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A note on α-drawable k-trees

David Bremner∗ Jonathan Lenchner† Giuseppe Liotta‡ Christophe Paul§ Marc Pouget¶

Svetlana Stolpner‖ Stephen Wismath∗∗

Abstract

We study the problem of realizing a given graph as an
α-complex of a set of points in the plane. We study the
realizability problem for trees and 2-trees. In the case
of 2-trees, we confine our attention to the realizability
of graphs as the α-complex minus faces of dimension
two; in other words, realizability of the graph in terms
of the 1-skeleton of the α-complex of the point set. We
obtain both positive (realizability) and negative (non-
realizability) results.

1 Introduction

The problem of characterizing those geometric graphs
that satisfy some proximity rule has a long tradition in
the computational geometry literature. This tradition
is justified in part by the theoretical interest of the as-
sociated questions in their own right, and in part by
the variety of application areas where proximity graphs
are used as descriptors of the shape of a set of points.
Extensive surveys about different proximity rules with
their applications can be found in [10, 16].

The characterization problem for proximity graphs
can naturally be expressed as a graph drawing question.
Indeed, for a proximity rule P and a family of graphs G
we can say that a member G ∈ G is P-drawable if there
exists a set S of distinct points in the plane such that
the geometric graph constructed on S by using rule P
is isomorphic to G; we call this geometric graph a P-
drawing of G. Characterizing P-drawable graphs corre-
sponds to describing the combinatorial properties of the
associated P-drawings. Different families of P-drawable
graphs have been studied in the literature, including
Gabriel drawable graphs, Delaunay drawable triangu-
lations, and sphere of influence drawable graphs (see,
e.g., [2, 4, 9, 15]). Those trees that can be drawn as
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the minimum spanning tree of a set of points in the
plane are studied in [5, 11, 14]. The interested reader
is referred to [12] for a survey of proximity drawability
problems and more references on the topic.

This paper initiates the study of the combinatorial
properties of α-complexes of set of points in the plane.
α-complexes are a fundamental object in computational
topology [8] and have applications in such areas as struc-
tural molecular biology [7] and shape analysis [3].

We say that a graph G with n vertices is α-drawable
if there exists a set S of n distinct points in the plane
such that the α-complex of S is a straight-line drawing
of G for some value of the parameter α. We call such
an α-complex of S an α-drawing of G. We present some
negative and positive results about those trees and par-
tial 2-trees that are α-drawable. A detailed description
of the results in this note follows.

• Regarding trees, we show differences between α-
drawable trees and other well-studied families of
proximity drawable trees. Namely, we show that
that the family of α-drawable trees is a subset of the
relative neighborhood drawable trees and a subset
of those trees that are drawable as the minimum
spanning tree of a set of points. We also prove that
there exist α-drawable trees that are not Gabriel-
drawable.

• We exhibit a simple partial 2-tree that is not α-
drawable. Motivated by the observation that the
above counterexample for 2-trees is a series-parallel
graph whose planar embeddings all have some in-
terior vertex, we show that all biconnected outer-
planar graphs are α-drawable.

Our characterizations of α-drawable graphs are based
on constructive proofs that give rise to linear time draw-
ing algorithms, assuming the real RAM model of com-
putation.

2 Preliminaries

Consider a finite set S of points in the plane and a
non-negative real number α. For each p ∈ S, let
Bp(α) = {x : ‖x− p‖ < α} be a disk centered at p with
radius α. Let B(S, α) denote the union of balls Bp(α).
We can decompose this union by intersecting each ball



Bp(α) with the Voronoi cell Vp of p into convex pieces
BVp(α) = Bp(α) ∩ Vp. Define the α-complex as the
nerve of the decomposition of B(S, α) by BVp(α) or the
set of all simplices σ ⊆ S such that

⋂
p∈σ BVp(α) 6= ∅.

For details, see [6, 1]. We use α(S) to refer to the α-
complex for the set of points S for this fixed value of the
radius α. The 1-skeleton α1(S) of α(S) is the collection
of 1-dimensional faces in α(S).

We shall find the following graph useful: the Gabriel
graph of S, GG(S), contains an edge between any pair of
points p and q whenever the disk having the line segment
pq as its diameter is empty. The edges of the GG(S) are
those Delaunay edges that intersect their dual Voronoi
edges.

A k-tree is a graph obtained from a k-clique by 0 or
more iterations of adding a new vertex joined to exactly
k vertices of a k-clique in the old graph. A partial k-tree
is a subgraph of a k-tree. Trees are 1-trees.

3 Results on Trees

Lemma 1 Let (u, v) be an edge of GG(S). If d(u, v) ≥
2α, then (u, v) /∈ α(S). If d(u, v) < 2α, then (u, v) ∈
α(S).

Theorem 2 If α(S) is a tree, it is the Euclidean min-
imum spanning tree of S.

Proof. Suppose α(S) were a tree but not the minimum
spanning tree, MST (S). Then there would be an edge
(u, v) in α(S) not in MST (S), such that d(u, v) < 2α.
Vertices u and v are connected by a path in MST (S)
and adding edge (u, v) to MST (S) creates a cycle. We
know that all edges in MST (S) are Gabriel edges (since
MST ⊆ GG). Suppose that the cycle made by adding
(u, v) to MST (S) does not contain an edge of length
≥ 2α. Then all edges in the path from u to v in MST (S)
are Gabriel edges of length < 2α. By Lemma 1, these
edges are in α(S). But so is (u, v). Thus, α(S) contains
a cycle. This is impossible as it is a tree. Therefore,
an edge of MST (S) along the path from u to v is of
length ≥ 2α. It may be exchanged with (u, v) to obtain
a lighter MST (S). If α(S) is a tree, there cannot be an
edge in α(S) that is not in MST (S). ¤

Corollary 3 If α(S) is a tree, it contains exactly those
Gabriel edges whose length is < 2α.

3.1 Non-realizability results

Lemma 4 Let T be an α-drawable tree. For two edges
(u, v), (w, v) sharing a common vertex v, ∠uvw > π/3.
Moreover, ∠uvw is the largest angle in 4uvw.

Proof. Suppose that ∠uvw ≤ π/3. Then (u,w) is not
the longest edge of 4uvw, i.e. d(u,w) ≤ d(u, v) ≤
2α, d(u,w) ≤ d(w, v) ≤ 2α. Since (u,w) /∈ T and

d(u,w) < 2α, by Corollary 3, (u,w) /∈ GG(S). Let p
be a point inside the diametric disk of u and w. Then
d(u, p) < d(u, v) and d(w, p) < d(w, v). One of (u, p),
(w, p) is not in T as it is a tree. Either (u, v) may
be replaced with the shorter edge (u, p) or (w, v) with
(w, p) to make a lighter spanning tree of S than T . This
contradicts Theorem 2. We have shown that it is not
possible that ∠uvw ≤ π/3.

It is not possible that 4uvw has a larger angle than
∠uvw since that would mean that the longest side of
4uvw is not (u,w) and that T is not a MST (S). ¤

Corollary 5 The maximum vertex degree of an α-
drawable tree is at most 5 for any possible value of α.

This is in contrast with a generic Euclidean minimum
spanning tree, which has vertex degree of at most 6 [14].

Lemma 6 A tree T consisting of two adjacent vertices
of degree 5 and additionally only leaf nodes is not α-
drawable for any possible value of the parameter α.

Figure 1: Two adjacent degree 5 vertices v and w.

Sketch of Proof. Suppose α(S) is a realization of T
as an α-complex for a given α. Let v and w be adjacent
degree 5 vertices in α(S). Let vi be the leaves adjacent
to v and wi be the leaves adjacent to w. See Fig. 1.
Either ∠v2vw ≥ ∠vww3 or ∠v2vw < ∠vww3. If it is
the latter, we rotate the drawing so that w3 takes the
place of v2 and v2 the place of w3. Hereafter, we assume
that ∠v2vw ≥ ∠vwv3.

By Lemma 4, ∠v2vv3 > π/3, ∠v3vv4 > π/3 and
∠w4ww3 > π/3. Combining this with the fact that
∠v2vw ≥ ∠vww3, we get ∠v4vw + ∠vww4 < π/2. As-
sume that ∠v4vw < π/2 (an analogous argument can be
made in case ∠vww4 < π). We know that α(S) must
not contain (v4, w4). By Corollary 3, if this edge is not
present, it is either because (v4, w4) is not a Gabriel
edge or because d(v4, w4) ≥ 2α.

First, we show that (v4, w4) must be a Gabriel edge.
Suppose the contrary. Then ∠v4ww4 ≥ π/2. Write
∠v4vw as π/2−β and ∠w4wv as π/2+ γ, where γ < β.
Then ∠vv4w ≥ π−π/2+β−γ > π/2. This implies that



Figure 2: v4 lies on (v, v′4), w4 lies on (w, w′4).

the Gabriel disk of (v, w) is not empty and that (v, w)
is not in α(S), a contradiction.

Last, we show that necessarily d(v4, w4) < 2α. Let
L be the length of the longest edge in α(S). Let v′4
be a point such that ∠v′4vw = ∠v4vw < π/2 and
d(v′4, v) = L. We then choose point w′4, satisfying
∠v′4vw + ∠vww′4 < π and d(w,w′4) = L, such that w4

lies along (w, w′4), see Fig. 2. We try to choose v4 and
w4 as far apart as possible.

One possibility is to place w4 so that d(v, w4) =
d(w, w3) and d(v, w) = d(w4, w3). In this case w4 is
a vertex of a parallelogram P , w∗4 , see Fig. 2. Since
∠v2vw ≥ ∠vww3, ∠v2vv3 > π/3 and ∠v3vv4 > π/3,
it follows that ∠v4vw∗4 < π/3. Since d(v, v4) ≤ L and
d(v, w∗4) ≤ L, this implies that d(v4, w

∗
4) < L. Thus,

this placement for w4 is not sufficiently far from v4.
Note that neither ∠w∗4ww3 > π/2 nor ∠vww∗4 > π/2
for that would mean that one of (v, w) or (w,w3) is not
a Gabriel edge and may not be in α(S).

Consider placing w4 inside P . Note that ∠vww3 ≤
∠v2vw < π, since ∠v2vv3 +∠v3vv4 +∠v4vw > π. Then
we have the following 3 cases: (1) Suppose ∠vww4 <
π/2 and ∠w4ww3 < π/2. Then (v, w4) and (w4, w3) are
Gabriel edges and since they are not in α(S), d(v, w4) >
L, d(w4, w3) > L by Corollary 3. No such placement of
w4 is possible inside P ; (2) Suppose ∠vww4 ≥ π/2 and
∠w4ww3 < π/2. Then (w4, w3) is a Gabriel edge and
since it is not in α(S), d(w4, w3) > L, while (v, w4)
is not a Gabriel edge. As ∠vww4 > π/2, this angle
is greater than ∠vww∗4 . Increasing ∠vww4 decreases
∠w4ww3. Thus, w4 lies inside4vw∗4w and d(v, w4) ≤ L.
As (v, w4) is a Gabriel edge and d(v, w4) ≤ L, (v, w4) ∈
α(S), a contradiction; (3) Suppose ∠vww4 < π/2 and
∠w4ww3 ≥ π/2. Then (v, w4) is a Gabriel edge and
since it is not in α(S), d(v, w4) > L, while (w4, w3) is
not a Gabriel edge. This is impossible, by the same
argument as in (2). Thus, w4 may not be placed in P .

Consider moving w4 outside of P so that d(w4, w3) =
d(w∗4 , w3). Recall that (w∗4 , w3) is a Gabriel edge in P .
As d(w, w4) increases, ∠w4ww3 decreases, so (w4, w3)
remains a Gabriel edge. Thus w4 may not be placed
closer to w3. As d(w, w4) increases, d(v4, w4) first de-
creases and then increases. It can be shown (using sim-
ilar arguments as those presented already) that when

d(w,w4) = L, d(v4, w4) ≤ L. Thus, no choice of w4 such
that d(w4, w3) = d(w∗4 , w3) is sufficiently far from v4,
and therefore, the same is true if d(w4, w3) > d(w∗4 , w3).

Therefore, (v4, w4) is a Gabriel edge such that
d(v4, w4) ≤ L < 2α and must be in α(S). ¤

3.2 Realizability results

Lemma 7 α(S) can be a tree with arbitrarily many ad-
jacent degree four vertices.

Sketch of Proof. See Fig. 3. ¤

Figure 3: A degree four “caterpillar graph” shows that
α(S) can be a tree and have arbitrarily many adjacent
degree four vertices.

We conclude this section by comparing α-drawable
trees with other well-known families of proximity draw-
able trees.

Theorem 8 The family of α-drawable trees is a proper
subset of the family of trees that have a minimum span-
ning tree realization. It is also a proper subset of the
relative neighborhood drawable trees. Also, there exist
α-drawable trees that are not Gabriel drawable.

Sketch of Proof. All trees whose maximum vertex de-
gree is at most five are relative neighborhood drawable
and also admit a realization as the Euclidean minimum
spanning tree of a set of points in the plane [2, 14]. On
the other hand, the tree in Fig. 1 containing two adja-
cent degree five vertices is not α-drawable by Lemma 6.
Also, no tree having two adjacent vertices of degree four
is Gabriel drawable [2], while, by Lemma 7 it may be
α-drawable. ¤

4 Results on 2-Trees

4.1 Non-realizability results

Lemma 9 There are 2-trees that are not α-drawable for
any possible value of α.

Sketch of Proof. Consider the partial 2-tree ABU
given in Fig. 4.

It can be shown that ABU is not α-drawable for any
possible value of α (proof omitted). The only comple-
tion of ABU in a 2-tree with 5 vertices is ABU aug-
mented by the edge (a, c). This 2-tree is well-known
as the 3-sun. Therefore, a 3-sun cannot be realized as
α1(S) for any point set S. ¤



Figure 4: The partial 2-tree ABU .

4.2 Realizability results

Theorem 10 Every biconnected outerplanar graph is
α-drawable for any possible value of α.

Sketch of Proof. Let G be a biconnected outerplanar
graph. Construct a special dual for G by adding a vertex
for each bounded face of the graph and a vertex for
each edge on the unbounded face. Connect with edges
those vertices corresponding to the bounded faces that
share an edge and also those vertices corresponding to
the bounded faces that have an edge on the unbounded
face with the vertex corresponding to that edge. This
dual is a tree with no degree 2 vertices. By the results
of [13], this tree may be realized as a Voronoi diagram
of a set of points S. If we set the scale of this drawing to
be sufficiently small, for the given α, the α-balls touch
the Voronoi edges for any pair of primal edges of G. ¤

5 Open Problems

1. Are all binary trees α-drawable? Are all binary
trees up to some maximum depth k α-drawable?

2. Is a Gabriel drawable tree always α-drawable?

3. Which partial 2-trees are α-drawable?

4. If α(S) is a tree and we consider any subtree of
α(S), is it true that the subtree is α(S′) on the
restricted set of vertices S′? If true, this would im-
mediately settle the following problem, generalizing
Lemma 6:

5. Is any tree containing two adjacent degree 5 vertices
α-drawable?
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