
RC24599 (W0807-045) July 8, 2008
Mathematics

IBM Research Report

The Relevance of New Data Structure Approaches for Dense
Linear Algebra in the New Multicore/Manycore Environments

Fred G. Gustavson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The Relevance of New Data Structure

Approaches for Dense Linear Algebra in the new
Multicore / Manycore Environments

Fred G. Gustavson

IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598, USA

email: fg2@us.ibm.com

Abstract. For over ten years now, Bo K̊agström’s Group in Umea, Swe-
den, Jerzy Waśniewski’s Team at Danish Technical University in Lyn-
gby, Denmark, and I at IBM Research in Yorktown Heights have been
applying recursion and new data structures to increase the performance
of Dense Linear Algebra (DLA) factorization algorithms. Later, John
Gunnels, and later still, Jim Sexton, both now at IBM Research began
working in this area. For about three years now almost all computer
manufacturers have dramatically changed their computer architectures
which they call Multicore (MC). The traditional designs of DLA libraries
such as LAPACK and ScaLAPACK perform poorly on MC. Recent re-
sults of Jack Dongarra’s group at the Innovative Computing Laboratory
in Knoxville, Tennessee have shown how to obtain high performance for
DLA factorization algorithms on the Cell architecture, an example of an
MC processor, but only when they used new data structures. We will
give some reasons why this is so.
We also present new algorithms for Blocked In-Place Rectangular Trans-
position of an M by N matrix A. This work adds blocking to the work
by Gustavson and Swirszcz presented at Para06 on scalar in-place trans-
position. We emphasize the importance of RB format and also provide
efficient algorithms between RB format and standard column and row
major formats of 2-D arrays in the Fortran and C languages. Performance
results are given. From a practical point of view, this work is very im-
portant as it will allow existing codes using LAPACK and ScaLAPACK
to remain usable by new versions of LAPACK and ScaLAPACK.

1 Introduction

Multicore/Manycore (MC) can be considered a revolution in Computing. In
many of my papers, we have talked about the fundamental triangle of Algo-
rithms, Architectures and Compilers [6] or the Algorithms and Architecture
approach [1, 9]. MC represent a radical change in architecture design. The fun-
damental triangle concept says that all three areas are inter-related. This means
Compilers and Algorithms must change and probably in significant ways. The
LAPACK and ScaLAPACK projects under the direction of Jim Demmel and

2 Fred G. Gustavson

Jack Dongarra started an enhancement of LAPACK and ScaLAPACK projects
in late 2004. In 2006 Jack Dongarra started another project, called PLASMA,
which was directed at the effect MC would have on LAPACK. His initial findings
were that traditional BLAS based LAPACK would need substantial changes. So,
what appeared at first to be enhancements of these libraries now appears to be
directed at more basic structural changes.

The essence of MC is many cores on a single chip. The Cell Broadband

EngineTM Architecture is an example. Cell is a heterogeneous chip consisting
of a single traditional PPE (Power Processing Element) and 8 SPEs (Synergistic
Processing Element) and a novel memory system interconnect. Each SPE core
can be thought of as a processor and a “cache memory”. Because of this, “cache
blocking” is still very important. Cache blocking was first invented by my group
at IBM in 1985 [13] and the Cedar project at the University of Illinois.

The advent of the Cray 2 was a reason for the introduction of Level 3 BLAS [5]
followed by the introduction of the LAPACK [3] library in the early 1990’s. Now,
according to some preliminary results of the PLASMA project, this Level 3 BLAS
approach is no longer adequate to produce high performance LAPACK codes for
MC. Nonetheless, it can be argued that the broad idea of “cache blocking” is
still mandatory as data in the form of matrix elements must be fed to the SPEs
or more generally MC so they can be processed. And, equally important, is the
arrangement in memory of the matrices that are being processed. So, this is
what we will call “cache blocking” here.

We present new algorithms that require little or no extra storage to transpose
a M by N rectangular (non-square) matrix A in-place. We make two assumptions
on how these matrices are stored. First we assume that the matrices are stored
in Rectangular Block (RB) format and we define how the M by N matrix A
is represented in RB format. Square Block (SB) format is a special case of RB
format when the rectangle is a square. It was first introduced in 1997, see [8],
and further developed from 1999 on in [9] in conjunction with research by Bo
Kagstrom’s team at Umea University and Jerzy Wasniewski’s team at Danish
Technical University. A lot of this work culminated with a SIAM review article
on recursive algorithms for DLA [6]. It turns out that our results on NDS [8,
9, 6, 2, 10] are very relevant to MC: Of all 2-D data layouts for common matrix
operations SB format minimizes L1 and L2 cache misses as well as TLB misses.
The essential reason for this is that a SB of order NB is also a contiguous 1-D
array of size NB2 and for almost all cache designs a contiguous array whose size is
less than the cache size is mapped from its place in memory into the cache by the
identity mapping. SB ormat is the same as block data layout. Block data layout
is described in [15] and the authors show that this format leads to minimal L1,
L2, TLB misses for matrix operations that treat rows and columns equally.

RB format has a number of other advantages. A major one is that it naturally
partitions a matrix to be a matrix of sub-matrices. This allows one to view matrix
transposition of a M by N matrix A where M = mMB and N = nNB as a block
transposition of a much smaller m by n block matrix A. However, usually M
and N are not multiples of MB and NB. So, RB format as we define it here,

Multicore / Manycore Environments 3

would pad the rows and columns of A so that M and N become multiples of
some blocking factors MB and NB. The second format is the standard 2-D array
format of the Fortran and C programming languages. This new work on in-
place transformations between standard matrix formats for DLA and NDS was
quite illuminating to us as it showed us why in a fundamental way why NDS
are superior to the current standard data structures of DLA. From a practical
point of view, this work is very important as it will allow existing codes using
LAPACK and ScaLAPACK to remain usable by new versions of LAPACK and
ScaLAPACK. This last aspect is the so called migration problem where existing
past software is using old LAPACK or ScaLAPACK routines. By transforming
the old standard API’s of LAPACK and ScaLAPACK in-place to the API’s that
new LAPACK or ScaLAPACK will use the old existing software can be made to
perform better in their LAPACK or ScaLAPACK sections of code.

“Cache blocking” will be described in Section 2. We show there how it can
be automatically incorporated into dense linear algebra factorization algorithms
(DLAFA) by introducing NDS in concert with using kernel routines instead of
using Level 3 BLAS. In Section 3, we describe the features of In-Place Transfor-
mation between standard full layouts of matrices and the new rectangular block
(RB) or square block (SB) formats of NDS. Performance results are given in
Section 4 followed by a Summary and Conclusions in Section 5.

2 Cache Blocking

Here we address “cache blocking” as it relates to DLAFA. It will briefly re-
peat some of my early work on this subject and will sketch a proof that DLAFA
could be viewed as just doing matrix multiplication (MM) by adopting the linear
transformation approach of applying equivalence transformations to a set of lin-
ear equations Ax = b to produce an equivalent (simpler) form of these equations
Cx = d. Examples of C are LU = PA, for Gaussian elimination, LLT = A,
for Cholesky Factorization, and QR = A, for Householder’s factorization. We
adopt this view to show a general way to produce a whole collection of DLAFA
as opposed to the commonly accepted way of describing the same collection as
a set of distinct algorithms [7]. A second reason was to indicate that for each
linear transformation we perform we are invoking the definition of MM. Here is
the gist of the proof as it applies to LU = PA.

1. Perform n = dN/NBe rank NB linear transformations on A to get U .

2. Each of these n composed NB linear transformations is MM by definition.

3. By the principle of equivalence we have Ax = b if and only if Ux = L−1Pb.

MM clearly involves “cache blocking”. Around the mid 1990’s we noticed, see
page 739 of [8], that the API for Level 3 BLAS GEMM could hurt performance.
In fact, this 1-D API is also the API for 2-D arrays in Fortran and C. An ex-
planation of dimension is given in [16]. One can prove that it is impossible to
layout a matrix in 1-D fashion and maintain closeness of its elements. LAPACK

4 Fred G. Gustavson

and ScaLAPACK also use this API for full arrays. On the other hand, high per-
formance implementations of GEMM do not use this API as doing so would lead
to sub-optimal performance. In fact, some amount of data copy is usually done
by most high performance GEMM implementations. Now, Level 3 BLAS are called
multiple times by DLAFA. This means that multiple data copy will usually oc-
cur in DLAFA that are use standard Level 3 BLAS. The NDS for full matrices
are good for GEMM. Their layouts are essentially 2-D. DLAFA algorithms can
be expressed in terms of scalar elements ai,j which are one by one block ma-
trices. Alternatively, they can be expressed in terms of partitioned submatrices,
A(I : I+NB−1, J : J : NB−1) of order NB. See [7] for a definition of colon notation.
The algorithms are almost identical. However, the latter description automat-
ically incorporates “cache blocking” into a DLAFA. Take the scalar statement
ci,j = ci,j−ai,kbk,j representing MM as a fused multiply-add. The corresponding
statement for partitioned submatrices becomes a kernel routine for Level 3 BLAS
GEMM. However, it is imperative to store the order NB SB’s as contiguous blocks
of matrix data, as this is what many Level 3 BLAS GEMM implementations do
internally. We remark that this is not possible with the standard Fortran and C
API. This fact emphasizes the importance of storing the submatrices of DLAFA
as contiguous blocks of storage. An essence of NDS for full matrices is to store
their submatrices as contiguous blocks of storage. The simple format of full NDS
has each RB or SB as being in standard column major (CM) or standard row
major (RM) format; see [9] for more details.

Recent results of the PLASMA project as it related to the Linpack benchmark
LU = PA when running on the Cell processor emphasize their use of SB format.
According to Dongarra’s Team it was crucial that NDS be used as the matrix
format. In particular, using the standard API of Fortran and C did not yield
good performance results. Also, earlier results obtained by considering the IBM
new Blue Gene/L computers [4] emphasize the same thing. However, the simple
format of full NDS needs to be re-arranged internally to take into account “cache
blocking” for the L0 cache. The L0 cache is a new term defined in [10] and it
refers to the register file of the FPU that is attached to the L1 cache. Full details
are given in [10].

3 Inplace Transposition between Standard Full Layouts
and RB Format

The algorithms in [11], although fast, or very fast compared to the existing
algorithms for the same problem, are relatively slow on today’s processors. This
is because A in [11] is viewed as a permutation P of length q = MN − 1 and A
is moved in its array A on top of itself randomly one element at a time. Today’s
processors layout memories in chunks of size LS called lines and when an element
is accessed the entire line containing the element is brought into the L1 cache.
To obtain high performance it is therefore imperative to utilize or process all
elements in a line once the element enters the L1 and L0 caches. The L0 cache is
the register file of a processor; eg, see [10]. However, for the algorithms in [11] this

Multicore / Manycore Environments 5

is impossible because the P governing in-place transposition of A is essentially
random for almost all M and N when M 6= N . We speculate that the reason
in-place transposition has not been used for DLA algorithms is because one can
prove that in-place transposition is impossible for sub-matrices of a matrix A
stored in standard format. Also, these algorithms are slow relative to out-of-place
transposition algorithms which are almost universally used instead.

Usually, one uses SB format. Here we use its generalization, RB format. It will
be evident that our results also hold for SB format. In the RB format version of
our new Block In-Place Xpose (BIPX) algorithm our M by N matrix A, usually
padded, can be considered a m by n block matrix where each submatrix has
r = MB rows and s = NB columns. Padding occurs when either M < mr or
N < ns. Now the governing permutation P has length q = mn − 1. So, each
element moved is a submatrix of size MB by NB whose elements are contiguous and
hence consist of drs/LSe contiguous lines. Hence, the problem of the previous
paragraph disappears and our BIPX algorithm will perform about the same as
current out-of-place algorithms. In this case one, the BIPX algorithm has one
stage and hence it is more efficient than the other two cases which we now
describe.

Standard Fortran and C two dimensional arrays are the other format we
consider for our in-place transpose algorithms. We need to describe how one can
move from a standard CM or RM format to a RB format. This is done by using
a vector version of the IPX or MIPT algorithm [11] , the VIPX algorithm, which
has similar features to our BIPX algorithm. Our VIPX algorithm maps in-place
a mr by NB submatrix of A in standard CM format with LDA = mMB to a RB
format matrix consisting of m RB concatenated together each of size MB rows
by NB columns. This submatrix of A is called a column swath of A. Repeating
algorithm VIPX n times on the n concatenated column swaths that make up
CM A converts CM A to RB format A. Then, algorithm BIPX computes RB
AT . Next, the inverse of the VIPX algorithm, applied m times on the m column
swaths of AT , computes CM AT . This algorithm is called case two. It assumes
CM A has a certain layout space in terms of standard 2-D layout terminology.
Here, CM A and RB format A will be M ≤ mr by N ≤ ns matrices with
LDA = mMB where m = dM/MBe. Also, the array A holding CM A and RB format
A will have space for mnrs elements where n = dN/NBe. It can be seen that the
case two in-place transpose algorithm has three stages consisting of two VIPX

algorithm stages and one BIPX algorithm stage. Hence, it will be less efficient
than case one by approximately a factor of three.

Clearly, matrix A rarely has its M a multiple of MB and its N a multiple of
NB or A is contained in an array A whose size is equal to mnrs elements. This
third case is where A is in standard format and has CM A being M by N with
LDA ≥ M and case two is not holding. In case three, we set m1 = bM/MBc and
n1 = bN/NBc to define the space for a M1 = m1MB by N1 = n1NB smaller A1

submatrix of A inside the original array space of A. This requires that we save
the leftover M − M1 rows and N − N1 columns of A in a buffer. We fill this
buffer using out-of-place transpose operations on the these leftover rows and

6 Fred G. Gustavson

columns of A. Then we move the M1 by N1 matrix A1 to A(0 : M1 − 1, 0 : N1 − 1)
of its array space A using standard move operations. Note that matrix A1 is now
in standard CM format with LDA = M1 and is a case two matrix. We apply
the case two algorithm to A1 to get CM AT

1
. Next, we expand AT

1
in the array

space of A using standard move operations thereby making “holes” in array A

for the submatrices of A in the buffer. Finally, we transfer the buffer with the its
saved leftover rows and columns to the “holes” in A using standard out-of-place
transpose and copy algorithms to get the final CM AT matrix. The case three
algorithm contains four additional stages of save A − A1, contract A1, expand
A1 and restore A−A1 over the case two algorithm and hence is the least efficient
of the three algorithms. Since, it passes over A about five times it will perform
about five times slower than the case one algorithm when A is large; see [12].

We only describe the BIPX, VIPX and case two algorithms here.
There is some literature on this subject in the form of a patent disclosure [14]

which we discovered after we finished this work. This disclosure is incomplete,
and furthermore its algorithms are not really in-place.

3.1 The VIPX(MB,m,NB,A) Column Swath Algorithm

We briefly describe how one gets from standard CM format to RB format. Let
A1 have M = mr rows and N = ns columns. Let A1 have its LDA = M . Thus,
A1 consists of n column swaths that are concatenated together. Denote any such
swath as a submatrix A3 and note that A3 consists of NB contiguous columns of
CM matrix A1. So, A3 has M rows and s = NB columns. Think of A3 as an m
by NB matrix whose elements are column vectors of length r = MB. Now apply
algorithm MIPT or IPT of [11] to this m by s matrix A3 of vectors of length r.
The result is that now A3 has been replaced (over-written) as A3T which is a
size s by m matrix of vectors of length r. It turns out, as a little reflection will
indicate, that A3T can also be viewed as consisting of m RB matrices of size r by
s concatenated together. For A1 one can do n parallel operations for each of the
n = N/s different submatrices A3 of A1. After completion of these n parallel
steps one has transformed CM A1 in-place to be matrix A2 as a RB matrix
consisting of m block rows by n block columns stored in standard CM block
order. Of course, A1 and A2 are different representations of the same matrix.
The VIPX algorithm here is either algorithm MIPT or IPT of [11] modified to move
in-place vectors of length r as opposed of scalars of length one.

3.2 The BIPX(MB,NB,m,n,A) Block Transpose Algorithm

We briefly describe how one gets from RB format to the transpose of RB format
in-place. Let A2 have m block rows and n block columns where each block
element is a standard CM matrix having MB rows, NB columns and LDA=MB.
These mn block matrices are laid out in standard CM block order. Now apply
algorithm MIPT or IPT of [11] to this m by n matrix A2 of RB matrices. The
result is that now A2 has been replaced (over-written) by an n by m matrix A2T

of RB matrices of size NB rows by MB columns. Each block element is a standard

Multicore / Manycore Environments 7

CM matrix having NB rows, MB columns and LDA=NB; ie, each new RB matrix
is the transpose of an old RB matrix. The BIPX algorithm is either algorithm
MIPT or IPT of [11] modified to move in-place RB standard CM matrices of size
MB rows by NB columns to be transposes of these RB matrices according to a
permutation cycle of the BIPX algorithm.

3.3 The Case Two In-Place Transpose Algorithm

The case two Algorithm was described in the previous section 3. When M = N
one calls a standard inplace transpose algorithm. We present the M 6= N case
now:

m1=m/nb ! A is a tectangular m by n matrix where m ^= n

n1=n/nb ! A will become a SB matrix of size m1 by n1

nb2=nb*nb ! each SB holds nb^2 matrix elements

if(m1.gt.1)then ! Stage 1 of CM to SB

call VIPX1(nb,m1,nb,A,temp,L,nL)

do k=1,n1-1

call VIPX2(nb,m1,nb,A(k*m*nb),temp,L,nL)

enddo

endif

if(m1.eq.1.or.n1.eq.1)then ! A is a block vector matrix

if(m1.eq.1)then ! A is a 1 by n1 block vector; xpose n1 blocks

do i=0,n1-1

call DXPI(A(i*nb2),nb,nb)

enddo

else ! n1 = 1; A is a m1 by 1 block vector; xpose m1 blocks

do i=0,m1-1

call DXPI(A(i*nb2),nb,nb)

enddo

endif

else ! A is a SB matrix of size m1 by n1

call BIPX(m,n,A,m,nb,temp) ! Stage 2 of SB to SB^T

endif

if(n1.gt.1)then ! Stage 3 of SB^T to CM

call VIPX1(nb,nb,n1,A,temp,L,nL)

do k=1,m1-1

call VIPX2(nb,nb,n1,A(k*n*nb),temp,L,nL)

enddo

endif

We have broken stages one and three into an initial call to VIPX1 and the
remaining calls to VIPX2. VIPX1 is VIPX of Section 3.1 where we save the lead-
ers [11] of VIPX in vector L of length NL. Hence, further calls to VIPX can be
handled by the more efficient VIPX2 which receives its leaders in L as input.
Routine DXPI is a simple vanilla inplace transpose routine. Array temp will hold
a vector of length NB or NB2. DGETMI is the ESSL inplace transpose routine [13].

8 Fred G. Gustavson

4 Performance Studies of VIPX,BIPX versus ACM
Algorithm 467 and ESSL DGETMO

We assume case two of the previous Section. Our routines VIPX,BIPX are mod-
ifications routine IPT. Hence our results could be slightly better as MIPT is a
more efficient routine. In the case two algorithm we pass through the matrix
A three times while ACM Algorithm 467 (Brenner’s Algorithm) and the ESSL
DGETMO (Double Precision GEneral Transpose Matrix Out-of-place) Algo-
rithm passes through A only once. Hence, one might expect that the new Al-
gorithm would perform about three times slower than ACM Algorithm 467 and
ESSL’s DGETMO. We will see this false for ACM Algorithm 467 and roughly
true for DGETMO. 210 matrices of row and column sizes from 50 to 1000 in
steps of 50 were generated. This was our test set. We excluded square matrices
as they are easy to transpose in place. Hence our test set was 19*20/2 = 190
matrices. We let MB=NB so we dealt with SB. We wanted to see the effect of
choosing the block size NB. Thus, for matrices whose sizes were multiples of 100
we let NB=100. Otherwise, we let NB=50.

In the first experiment, run on a IBM Power 5 and IBM 604E, ACM Algo-
rithm 467 is compared to Algorithms VIPX and BIPX. We made a single run where
IWORK = 0; see [11]. This means ACM Algorithm 467 was truly in place. Our
performance results as functions of m and n are essentially random for ACM Al-
gorithm 467. To first approximation VIPX and BIPX have equal execution times.
Because of space limitations and time considerations we can only summarize our
results. On the IBM 604E, the new three pass Algorithm was faster except for
one matrix where the time ratio was .859. For (68, 115, 4, 2) test matrices it was
between (1:2, 2:3, 3:4, 4:5) times faster respectively. We remark that IBM604E
was not a scientific machine and that it has a slow memory system. Also, its line
size of 4 double words is four time smaller than the Power 5 line size. The perfor-
mance numbers really should be multiplied by three for a fairer comparison. On
IBM Power 5, the new three pass Algorithm was always faster. For (144, 39, 4,
2, 1) matrices it was (1:5, 5:10, 10:15, 15:20, 25) times faster respectively. These
Power 5 numbers are even more impressive when these ratios are multiplied by
three. The following integer vector v of length 25 gives the complete breakdown.
Its i-th component gives the number of matrices whose time ratio, (three pass) /
(ACM Algorithm 467), was greater equal i but less than i+1. Here is the vector:
v = 11 49 25 29 30 19 12 4 0 4 0 3 0 1 0 0 0 2 0 0 0 0 0 0 1. The test matrix
of size 1000 100 corresponded to v(25) = 1. The performance ratio was 25.434,
the time for ACM Algorithm 463 was 9411 µ-secs and the time for three pass
algorithm was 370 µ-secs.

We now discuss the second experiment. We compare ESSL DGETMO routine
versus Algorithms VIPX and BIPX. We consider first the IBM 604E platform. The
BIPX Algorithm is faster than DGETMO in all 190 cases. For (3 10 19 31 66 38
15 4 1 2 1) cases it was between (6:10, 10:20, 20:30, 30:40, 40:50, 50:60, 60:70,
70:80, 80:90, 90:100, 101)% faster. The VIPX Algorithm runs slighty slower than
the BIPX Algorithm. The value of NB being 100 instead of 50 has little effect on
both the VIPX and BIPX Algorithms. The percent time ratios of DGETMO / (

Multicore / Manycore Environments 9

three stage) is (38, 40:50, 50:60, 60:70, 70:80, 80:85)% for the (1, 150, 12, 15, 9,
3) cases. Secondly, for the Power 5 platform, the BIPX Algorithm is faster than
the DGETMO routine in 102 of the 190 cases. For (22, 37, 18, 17, 8) cases BIPX
was between (0:10, 10:20, 30:40, 40:49)% faster than DGETMO. For (35, 35,
17, 1) cases DGETMO was between (0:10, 10:20, 20:30, 32)% faster than BIPX.
The performance of the VIPX Algorithm is usually slower by about 20% than the
BIPX Algorithm when NB = 100. For NB = 50 this amount is about 50%. Also, the
BIPX Algorithm is slower by about 10% when NB = 50 instead of being 100. And
VIPX is slower by about 33% when NB = 50 instead of being 100. The memory
system of Power 5 is much better than the memory system of 604E. I believe
this fact accounts for what we observed above about VIPX and BIPX regarding
their performances resulting from the use of a larger NB value. The reason is
that larger NB better supports use of automatic streaming or prefetching which
is a feature of Power 5. In this regard, a reason for BIPX better performance
over VIPX is that BIPX moves larger chunks of memory per invocation; its block
length is NB2 whereas the vector length of VIPX is NB. The percent time ratios of
DGETMO / (three stage) is (18:20, 20:30, 30:40, 40:49)% for the (7, 101, 75,
7) cases.

5 Conclusions and Summary

We showed that DLAFA are mainly MM algorithms. The standard API for
matrices use arrays. All array layouts are one dimensional. It is impossible to
maintain locality of reference in a matrix or any higher than 1-D object using a
1-D layout; see [16]. MM requires row and column operations and thus requires
matrix transposition (MT). Our results on inplace MT show that performance
suffers greatly if one uses a 1-D layout. Using NDS for matrices approximates a
2-D layout; thus, one can dramatically improve inplace MT performance. Our
message is that DLAFA are all MM. MM requires MT and both require NDS.
Thus, DLAFA can and do perform well on Cell if one uses NDS.

References

1. R. C. Agarwal, F. G. Gustavson, M. Zubair. Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM Journal of Re-
search and Development, Vol. 38, No. 5, Sep. 1994, pp. 563,576.

2. B. S. Andersen, J. A. Gunnels, F. G. Gustavson, J. K. Reid and J. Waśniewski.
A Fully Portable High Performance Minimal Storage Hybrid Cholesky Algorithm.
ACM TOMS, Vol. 31, No. 2 June 2005, pp. 201-227.

3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK
Users’ Guide Release 3.0, SIAM, Philadelphia, 1999.

4. S. Chatterjee et. al. Design and Exploitation of a High-performance SIMD Floating-
point Unit for Blue Gene/L. IBM Journal of Research and Development, Vol. 49,
No. 2-3, March-May 2005, pp. 377-391.

10 Fred G. Gustavson

5. J. J. Dongarra and J. Du Croz, S. Hammarling and I. Duff. A Set of Level 3 Basic
Linear Algebra Subprograms, TOMS, Vol. 16, No. 1, Mar. 1990, pp. 1-17.

6. E. Elmroth, F. G. Gustavson, I. Jonsson, and B. K̊agström. Recursive Blocked
Algorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review, Vol. 46, No. 1, Mar. 2004, pp. 3,45.

7. G. Golub, C. VanLoan. Matrix Computations. Book, John Hopkins Press, Baltimore
and London, 3rd. 1996.

8. F. G. Gustavson. Recursion Leads to Automatic Variable Blocking for Dense Linear-
Algebra Algorithms. IBM Journal of Research and Development, Vol. 41, No. 6, Nov.
1997, pp. 737,755.

9. F. G. Gustavson High Performance Linear Algebra Algorithms using New General-
ized Data Structures for Matrices. IBM Journal of Research and Development, Vol.
47, No. 1, Jan. 2003, pp. 31,55.

10. F. G. Gustavson, J. Gunnels, J. Sexton. Minimal Data Copy For Dense Linear
Algebra Factorization. Computational Science - Para 2006, B. K̊agström, E. Elm-
roth, J. Dongarra, J. Waśniewski eds., Lecture Notes in Computer Science 4699.
Springer-Verlag, pp. 540-549, 2007.

11. F. G. Gustavson, T. Swirszcz. In-Place Transposition of Rectangular Matrices.
Computational Science - Para 2006, B. K̊agström, E. Elmroth, J. Dongarra, J.
Waśniewski eds., Lecture Notes in Computer Science 4699. Springer-Verlag, pp.
560-569, 2007.

12. F. G. Gustavson, J. Gunnels, J. Sexton. Method and Structure for Fast
In-Place Transformation OF Standard Full and Packed Matrix Data For-
mats. United State Patent Office Submission YOR920070021US1 and Submission
YOR920070021US1(YOR.699CIP) US Patent Office, 35 pages, Sep. 1, 2007, 58
pages March 2008.

13. IBM. IBM Engineering and Scientific Subroutine Library for AIX Version 3, Re-
lease 3. IBM Pub. No. SA22-7272-00 Feb. 1986.

14. S. Lao, B. R. Lewis, M. L. Boucher In-place Transpose United State Patent No.
US 7,031,994 B2. US Patent Office. Apr. 18, 2006

15. N. Park, B. Hong, V. Prasanna. Tiling, Block Data Layout, and Memory Hierarchy
Performance. IEEE Trans. Parallel and Distributed Systems, 14(7):640-654, 2003.

16. H. Tietze. Three Dimensions–Higher Dimensions. Famous Problems of Mathemat-
ics, book, 1965, Graylock Press, pp. 106-120.

