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Omittable Lines

Leah Wrenn Berman ∗ Branko Grünbaum † Jonathan Lenchner ‡

1 Introduction

A family L of n = n(L) distinct straight lines in the plane, not all through one point, determines an
aggregate A(L). An aggregate is the geometric structure consisting of all the lines of L together
with all the vertices V (L), that is, intersections of two or more of the lines of L . By “plane”
we mean the real projective plane, which we envisage as modeled by the extended Euclidean
plane. This is the ordinary Euclidean plane augmented by the points-at-infinity (each such point
corresponds to a family of all mutually parallel Euclidean lines) and the line-at-infinity (which is
formed by the totality of the points-at-infinity).

A vertex V ∈ V (L) of an aggregate A(L) is said to be k-fold if it lies on precisely k lines
of L . A 2-fold vertex is called ordinary. A well-known but nontrivial result of combinatorial
geometry is that every aggregate contains at least one ordinary vertex. This was conjectured by J.
J. Sylvester [22] in 1893, but forgotten and independently asked by P. Erdős some fifty years later.
Detailed references and proofs, as well as strengthenings and extensions, may be found, among
others, in [3], [9], [4], [20], [7], [8].

We are interested in the following question: Given an aggregate A(L), are there any lines of
L that contain no ordinary vertices? Each line with this property is said to be an omittable line
of L , since its omission from L does not decrease the number of vertices of the aggregate. We
denote the totality of omittable lines of L by O(L), and the number of lines in O(L) by g(L). We
are interested in the relations between g(L) and n(L). In particular, we shall discuss various types
of families of lines that can serve as O(L) for some L . The topic is equivalent (by duality in the
projective plane) to the questions on omittable points considered in [15]. The aim of the present
note is to extend the results of [15], and to correct an omission and an error of that paper (see
Section 2 below). We shall freely use both the “omittable lines” and the dual “omittable points”
approaches.
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‡IBM T.J. Watson Research Center, lenchner@us.ibm.com.
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2 History of the topic

The concept of omittable points was introduced by K. Koutsky and V. Polák [17] in 1960; however,
it seems that for a long time this paper elicited no additional investigations. Independently, the
concept was introduced by W. F. Smyth [21] in 1989. Working in the omittable points version,
Koutsky and Polák proved several results, which we can formulate for omittable lines as follows.

Theorem 1 If an aggregate A(L) of n = n(L) lines, not all in a pencil, contains g = g(L) ≥ 3
omittable lines that form a pencil, then n≥ 3g. Moreover, for every g≥ 3 there exists such a set L
of 3g lines with g omittable lines in a pencil.

Theorem 2 Any set O of lines forming a pencil is the set O(L) of omittable lines for some aggre-
gate A(L) of lines L .

In a series of talks on families of lines, which one of the authors of this note (B. G.) gave
in 1974 at the University of Washington, the results of Koutsky and Polák were presented with
simplified proofs and with some additional examples.

A quarter century later, in 1999, a short note [15] was published, describing the work of Kout-
sky and Polák; the note contained the above Theorem 1 and the following strengthening of Theo-
rem 2.

Theorem 3 Any set O of g lines forming a pencil is the set O(L) of omittable lines for some
aggregate A(L) of lines L with n(L)≤ g+2g.

One of the authors of this note (J. L.) pointed out (in a private communication to B. G.) two
errors of the note [15]. In Theorem 1 of [15] the first part should have been “If a set of n points,
not all collinear, contains k ≥ 3 collinear omittable points then n ≥ 3k”. Unfortunately, the word
“collinear” italicized here was omitted from the formulation in [15], although it was used in the
proof, and the assertion is clearly not valid without it. (This error was also mentioned by Richard
Koch, in his review of [15] in the “Zentralblatt” v. 941 #51019; however, the review was noticed
only recently.) The second error concerns the claim that the example in Figure 2 of [15] shows 13
points of which 6 are omittable. However, the example has only 4 omittable points. As indicated
in Figure 5 below, as far as is known, 14 is the smallest number of lines in an aggregate with 6
omittable lines.

These facts led to a reinvestigation of the topic of omittable lines, and the results of this activity
are the main contents of this note.

3 The main results

In trying to describe the results on omittable lines, it seems most useful to start by distinguishing
various possibilities regarding the sets of omittable lines, rather than with aggregates of lines as
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such. In particular, we are interested in finding families O of lines that can serve as O(L) for
appropriate L . More precisely, for any family O in some collection Q of families, we would like
to decide whether every member O of Q is O(L) for some L , as well as find special members of
Q for which it is possible to find aggregates L with small n(L). We find it convenient to consider
separately the following cases:

1. Q consists of all pencils O such that O = O(L) for some aggregate L .

2. Q consists of all near-pencils O such that O = O(L) for some aggregate L . (A near-pencil
consists of a pencil together with one line not in the pencil.)

3. Q consists of all families O formed by a pencil with two additional lines not in the pencil,
such that O = O(L) for some aggregate L . We shall sometimes refer to such a family as a
“near-near-pencil.”

4. Other possibilities for O = O(L); we call these Os “sporadic.”

Case 1, in which the family Q consists of all pencils, is covered by Theorems 1, 2 and 3. This
information can be succinctly stated as follows:

Theorem 4 If Q is the family of pencils, then any aggregate L with O(L) ∈ Q has n(L) ≥ 3g.
Moreover, for any pencil P ∈ Q we can find an aggregate L with n(L) = g + 2g and O(L) = P .
Finally, for every g≥ 3 there exists a pencil P and an aggregate L with O(L) = P ,g = g(L) and
n(L) = 3g.

Proof. For completeness, and also since the proof requires only minor changes in order to estab-
lish Theorem 5, we repeat the arguments from [15]. The first part of the theorem is most intuitively
argued in the dual formulation, where we deal with point aggregates rather than line aggregates.
Connecting lines take the place of vertices and a point is omittable if its removal from the aggregate
does not cause the number of connecting lines to be reduced. In the dual formulation we assume
that we are given a family P of g collinear points. Without loss of generality we may take the line
containing P to be the line-at-infinity. Consider the convex hull C of the points of L that lie in
the finite part of the plane. Obviously, C is 2-dimensional, and every point of P determines two
support parallel lines of C; since each point of P is omittable, each of the support lines contains at
least two vertices of C. Hence each point of P is associated in this way with at least four vertices of
C. Moreover, by convexity, each vertex of C is associated with at most two points of P . Therefore
C has at least 2g vertices, and so n(L)≥ 2g+g = 3g.

To establish the existence of an aggregate of size g + 2g with the asserted properties, let P be
an arbitrary set of g points p1, ..., pg on the line-at-infinity. We start with any points q1,q2 not on
the line-at-infinity, collinear with p1, then construct translates q3,q4 of q1,q2 by a suitable vector
v2 in the direction of p2; these four points q j are translated by a vector v3 in the direction of p3;
the length of the vectors being chosen at each step are such that no three of the resulting points
q j are collinear, nor are pairs of the q js accidentally collinear with any of the p j. Repeating the
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same procedure for the remaining pis we arrive at a set L consisting of g + 2g points and having
precisely the set P of omittable points.

Finally, to establish the existence of the advertised aggregate of size 3g revert to the aggregate
(of lines) formulation. Start with a regular 2g-gon R , and take as L the 2g lines determined by
the sides of R , together with the g mirrors (lines of symmetry) of R that pass through pairs of its
antipodal vertices. These g mirrors form O(L). This is illustrated in Figure 1. In it, as well as in
other diagrams, the lines in O(L) are shown in red, and the lines of L that are not omittable are
shown in black. 2

!
!

Figure 1. Examples of aggregates in which O(L) is a pencil and n(L) = 3g. Here g = 3,4.

These results can be extended to case 2.

Theorem 5 If Q is the family of near-pencils, then any aggregate L with O(L) ∈ Q has n(L) ≥
3g−2. Moreover, for any near-pencil O ∈ Q we can find an aggregate L with n(L) = 2g +g−2
and O(L) = O. Finally, for every even g≥ 4 there exists a near-pencil O and an aggregate L with
O(L) = O,g = g(L) and n(L) = 3g−2.

Proof. To prove the lower bound on n(L) we only need to repeat the argument from the proof
of Theorem 4, noticing that now we need only 2(g− 1) support lines, since there are only g− 1
points at infinity. If C has more than 2(g− 1) vertices then n(L) > 2(g− 1) + g− 1; that is,
n(L) ≥ 2(g− 1) + g = 3g− 2. The rest of the argument depends on whether the last of the g
points, say pg, is a vertex of C or not. If pg is not a vertex, then n(L) ≥ 2(g− 1)+ g = 3g− 2.
But if pg is a vertex, then there must be some point of L in the interior of C, hence yielding the
same estimate. Indeed, if there were no such point in the interior then the lines through pg and the
other 2g− 3 vertices would determine 2g− 3 directions, and on each of these lines there would
have to be a point-at-infinity, since pg is omittable. Thus 2g−3≤ g−1 or g≤ 2, contradicting the
assumption g≥ 3.

For an arbitrary near-pencil we repeat the construction in the proof of Theorem 4; now the line-
at-infinity carries g−1 points p1, p2, ..., pg−1, and the point pg is not on that line. We modify the
construction by first taking q1 to coincide with pg. This yields a set S of 2g−1 finite points, which
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includes pg. All the other points of P are omittable with respect to this set S, but we need to take
care of pg. To do this we construct a set S∗ by mapping S\{pg} homothetically with center pg and
a ratio chosen not to generate any extraneous collinearities. Thus we can take as L the union of S
with S∗ and with the g−1 points at infinity, for a total of 2g−1+2g−1−1+g−1 = 2g+g−2 = n(L)
points.

Finally, for the near-pencil which is O(L) for an aggregate with n(L) = 3g− 2, again in the
omittable lines version, start with the same construction as in the final paragraph of the proof of
Theorem 4, this time with C a regular (2g− 2)-gon. Adding to the resulting aggregate the line-
at-infinity yields a family L with n(L) = 3g−2. If we number the edges of C in clockwise order
e1, ...,e2g−2 and say that vertex v1 lies between e2g−2 and e1, that vertex v2 lies between e1 and e2,
and so on, then a line of symmetry cuts through v1 and vg, another cuts through v2 and vg+1, and
so forth. If g is even, then g− 1 is odd so that the line of symmetry cutting through v1 and vg is
parallel to eg/2 and e(3g−2)/2. Analogously, each of the other mirrors has two parallel edges. Hence
all the vertices on the line-at-infinity are 4-fold and the line-at-infinity is omittable. On the other
hand, if g is odd then none of the edges of C are parallel to any of the mirrors so that the line-at-
infinity intersects the mirrors in ordinary points and the line-at-infinity is not omittable. Examples
are shown in Figure 2, while the illustration at right in Figure 1 makes clear that the construction

!

!

Figure 2. Examples of aggregates in which O(L) is a near-pencil; each aggregate includes the line-at-infinity, which is
omittable. Shown are examples for g = 4,6.

does not work for odd g. 2

For g ≥ 5 odd, one may remove one of the pencil lines from the near-pencil examples above
to obtain aggregates L with O(L) a near-pencil and n(L) = 3g - which is not quite as good as the
n(L) = 3g−2 obtained for even g. We do not know if the value n(L) = 3g is optimal for such odd
g.

For families of type 3 we have only the analog of the last part of Theorems 4 and 5:

Theorem 6 For every g≥ 4 there is a near-near-pencil O of g lines and an aggregate L such that
O = O(L) and n(L) = 4g−9.
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Proof. The examples needed to establish Theorem 6 can be describes as follows. For a given
g≥ 4 we start with a regular (2g−4)-gon. The aggregate L consists of the 2g−4 lines determined
by the sides of the polygon, and 2g−5 of the mirrors of the polygon - that is, all mirrors except one
that bisects a pair of opposite sides of the polygon. Then F = O(L) consists of the g−2 mirrors
that pass through the vertices of the polygon, together with the two lines determined by the sides
that are bisected by the mirror that was not included in L . These families illustrate n(L) = 4g−9.
Examples are shown in Figure 3. 2

!
!

!

Figure 3. Examples of aggregates covered by Theorem 6, for g = 4,5,6.

Theorem 7 Sporadic families L are known for (g(L),n(L))= (1,5),(2,7),(5,13),(6,14),(7,19),
(8,20),(9,21),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37).

Proof. Examples establishing this are shown in Figure 4. These sporadic aggregates are notewor-
thy because the sets O(L) are different from the ones covered by Theorems 4, 5 and 6. Several
examples not explicitly illustrated can be derived by adding the line-at-infinity, or deleting one or
several lines, as appropriate. 2

4 Bounds on the number of omittable and non-omittable lines

As a preliminary observation, we note that the proof of Theorem 5, with k = g−1, is easily seen
to establish the following:

Lemma 8 In an aggregate L whose omittable lines do not all form a pencil, but which contains
k < g(L) omittable lines which do form a pencil, n(L)≥ 3k +1.

At present we can establish what we consider to be relatively weak upper bounds on the max-
imum number of omittable lines relative to the total number of lines amongst all aggregates of a
given size n = n(L). Since the expression is simpler, we actually express n in terms of the number
of non-omittable lines. A line is non-omittable if its deletion removes vertices from the aggregate;
that is, if it contains an ordinary vertex. Denote by N = N(L) the number of non-omittable lines
in an aggregate L . For a given aggregate L , of course g(L)+N(L) = n(L).
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!

!

g = 1,n = 5 g = 2,n = 7
g = 5,n = 13
g = 6,n = 14 with the line-at-
infinity

!

!

(8,20) as shown
(9,21) with the line-at-infinity
(7, 19) without the middle vertical line

(12, 36) as shown
(12, 37) with the line-at-infinity
Up to four of the middle omittable lines may
be deleted

Figure 4. Representative members of the sporadic family. The values of (g,n(L)) are shown near each.

7



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������

��������������������
��������������������

��������������������

��������������������

g = # omittable lines

n = # lines

10

20

30

40

50

60

70

5 10 15 20 25

Sporadic family

O(L) is a pencil

O(L) is a near-pencil

O(L) is a near-near-
pencil

Pseudolines

Figure 5. The explicitly known pairs (g,n(L)) of numbers of omittable lines and all lines in an aggregate. To avoid
clutter, points corresponding to aggregates with O(L) a pencil that are to the left of (g,n) = (g,3g) are not shown.
Sporadic aggregates are indicated only in cases where no other examples are known. The four families and the
aggregates of pseudolines are explained in the text.
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Though they used somewhat different terminology, the following definition and lemmas are
due to Kelly and Moser [16]. In what follows we consider not only the aggregate induced by
a collection of lines (i.e. the lines together with the resulting vertices or 0D-cells), but the full
arrangement (i.e. the lines plus all 0D, 1D and 2D-cells, where 1D cells are edges and 2D cells are
faces).

Definition 1 Say that an ordinary point p is attached to a line `, not containing p, if ` together
with two lines crossing at p form a (possibly infinite) triangular cell of the induced arrangement.
In this case, say that ` counts p as an attachment (or as an attached point).

See Figure 6 for an illustration.

Figure 6. An example of a line ` with two attached ordinary points. The point p is attached through the finite shaded
triangle and the point q is attached through the shaded infinite triangle.

Lemma 9 (Four Attachments Lemma) In any arrangement an ordinary point can have at most
4 lines counting it as an attachment.

Proof. An ordinary point is contained in two crossing lines, and hence is a vertex of at most 4
faces. It can therefore be attached to at most 4 lines. 2

Lemma 10 Let L be an aggregate such that all lines have at least three vertices. Then an omittable
line must have at least three ordinary points attached to it.

An aggregate having a line with only two vertices can have at most one omittable line - the line
with the two vertices, so this case is not interesting to us. A simple proof of Lemma 10 can be
found in [10, page 75].

Lemma 11 For a given number N of non-omittable lines, an aggregate L may contain no more
than 2

3N(N−1) omittable lines.
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Proof. Given N non-omittable lines, the maximum number of ordinary points is
(N

2

)
. By the Four

Attachments Lemma (Lemma 9) there are at most 2N(N−1) point-line attachments. By Lemma
10 an omittable line has at least three attachments so there can be at most 2

3N(N− 1) omittable
lines. 2

For a lower bound on the number of non-omittable lines we use the following well-known
result of Csima and Sawyer [7]:

Theorem 12 (Csima, Sawyer, 1993) Except for the single aggregate of 7 lines with 3 ordinary
points (the left hand drawing in Figure 3), an aggregate of n lines must contain at least 6n/13
ordinary points.

The following result is also remarked upon by Chen in [5].

Lemma 13 For any aggregate L ,(
N
2

)
≥ 6n

13

unless n = 7 in which case N ≥ 3.

Proof. Ordinary vertices always come at the intersection of non-omittable lines. If t2 denotes the
number of ordinary vertices then

(N
2

)
≥ t2. The Theorem therefore follows by the Csima-Sawyer

Theorem (Theorem 12). 2

4.1 Chen’s bounds

Chen [5] studied omittable lines in the dual (point-centric) setting. Restricting attention to non-
collinear sets of points, he used the term “Gallai lines” for ordinary lines, and “Gallai point” for any
point lying on one or more Gallai lines. In other words, Chen’s Gallai points are our non-omittable
points. Chen’s work focused on computing the minimum value of the number N(L) of Gallai
points for aggregates L of small cardinality n = n(L)1. He gave analytical arguments establishing
the minimal values N∗() of N as a function of n = n(L) listed below. Thus N∗(n) is the minimum
number of non-omittable lines in an aggregate of size n, and hence n−N∗(n) is the maximum
number of omittable lines in aggregates of size n. The values of N∗(n) are consistent with the
values in Figure 5, although N∗(6) and N∗(8) are not present in the graph. To see that N∗(8) ≥ 2
add another black (non-omittable) line through the central 3-crossing in the g = 2, n = 7 example
in Figure 4 and to see that N∗(6) ≥ 1 add another black line through either of the 3-crossings in
the g = 1, n = 5 example in the same figure.

n 3 4 5 6 7 8 9
N∗(n) 3 4 4 5 3 6 6

n−N∗(n) 0 0 1 1 4 2 3

1He also proved an interesting analog of the Sylvester-Gallai Theorem for finite metric spaces, originally conjec-
tured upon by Chvátal. See [6] for the journal version.
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Chen also developed a program to compute, for aggregates of pseudolines2, the values of Ñ∗(n)
that correspond to N∗(n). His values, which we have not independently confirmed, are:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ñ∗(n) 3 4 4 5 3 6 6 6 6 6 7 8 9 8

n− Ñ∗(n) 0 0 1 1 4 2 3 4 5 6 6 6 6 8

By virtue of Theorem 5 (in particular the left-hand example in Figure 2), and the above computation
for pseudolines, one can extend Chen’s first table to include N∗(10) = 6. Note that we do not have
information about the exact examples establishing Ñ∗(12), Ñ∗(13) or Ñ∗(16) but at the least, if
Chen’s program is correct, they would provide new pseudoline examples to be added to Figure 5.

4.2 Connection to magic arrangements

Recently, Ackerman et al. [1] studied so-called “magic arrangements,” confirming a conjecture of
Murty’s [19] that there are only four such arrangements. A magic arrangement (in our terminology,
a magic aggregate) is a collection of lines, together with an assignment of positive weights to the
lines (up to scaling by a common factor), such that if we sum the weights of lines intersecting at
any vertex we get the same number. It is clearly sufficient to assume that all weights are strictly
between zero and one and that the common sum at any vertex is one. Murty’s conjecture (confirmed
by Ackerman et al.) was that there are just four magic arrangements: (i) a pencil in which all lines
get weight 1

n , (ii) a near-pencil in which all lines but the line not in the pencil get weight 1
n−1 and

the remaining line gets weight n−2
n−1 , (iii) the left hand arrangement Figure 3 in which all omittable

lines get weight 1
4 and all non-omittable lines get wieght 1

2 , and finally (iv) any arrangement in
general position in which all lines get weight 1

2 .
It is not difficult to see that if there were an additional magic arrangement, it would have to

consist of a set of N non-omittable lines each with weight 1
2 and hence all in general position, plus

at least N + 1 omittable lines. To verify the first part of this assertion, suppose we had a magic
arrangement L with L not amongst the four families mentioned above, and with N non-omittable
lines, but for which one of the non-omittable lines `, had weight 0 < w < 1 and w 6= 1

2 . By virtue of
` being non-omittable, there is a second (non-omittable) line k intersecting ` at an ordinary point.
We may therefore suppose that wt(`) = 1

2 +ε and wt(k) = 1
2−ε. Since all lines intersect ` it follows

that all lines but ` have weight strictly less than 1
2 . It follows that all ordinary points must lie on

`. However, by Corollary 2 of [18] this is impossible unless L is a pencil or a near-pencil, which
are amongst the four excluded classes. It follows that each non-omittable line in a hypothetical
additional magic arrangement would necessarily have weight 1

2 and so the non-omittable lines
must be in general position. To see that in addition to the N non-omittable lines there would have
to be at least N + 1 omittable lines, consider the dual setting where we have first placed the N

2An aggregate of pseudolines in the projective plane consists of family of lines that have been modified in a finite
part in such a way that each is free of self-intersections and any two have just a single point in common, at which they
cross each other. See [14], [10] or [11] for an introduction to this topic. For such aggregates the concept of omittable
and non-omittable pseudolines can be defined without change.
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non-omittable points in general position - and furthermore, because each point has weight 1
2 , there

can be no additional omittable point collinear with two of the non-omittables. Let us place the first
omittable point p0. Since there can be no two non-omittable points collinear with p0, there are N
distinct lines determined by p0 and each of the non-omittable points. Since p0 is omittable, each
of these lines must contain an additional omittable point - for a total of at least N + 1 omittable
points, as claimed.

So we see that had there been an additional magic arrangement it would have implied an aggre-
gate L with g(L)

n(L) > 1
2 , in addition to the left hand aggregate in Figure 3, of which none are known.

See also conjectures 1 and 2 in section 5.

4.3 O(L) in general position

We have seen that the set of omittable lines can form a pencil (Theorem 4), a near-pencil (Theorem
5), and a near-near-pencil (Theorem 6), as well as a hand-full of sporadic other examples. We have
shown that in any aggregate such that O(L) is a pencil or near-pencil, then, in contrast to Lemma
11, the number of omittable lines is at most a constant multiple kn of the number of total lines,
for some k < 1. For pencils, as a consequence of Theorem 4, k = 1

3 , while for near-pencils, as a
consequence of Theorem 5, k = 3

7 , or asymptotically, k = 1
3 .

Let us now consider the other extreme, where O(L) is in general position. Note that the left-
hand aggregate in Figure 3 is both an example where O(L) is a near-near-pencil, and so covered
by Theorem 6, and an example where O(L) is in general position. We have the following:

Lemma 14 For any aggregate L , where L is not a pencil, and with O(L) in general position,
g(L)
n(L) ≤

4
7 .

Proof. Let L be an aggregate meeting the hypotheses of the lemma and let kn be the fraction of
omittable lines for some k < 1. Consider the dual setting where we speak of omittable points rather
than lines. There must be a non-omittable point collinear with each pair of omittable points. Each
non-omittable point can be collinear with at most bkn

2 c pairs of omittable points. Thus we have

kn
2

(1− k)n≥
(

kn
2

)
(1)

so that

k(1− k)n2 ≥ kn(kn−1) (2)
n−2kn+1 ≥ 0 (3)

2k−1≤ 1
n
. (4)

Now note that there are no aggregates with n(L) ≤ 4 meeting the hypotheses of the Lemma.
With n(L) ≥ 5, by the Csima-Sawyer Theorem (Theorem 12), there are at least three ordinary
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points, and as a result, at least three non-omittable lines. The cases where g(L)≤ 3 are taken care
of by Theorems 4 and 5, so we may assume that g(L) ≥ 4 and so n = n(L) ≥ 7. Thus, returning
to equation (4), we have

2k−1 ≤ 1
7

k ≤ 4
7
.

2

5 Comments

(i) The term “aggregate” is introduced here for want of any word in the literature that describes
the family consisting of a set of lines and their points of intersection. The topic discussed here
is often framed as pertaining to arrangements of lines - but arrangements include the edges and
faces determined by the set of lines, and these are not relevant in the present context, except for
their brief mention in section 4. If a better term can be suggested, we would be happy to replace
“aggregate,” which was the best we could come up. It may be noted that in German the situation is
even worse, since there is no accepted translation for “arrangement,” and the term “configuration”
is used instead (see, for example, [2]) despite its well-known designation for a special class of
families of points and lines.
(ii) It is clear that projective transformations applied to any family L of lines apply the same trans-
formations to the set O(L) of omittable lines. However, in many cases, the same pair (g(L),n(L))
occurs in projectively inequivalent aggregates, and even in aggregates that are not isomorphic. We
say that two aggregates are isomorphic provided there is a one-to-one correspondence between
their lines that preserves incidences, and separation among quadruplets of collinear vertices. For
example, the aggregate in Figure 7 is isomorphic to the aggregate in Figure 1, but is not projec-
tively equivalent to it. (It should be noted that considered as arrangements these two examples are
isomorphic - but we do not know whether this is true in general.) On the other hand, the aggregate
with (g,n) = (12,36) shown in the last part of Figure 4 is clearly not isomorphic with the ex-ample
with the same (g,n) = (12,36) constructed in the proof of Theorem 4.

!

Figure 7. An aggregate with (g,n) = (3,9) which is isomorphic with the first example in Figure 1, but not projectively
equivalent to it.
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(iii) The upper bounds on n(L) in Theorems 4 and 5 seem excessive. While it may be very hard to
find exact upper bounds, deciding whether the growth is exponential would seem interesting.
(iv) The examples with (g,n) = (g,3g) seem exceptional in several respects. To mention just two:
An arbitrary number k ≤ g− 3 of the omittable lines may be deleted from the family while the
remaining g−k lines remain omittable. In the opposite direction, there is no limit to the number of
lines that can be added to the family while keeping those same g omittable lines. The illustration
in Figure 8 is an example that admits many variations.

!

Figure 8. An example of an aggregate with O(L) a pencil but n > 3g.

(v) No examples of aggregates L are known for which O = O(L) is a near pencil with g(L) odd
and n∗(O) = 3g− 2, the bound attained in Theorem 5 for even g. The best result known is given
by a family of aggregates such that g(L) is odd and n(L) = 4g + 1. We conjecture this is best
possible.
(vi) The four families described above reflect the character of the set O(L) of omittable lines in
examples known at present - a pencil, a near-pencil, a near-near-pencil, and other possibilities. The
small number of examples in the sporadic family hints at the difficulty of constructing aggregates
with the set O(L) far from being a pencil. We propose:

Conjecture 1 There are only finitely many sporadic families O(L).

In fact, there probably are no such families with n > 37.

(vii) Theorem 5 provides a counterexample to conjecture (A) of [21], that for g ≥ 6 all omittable
points are collinear. However, no counterexample is known for Conjecture (E) of [21], which can
be formulated as follows: Let M and N be sets of m ≥ 1 omittable and k ≥ 1 non-omittable
lines, respectively, of any aggregate A(L), such that any intersection point of M ∈M and N ∈N
belongs to no other line in M ∪N . Then there are at least m+ k−2 lines of L that do not belong
to M ∪N . Moreover, if either m = 1 or k = 1 then there are at least m+ k−1 such lines.
(viii) Theorem 6 provides a counterexample to Conjecture 2 of [15], which essentially asserted
that pencils and near-pencils are the only infinite families that can occur as O(L). The above
Conjecture 1, if true, would imply that the sets O(L) of Theorems 4, 5, and 6 are the only infinite
families. A related conjecture, close to Conjecture 1 of [15], is:
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Conjecture 2 limsupn→∞

g
n = 1

3 .

(ix) Two problems arise in connection with the family 3 of near-near-pencils. One is whether the
bound of Theorem 6 is a lower bound for all near-near-pencils; most likely this is true, but a proof
seems elusive. The other question concerns the upper bound on n(L) in terms of g(L) for families
of this kind - if such a bound exists at all. We conjecture that there is no bound, and that there
are near-near-pencils with unbounded numbers of lines that do not coincide with O(L) for any
aggregate L .
(x) The various aggregates with relatively large g are either simplicial, or close to simplicial. (Here
an aggregate is said to be simplicial provided the arrangement generated by its lines has only trian-
gles as faces. Further details about simplicial aggregates can be found in [13] and [12].) This is the
reason why the present paper deals with omittable lines instead of the omittable points considered
in [15]. With simplicial arrangements it is frequently impossible to add or delete single lines with-
out changing the character of the arrangement; somewhat analogous is the situation concerning
aggregates with relatively large g. In most cases, the addition or deletion of a single line decreases
g by more than one.
(xi) For aggregates of pseudolines the definition and lemmas of Section 4 are still valid, so that the
bounds obtained (Lemmas 11 and 13) still apply3. It is not surprising that with the consideration
of pseudolines, new examples arise. Two interesting cases are shown in Figures 8 and 9. For these
families (g,n) equals (8,18) or (16,36), respectively. This seems to indicate that one should not
expect Conjecture 2 to be valid for aggregates of pseudolines.

!

Figure 9. An aggregate of 18 pseudolines with 8 omittable pseudolines.

(xii) Many other directions of investigation of omittable lines are completely open. For example,
how many lines (or pseudolines) can be omitted simultaneously? Is there a meaningful concept of
omittable planes in 3-dimensional projective space?
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3The Csima-Sawyer Theorem (Theorem 12) is likewise more generally true for pseudolines.
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Figure 10. A pseudoline aggregate of 36 pseudolines, with 16 omittable.
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