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In 1893 J. J. Sylvester [8] posed the following celebrated problem: Given a finite collection of points in
the affine plane, not all lying on a line, show that there exists a line which passes through precisely two of
the points. Sylvester’s problem was reposed in this Monthly by Erdős in 1944 [4] and then later that year a
proof was given by Gallai [6]. Since then, many proofs of the Sylvester-Gallai Theorem have been found.
Of these proofs, that given by Kelly (as communicated by Coxeter in [2] and [3]) and that attributed to
Melchior (as implied in [7]1) are particularly elegant. Kelly’s proof uses a simple distance argument while
Melchior considers the dual collection of lines and applies Euler’s formula. For more extensive treatments
of the Sylvester-Gallai Theorem and its relatives, see [1] and [5].

Given a collection of points, a line passing through just two of the points is commonly referred to
as an ordinary line. As in Melchior [7], one can use projective duality to obtain a fully equivalent dual
formulation of the theorem, namely that given a collection of n lines in the real projective plane, not all
passing through a common point, there must be a point of intersection of just two lines. Such a point of
intersection is generally referred to as an ordinary point. In what follows I provide a new and particularly
simple non-metric proof of the theorem in this dual form.

Theorem 1 (Gallai, 1944) Given a finite collection of n lines in the real projective plane, not all passing
through a common point, there exists an ordinary point.

Proof. We consider the problem in the projective plane modeled as the Euclidean plane, together with
“points at infinity” corresponding to each possible real slope, and a “line at infinity” containing all of the
points at infinity. By virtue of the fact that not all lines meet at a common point we may pick out some three
lines which do not meet in a common point. Call these lines i, j and k with intersection points u = i∩ j,
v = j ∩ k and w = i∩ k. The lines i, j and k partition the (projective) plane into four triangular regions.
If u is ordinary we are done, so assume that it is not ordinary and that a third line, `0, passes through u
in addition to i and j. `0 passes into two of the four triangular regions formed by i, j and k. Pick either
one of these projective triangular regions and call it T . `0 meets the edge (v,w) opposite u at a vertex v0
partitioning T into two subtriangles R = 4(u,v0,v) and S = 4(u,v0,w). See Figure 1. If v0 is ordinary
we are done. Otherwise there is a third line `1 through v0 entering the interior of either R or S at v0 and
meeting an opposite edge at a new vertex v1. Suppose the triangle entered is R. We may then throw away
S and continue with the same argument as in the previous step inside the triangle R. Since at each step we
arrive at a new vertex vi, and there are only a finite number of such vertices, we must eventually encounter
an ordinary point. 2

1See also [5].
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Figure 1. The proof in a picture.
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