IBM Research Report

A New Proof of the Sylvester-Gallai Theorem

Jonathan Lenchner
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

A new proof of the Sylvester-Gallai theorem

Jonathan Lenchner
IBM T.J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10532 USA
lenchner@us.ibm.com

In 1893 J. J. Sylvester [8] posed the following celebrated problem: Given a finite collection of points in the affine plane, not all lying on a line, show that there exists a line which passes through precisely two of the points. Sylvester's problem was reposed in this Monthly by Erdős in 1944 [4] and then later that year a proof was given by Gallai [6]. Since then, many proofs of the Sylvester-Gallai Theorem have been found. Of these proofs, that given by Kelly (as communicated by Coxeter in [2] and [3]) and that attributed to Melchior (as implied in $[7]^{1}$) are particularly elegant. Kelly's proof uses a simple distance argument while Melchior considers the dual collection of lines and applies Euler's formula. For more extensive treatments of the Sylvester-Gallai Theorem and its relatives, see [1] and [5].

Given a collection of points, a line passing through just two of the points is commonly referred to as an ordinary line. As in Melchior [7], one can use projective duality to obtain a fully equivalent dual formulation of the theorem, namely that given a collection of n lines in the real projective plane, not all passing through a common point, there must be a point of intersection of just two lines. Such a point of intersection is generally referred to as an ordinary point. In what follows I provide a new and particularly simple non-metric proof of the theorem in this dual form.

Theorem 1 (Gallai, 1944) Given a finite collection of n lines in the real projective plane, not all passing through a common point, there exists an ordinary point.

Proof. We consider the problem in the projective plane modeled as the Euclidean plane, together with "points at infinity" corresponding to each possible real slope, and a "line at infinity" containing all of the points at infinity. By virtue of the fact that not all lines meet at a common point we may pick out some three lines which do not meet in a common point. Call these lines i, j and k with intersection points $u=i \cap j$, $v=j \cap k$ and $w=i \cap k$. The lines i, j and k partition the (projective) plane into four triangular regions. If u is ordinary we are done, so assume that it is not ordinary and that a third line, ℓ_{0}, passes through u in addition to i and j. ℓ_{0} passes into two of the four triangular regions formed by i, j and k. Pick either one of these projective triangular regions and call it T. ℓ_{0} meets the edge (v, w) opposite u at a vertex v_{0} partitioning T into two subtriangles $R=\triangle\left(u, v_{0}, v\right)$ and $S=\triangle\left(u, v_{0}, w\right)$. See Figure 1. If v_{0} is ordinary we are done. Otherwise there is a third line ℓ_{1} through v_{0} entering the interior of either R or S at v_{0} and meeting an opposite edge at a new vertex v_{1}. Suppose the triangle entered is R. We may then throw away S and continue with the same argument as in the previous step inside the triangle R. Since at each step we arrive at a new vertex v_{i}, and there are only a finite number of such vertices, we must eventually encounter an ordinary point.

[^0]

Figure 1. The proof in a picture.

References

[1] P. Borwein and W. Moser. A survey of Sylvester's problem and its generalizations. Aequationes Mathematicae, 40:111-135, 1990.
[2] H. Coxeter. A problem of collinear points. American Mathematical Monthly, 55:26-28, 1948.
[3] H. Coxeter. Twelve Geometric Essaqys. Southern Illinois University Press, Carbondale, IL, 1968.
[4] P. Erdős. Problem number 4065. Amer. Math. Monthly, 51:169, 1944.
[5] S. Felsner. Geometric Graphs and Arrangements. Vieweg and Sohn-Verlag, Wiesbaden, Germany, 2004.
[6] T. Gallai. Solution to problem number 4065. Amer. Math. Monthly, 51:169-171, 1944.
[7] E. Melchior. Über vielseite der projektiven eberne. Deutsche Math., 5:461-475, 1940.
[8] J. J. Sylvester. Mathematical question 11851. Educational Times, 69:98, 1893.

[^0]: ${ }^{1}$ See also [5].

