB to reduce the computational cost of the process
by avoiding operations on the zero “off-band” elements. In LAPACK, matrix
AB has a half bandwidth of size kd and it is stored as a kd × n rectangle in
array AB in a standard Fortran data layout (i.e., column major order). In this
representation, matrix element ABi,j is physically located at position (1+i−j, j)

2 F. G. Gustavson et al.

α
00

α20

α31

α21

α11

α
42

α32

α22

α
43

α
44

α10

α33

∗

∗∗

∗

∗

∗

∗

α
00

α20

α10

α11

α31

α21 α32

α
42

α22 α
44

−

−

−

α
43

α33

Fig. 1. Symmetric band matrix AB of order n = 5 with half bandwidth kd=2 (left),
and packed band storage used in LAPACK as a rectangle AB with leading dimension
LDAB = kd+1 (right). Symbols ‘∗’ denote strictly upper symmetric entries of the matrix
which are not stored.

of array AB; Figure 1 illustrates this layout for a special case of AB with n = 5,
kd = 2, and leading dimension of AB, LDAB, equal kd + 1.

Now, the lower band of the symmetric matrix can also be viewed as a paral-
lelogram plus a triangle, P + T , where P contains the nonzero lower triangular
part of submatrix AB1:n,1:kd+1 and T contains the lower triangular part of the
full submatrix ABkd+2:n,kd+2:n; see the shadowed areas in Figure 1 left, where
the light color parallelogram corresponds to P and the dark color triangle to T .
We claim that this latter representation is more natural and hence code writ-
ten for it becomes both clearer and more understandable. A standard Fortran
layout of P + T can be obtained from AB if one changes its leading dimension
from LDAB to LDAB-1. We note that P + T should be isomorphic to AB and this
is not the case as we have defined it. What is isomorphic to AB is an enlarged
parallelogram, which we denote as EP, obtained from AB by making its first row
the main diagonal of EP via an affine transformation. In what follows we will
either refer to P + T or EP.

LAPACK blocked routine pbtrf computes a band Cholesky right-looking
factorization by processing nb columns of the matrix per AB iteration. Consider,
e.g., the i-th iteration of the routine and, for simplicity, assume ι + kd + nb ≤ n,
where ι = (i − 1) · nb. The partitioning

AB →

ATL ?

AML AMM ?

ABM ABR

 =

A00 ? ?

A10 A11 ? ?

A20 A21 A22 ? ?

A31 A32 A33 ?

A42 A43 A44

, (1)

where A00 ∈ R
ι×ι, A11, A33 ∈ R

nb×nb , and A22 ∈ R
k×k, k = kd − nb, then

identifies the blocks of the submatrix AMM as those which are updated during
that iteration.

In [4] the authors presented two variants of routine pbtrf, named A and B.
The purpose of both variants is to concatenate blocks A21 and A31 in (1) into a

Simpler and more Efficient LAPACK Routines for SPD Band Factorization 3

single rectangular block Ā21 of size kd by nb. The benefit is that the scaling of
Ā21 can be then performed in a single call to the BLAS trsm, and the update
of A22, A32, and A33 can be done by a single call to the BLAS syrk.

For variant A, they proposed to add extra nb rows to the (bottom of the)
compact storage in AB so that the lower band of P + T could become a lower
block band and, in doing this, matrix Ā21 was contained in the larger lower block
band. When LDAB = kd+1, they obtained their variant B. Here they noticed that
the strictly lower triangular part of matrix A31, denoted hereafter as slt(A31),
occupies the same locations in the compact storage (i.e., in AB) as the lower
triangle of elements (2 : nb, 2 : nb) of A11, denoted as lt(A11(2 : nb, 2 : nb)).
Accordingly, they used the auxiliary array WORK of the LAPACK routine pbtrf

to save submatrix A11 and then replace lt(A11(2 : nb, 2 : nb)) = slt(A31) in AB

with zeros. Hence, matrix Ā21 was now formed inside AB instead of the way they
formed the matrix Ā21 by using extra storage of their previous variant A.

In this contribution we also expose a novel method to accomplish variant A.
Like variant B, there is space in the array space AB for block Ā21 that does not
overlap any elements of AB if one chooses LDAB ≥ kd + nb.

With the advent of multi-core platforms with more than four cores, the previ-
ous approach based on multi-threaded BLAS becomes suboptimal. The paper [3]
discusses a different data layout for AB that uses square block (SB) format to
represent matrix AB in concert with using BLAS kernels [2]. Their solution in-
troduces dynamic scheduling of the SB operations to honor dependencies and
computation on the SB using single-threaded BLAS kernels.

When one changes an algorithm that has been a standard, the migration
problem needs to be addressed: there is a lot of existing software that uses
the previous algorithm so that backward compatibility is important. This is
especially so for a library like LAPACK. This issue was discussed earlier in [2].
We find a similar issue with our variant A. When there is extra unused space in
the array holding band matrix AB, specified by LDAB ≥ kd + nb, our variant A
can use it. However, using this space will destroy the users’ data that resides
there. We think this is highly unlikely but possible. So, strictly speaking, in the
case of migration one would be prohibited from using our variant A. Because of
this, our choice of code for migration must be variant B.

This paper is structured as follows. In Section 2 we discuss how to describe
our versions of pbtrf using standard matrix notation. In Section 3 we review
variants A and B using standard matrix notation as well as from a different
perspective. Section 4 will report some performance results. The paper ends in
Section 5, where we give some concluding remarks and discuss future work.

2 New Notation for LAPACK Routine pbtrf

Let matrix A have m rows and n columns. In Fortran, A is stored in a one
dimensional array, denoted by A, with leading dimension LDA ≥ m, so that the
column elements are stride one apart and row elements are stride LDA elements
apart. (The word “stride” means the distance between two consecutive matrix
elements of A in a given column or row.) Clearly, the array layout A is one

4 F. G. Gustavson et al.

dimensional whereas matrix A is two dimensional. The layout allows one to
address any element of A in the array A as follows. Assume A is declared as

DATA_TYPE A(LDA,N)

where N=n and DATA TYPE refers to any of the standard data types in Fortran;
then Ai,j resides at location LOC = (j − 1) ∗ LDA+ i of A.

Consider now our n × n symmetric band matrix AB, with bandwidth kd,
stored in a Fortran array declared as

DATA_TYPE AB(LDAB,N)

This is a one dimensional rectangular layout; see Figure 1. It is assumed that
the i-th column of AB has elements AB1:i−1,i and ABi+kd+1:n,i equal to zero
and ABi:i+kd,i resides in array AB(1:KD+1,I). Note also that LDAB ≥ kd + 1 for
pbtrf. Hence, array AB contains extra storage of LDAB− kd − 1 elements in each
column of P . We define these extra elements of array AB as padding elements
of P. For example, when i = 1, for matrix AB one does not store element (1, 2)
nor elements (kd + 2 : N, 1) of AB as they lie “outside the band”. Also, array
AB has padding space in column one for LDAB− kd − 1 additional elements. We
will able to use this extra padding space in Section 3.2. Usually LDAB = kd + 1
so there is no padding.

How does one transform array AB representing the rectangle into the EP rep-
resentation? One changes LDAB to be LDAB-1 in the previous array declaration of

AB. This change effects the desired affine transformation mentioned in Section 1.
Let us see why this works. In Fortran, LDA is the distance or stride between two
consecutive matrix elements in the second dimension of an array A representing
a matrix A. However, LDAB is the distance between elements (1, 1) and (2, 2) of
array AB representing the band matrix AB. This fact is unknown to Fortran.
As a result, one is forced to address matrix element ABi,j as AB(1+i-j,j) in
the code. By changing LDAB to be LDAB-1 in the above declaration of AB, one
specifies to Fortran that the distance in the second dimension is one less, and
hence it now matches the distance between consecutive row elements of AB.

The last paragraph explained how one could “teach” Fortran to view the
band rectangle AB as a parallelogram EP, allowing for addressing in LAPACK
routine pbtrf using the parallelogram. This means that the (1 + i − j, j) entry
for the rectangle (i.e., with the array declared as AB(LDA,N)) becomes the (i, j)
entry of the parallelogram EP (i.e., when the declaration of the array is changed
to AB(LDA-1,N)).

Here is a simple proof: Using the band rectangle in array AB to represent band
matrix AB we have, by definition, that ABi,j resides at location AB(LOC) with
LOC = 1+i-j+LDAB*(j-1) = i+(LDAB-1)*(j-1). This means Fortran will now
also address ABi,j if array AB is declared in Fortran as AB(LDAB-1,N).

Based on the proof, we are allowed to view the band rectangle as the par-
allelogram EP. It follows that the code becomes more readable and hence more
understandable. Furthermore, the proof shows the execution of old and new code
for pbtrf will be identical if we reproduce the original LAPACK code in terms
of the new more readable code.

Simpler and more Efficient LAPACK Routines for SPD Band Factorization 5

The new code is thus obtained from the original LAPACK routine pbtrf by
introducing the following two simple changes:

1. Declare AB as DATA_TYPE AB(LDAB-1,N)

2. Replace references to AB(1+i-j,j) by AB(i,j) in pbtrf.

We illustrate this with two code fragments. The factorization of the diago-
nal block A11 from (1) in the original (double-precision real) LAPACK routine
dpbtrf is changed as follows:

Original

CALL DPOTF2(UPLO, IB,

$ AB(1, I), LDAB-1, II)

New

CALL DPOTF2(UPLO, IB,

$ AB(I, I), LDAB-1, II)

(Here, IB = MIN(NB, N-I+1), where I is the iteration counter that starts at
1 and is increased by NB at each step.)

Also, the computation of A21 in (1) is transformed as

Original

CALL DTRSM(’Right’, ’Lower’,

$ ’Transpose’, ’Non-unit’,

$ I2, IB, ONE,

$ AB(1, I), LDAB-1,

$ AB(1+IB, I), LDAB-1)

New

CALL DTRSM(’Right’, ’Lower’,

$ ’Transpose’, ’Non-unit’,

$ I2, IB, ONE,

$ AB(I, I), LDAB-1,

$ AB(I+IB, I), LDAB-1)

(I2 = MIN(KD-IB, N-I-IB+1) with KD the bandwidth of the matrix.)

Note the similarity of the new calls with the analogous factorization of the
diagonal block and triangular system solve in the LAPACK routine dpotrf for
the dense Cholesky factorization:

CALL DPOTF2(’Lower’, JB,

$ A(J, J), LDA, INFO)

...

CALL DTRSM(’Right’, ’Lower’,

$ ’Transpose’, ’Non-unit’,

$ N-J-JB+1, JB, ONE,

$ A(J, J), LDA,

$ A(J+JB, J), LDA)

3 Simplifying the LAPACK Routine pbtrf

In this Section we reconsider variants A and B proposed in [4]. In our presen-
tation, we will assume that the array which holds matrix AB is declared as
AB(LDAB-1,N) so that ABi,j and AB(i,j) refer to the same element (see pre-
vious section). With this consideration, the blocks AMM from (1) which are

6 F. G. Gustavson et al.

updated during iteration i = I lie in the following positions of AB:

columns I : I + IB : I + IB + I2 :
rows of AB of AB I + IB− 1 I + IB + I2− 1 I + IB + I2 + I3− 1

I : I + IB− 1 A11 ? ?

I+ IB : I + IB + I2− 1 A21 A22 ?

I+ IB + I2 : I + IB + I2 + I3− 1 A31 A32 A33

with kd = KD, nb = NB, IB= min(NB, N-I+1), I2= min(KD-IB, N-I-IB+1),
and I3= min(IB, N-I-KD+1). Note that, usually, IB=NB, I3=IB and I2+I3=KD,
which occurs when A11 lies in P .

3.1 Variant B

The operations that are performed during a factorization and update stage of
this variant are:

1. Factorize the diagonal block A11 = L11L
T
11, overwriting the entries of the

lower triangle of A11 with those of L11.
2. Copy WORK(1:IB,1:IB):= lt(A11) and set lt(A31) := 0.

3. Let Ā21 =

[

A21

A31

]

. Scale this concatenated matrix by calling BLAS kernel

trsm using the lower triangular factor L11 obtained from the factorization
of A11 stored in WORK: Ā21 := Ā21L

−T
11 .

4. Let Ā22 =

[

A22 ∗

A32 A33

]

. Compute the symmetric rank-IB update of Ā22 with

a single call to BLAS kernel syrk: Ā22 := Ā22 − Ā21Ā
T
21.

5. Restore slt(A31) := WORK(2 : IB, 2 : IB).

Assume IB=NB, I3=IB and I2+I3=KD. Then lt(AB(I+ 1 : IB, I+ 1 : IB))
occupies the same space in the array as slt(AB(I + KD + 1 : I + KD+ IB, I : IB)).
Also, A11 minus its first column is the first submatrix and A31 minus its last
column is the second submatrix.

This proof is straight-forward. Array AB is laid out as a set of N vectors each
of length KD+1. Thus, ABi+kd+2,i does not lie in array AB. However, the address
of this element in AB is at LOC=(1,I+1) which, due to the declaration of EP, is at
LOC=(I+1,I+1). Since the layout of the storage is linear and IB ≤ KD, we have
our result. Also, as the iteration index I → N, A31 becomes smaller, and one can
appeal to the unused storage in the band rectangle to complete the above proof.
Here note that P + T has the same unused storage and is really EP. Clearly, AB
and EP are equivalent forms of the Fortran storage layout as they are related via
an affine transformation. This proves the validity of the above procedure and
hence the correctness of variant B when LDAB=KD+1.

The procedure also holds when LDAB > KD+1. When LDAB ≥ KD + NB, slt(A31)
and lt(A11) do not overlap. In case KD + 1 ≤ LDAB < KD+ NB, slt(A31) and
lt(A11) partially overlap. In both cases, we need to save and restore in WORK the
areas of AB that we overwrite with zeros to form slt(A31). In the overlapping

Simpler and more Efficient LAPACK Routines for SPD Band Factorization 7

case we also need to form lt(A11) in WORK. This completes our demonstration of
our variant B. However, we further discuss the case of I near N. Here we mean
that I3 < IB or that we are in the T region of P + T . One can see that A31 is
trapezoidal and that less zeroing is required in Step 3. above because the A31

part of Ā21 is now smaller (rectangular).

1,1

2,1

3,1

4,1

5,1

6,1

7,1

2,2

3,2

4,2

5,2

6,2

7,2

8,2

3,3

4,3

5,3

6,3

7,3

8,3

9,3

4,4

5,4

6,4

7,4

8,4

9,4

10,4

10,4

5,5

6,5

7,5

8,5

9,5

10,5

7,7

8,7

9,7

10,7

6,6

7,6

8,6

9,6

10,6

2,2

3,2

4,2

5,2

6,2

7,2

8,2

3,3

4,3

5,3

6,3

7,3

8,3

9,3

4,4

5,4

6,4

7,4

8,4

9,4

10,4 11,5

5,5

6,5

7,5

8,5

9,5

10,5

6,6

7,6

8,6

9,6

10,6

7,7

8,7

9,7

10,7

1,1

2,1

3,1

4,1

5,1

6,1

7,1

11,6

11,7

11,9

9,9

10,9

10,10 11,11

11,10

8,8

10,8

11,8

9,8

11,1111,9

9,9

10,9

8,8

9,8

10,8

11,811,711,6

A31

A11

A21

A32 A33

A22

11,10

10,10

Fig. 2. Symmetric band matrix AB of order n = N = 11 with half bandwidth kd =
KD=6 (top), and packed band storage as a rectangle AB with leading dimension LDAB=
kd+1 (bottom). The colors denote the different submatrices A11, A21, . . . , A33 identified
during the first iteration of the blocked algorithm with nb = NB=4.

We now illustrate these remarks. Consider the first iteration of the fac-
torization (I=1) and the highlighted blocks in Figure 2. Then, IB=4, I2=2,
I3=4. Clearly, slt(A31) = lt(AB(8 : 10, 1 : 3)) overlaps exactly with lt(A11) =
lt(AB(2 : 4, 2 : 4)). Now, let I=5 in the figure. Then, IB=4, I2=2, I3=1, and
slt(A31) is empty as A31 = AB(11, 5 : 8). Thus, Ā21 = AB(9 : 11, 5 : 8) is con-
tained entirely in AB and Ā22 = AB(9 : 11, 9 : 11). It follows that Steps 2. and
5. become no operations if we use A11 instead of WORK in Step 3. Finally, let
I=9 in the figure. Then, IB = 3, and I2 = I3 = 0 and only a dense Cholesky
factorization of order 3 is performed on AB(9:11,9:11).

The following fragment of LAPACK code corresponds to our variant B:

* Compute the Cholesky factorization of a symmetric band

* matrix, given the lower triangle of the matrix in band

* storage. Assume here that LDAB = KD + 1 and KD >= NB.

* Process the band matrix one diagonal block at a time.

8 F. G. Gustavson et al.

*

DO 120 I = 1, N, NB

IB = MIN(NB, N-I+1)

*

* Factorize the diagonal block

*

CALL DPOTF2(UPLO, IB, AB(I, I), LDAB-1, II)

IF(II.NE.0) THEN

INFO = I + II - 1

GO TO 150

END IF

IF(I+IB.LE.N) THEN

*

* Update the relevant part of the trailing submatrix.

* If A11 denotes the diagonal block which has just been

* factorized, then we need to update the remaining

* blocks in the diagram:

* A11

* A21 A22

* A31 A32 A33

* Copy the lower triangle A11 to the work array.

* Also zero strictly lower part of A31

*

DO 90 JJ = 1, IB

DO 80 II = JJ, IB

WORK(II, JJ) = AB(I+II-1, I+JJ-1)

IF(JJ.GT.1) AB(I+II-1, I+JJ-1) = ZERO

80 CONTINUE

90 CONTINUE

*

* The numbers of rows and columns in the partitioning

* are IB, I2, I3 respectively. The blocks A21, A22 and

* A32 are empty if IB = KD. The lower triangle of A31

* lies outside the band.

*

I2 = MIN(KD-IB, N-I-IB+1)

I3 = MIN(IB, N-I-KD+1)

* Update A21, A31

CALL DTRSM(’Right’, ’Lower’, ’Transpose’,

$ ’Non-unit’, I2+I3, IB, ONE, WORK, LDWORK,

$ AB(I+IB, I), LDAB-1)

*

* Update A22, A32, A33

*

CALL DSYRK(’Lower’, ’No Transpose’, I2+I3, IB, -ONE,

$ AB(I+IB, I), LDAB-1, ONE,

$ AB(I+IB, I+IB), LDAB-1)

*

* Copy the work array back to the lower triangle A11.

*

Simpler and more Efficient LAPACK Routines for SPD Band Factorization 9

DO 110 JJ = 2, IB

DO 100 II = JJ, IB

AB(I+II-1, I+JJ-1) = WORK(II, JJ)

100 CONTINUE

110 CONTINUE

120 CONTINUE

3.2 Variant A

The alternative form of Variant A is to choose LDAB ≥ KD + NB. In that case,
slt(A31) never overlaps with lt(A11). Thus, lt(A11) is not destroyed and there
is no need for additional work-space. What we are doing here is using the extra
padding element described in Section 2 to find room in array EP for the larger
block band of Variant A. However, the extra space in array EP is greater than
the block band format described in [4] by a factor of two. These brief remarks
demonstrate our alternative form of variant A.

4 Experimental Results

All experiments in this section were performed using ieee double-precision (real)
arithmetic and band matrices of order n=5,000, with bandwidth size ranging
from kd = 1 to 1,200. Provided n � kd, the performance of the routines is only
determined by kd and the block size nb. In the evaluation, for each bandwidth
dimension, kd, we employed values from 1 to 200 to determine the best block
size; only those results corresponding to the optimal value obtained are shown.

Platform Architecture #Proc. Frequency L2 cache L3 cache RAM
(GHz) (KBytes) (MBytes) (GBytes)

xeon Intel Xeon 2 2.4 512 – 1

itanium Intel Itanium2 4 1.5 256 4 4

Table 1. SMP architectures employed in the evaluation.

Platform BLAS Compiler Optimization Operating
Flags System

xeon GotoBLAS 1.15 gcc 3.3.5 -O3 Linux 2.4.27
MKL 8.1.1

itanium GotoBLAS 1.15 icc 9.0 -O3 Linux 2.4.21
MKL 8.0

Table 2. Software employed in the evaluation.

10 F. G. Gustavson et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200

Bandwidth (kd)

G
F
L
O

P
s

dpbtrf+GotoBLAS

dpbtrf+MKL
dpbtrfB+GotoBLAS

dpbtrfB+MKL

1 thread on xeon

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200

Bandwidth (kd)

G
F
L
O

P
s

dpbtrf+GotoBLAS

dpbtrf+MKL
dpbtrfB+GotoBLAS

dpbtrfB+MKL

2 threads on xeon

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200

Bandwidth (kd)

G
F
L
O

P
s

dpbtrf+GotoBLAS

dpbtrf+MKL
dpbtrfB+GotoBLAS

dpbtrfB+MKL

1 thread on itanium

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

Bandwidth (kd)

G
F
L
O

P
s

dpbtrf+GotoBLAS

dpbtrf+MKL
dpbtrfB+GotoBLAS

dpbtrfB+MKL

4 threads on itanium

Fig. 3. Performance of the routines for the band Cholesky factorization.

We report the performance of the routines on two different SMP architec-
tures, with 2 and 4 processors; see Table 1. Two threads were employed for the
parallel execution on xeon and 4 threads on itanium. As the efficiency of the
kernels in BLAS is crucial, for each platform we use the software listed in Table 2.

Figure 3 illustrates the GFLOPs rate (billions of floating-point arithmetic
operations per second) of the original code dpbtrf in the lines labeled as
‘dpbtrf+GotoBLAS’ (linked with GotoBLAS) and ‘dpbtrf+MKL’ (linked
with MKL). We also report in the figure the performance of Variant B of the
code in lines ‘dpbtrfB+GotoBLAS’ and ‘dpbtrfB+MKL’. (The performance
of Variant A is in practice slightly better than that of Variant B reflecting the
cost of the extra copies in Step 2. and 5. of Section 3; see also [4]).

To briefly summarize these results, the gains that Variant B yields by merging
the updates of the different parts of the matrix in larger blocks are important only
for the parallel (multi-threaded) executions. The reason for this is the fork-join

model of parallel execution of LAPACK: When a LAPACK routine is executed,
all parallelism is extracted from the calls to BLAS. Thus, every time a BLAS
kernel is invoked, threads are spawn (fork) at the beginning of the execution
and synchronize (join) at the end. Having multiple calls to BLAS, some of them

Simpler and more Efficient LAPACK Routines for SPD Band Factorization 11

for updating small blocks like A31 and A33 in (1), is therefore harmful for the
parallel execution.

5 Conclusions and Future Work

We have shown that a minor change to the storage format representation of sym-
metric band matrices leads to a much more intuitive description of the program
code by allowing it to reference element (i, j) in the band matrix as AB(i,j).
This change does not affect the interface of LAPACK routine pbtrf in terms of
its function nor of its data layout.

We have also amplified on code modifications which merge several operations
that are performed during a block factorization and update stage of pbtrf.
These additional modifications provide simpler codes, and also higher perfor-
mance when the routine is combined with a multi-threaded implementation of
BLAS and executed in parallel on an SMP platform.

We have also given proofs of correctness of our clearer and simpler LAPACK
Cholesky band codes.

Future work includes addressing the upper symmetric case of the band Cholesky
factorization as well as other band factorization routines.

References

1. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-

PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, third edition, 1999.

2. Fred G. Gustavson. High Performance Linear Algebra Algorithms using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Development,
47(1):823–849, January 2003.

3. Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Alfredo Remón, and Robert
van de Geijn. SuperMatrix for the factorization of band matrices. FLAME Working
Note #27 TR-07-51, The University of Texas at Austin, Department of Computer
Sciences, September 2007.

4. Alfredo Remon, Enrique Quintana-Orti, and Gregorio Quintana-Orti. Cholesky
Factorization of Band Matrices Using Multithreaded BLAS. In Applied Parallel

Computing, State of the Art in Scientific Computing, PARA 2006, volume LNCS
4699, pages xxx–yyy, Springer-Verlag, Berlin Heidelberg, 2007. Springer.

