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Executive Summary 

 

 The expected greenhouse gas (GHG) emissions regulations in the United States are likely 
to transform the electricity generation business in the coming decades.  While preparing for a 
carbon constrained future, electric utilities face a far more complex capacity planning task than 
they are used to.  This complexity stems from uncertainty in the nature of future carbon 
regulations as well the cost of capital-intensive and/or market-based compliance strategies. 
 

Independent researchers have pointed out that the current analytical tools employed by 
utilities are inadequate for formulating an optimal long-term capacity and compliance planning 
portfolio under such uncertainty.  Additionally, current methods do not allow the explicit modeling 
of tradeoffs between the usually conflicting goals of minimizing expected portfolio costs and 
minimizing the uncertainty in portfolio costs.  This poses a significant risk to electric utilities and 
their stakeholders since long term planning is a critical aspect of the utility business due to the 
long economic lifetime (30-60 years), long development and lead-time, and large capital costs of 
the generation and transmission infrastructure.  The plans that are being drafted today must 
consider the impact of GHG emissions regulations because optimal portfolios of generation 
capacity with and without such considerations are likely to be significantly different from each 
other.   

 
 In this report, we describe a novel patent-pending integrated capacity planning 
framework to aid utilities doing long term capacity planning under the uncertainties of a carbon-
constrained future.  Our framework has the capability of modeling uncertainties in the inputs to 
yield a portfolio with the least expected costs within the risk tolerance of a decision maker.  
Unlike most current planning approaches that rely on the analysis of a relatively small number of 
scenarios or portfolios, our tool is aimed at generating optimal risk-modulated portfolios based on 
optimal abatement investments and their timings.  We believe that electric utilities would need 
this capability for effectively planning their long-term capacity and environment compliance 
activities.  



1.  Introduction 

 
There is an emerging international consensus around the impact of anthropogenic 

greenhouse gas (GHG) emissions on the earth’s climate (IPCC Report 2007)1 and the need for 
limiting such emissions.  The predominant source of GHGs, mainly CO2, in the United States is 
fossil-fuel based electricity generation (see Figure 1)2.    

 

 
 

       Figure 1: US CO2 emissions by sector. 

 
It is widely expected that in not too distant a future, the US will join most industrialized 

nations in enacting binding legislation to limit GHG emissions. Several state and regional 
initiatives in the US and Canada are already gaining momentum. The Regional Greenhouse Gas 
Initiative (RGGI), which is set to begin in 2009, is a commitment by at least 10 northeastern 
states to cap regional CO2 emissions at 1990 levels by 2014 and to reduce them by 10 percent 
below that level by 2018. In 2006, California passed legislation requiring a 25-percent reduction 
in CO2 emissions by 2020. The Western Climate Initiative, modeled after RGGI, has set a goal of 
bringing regional emissions to 15 percent below 2005 levels by 2020 by establishing a market 
mechanism.  It is, therefore, imperative that US electric utilities equip themselves for future 
regulatory compliance with respect to GHG emissions. 

 
 

                                                 
1 http://www.ipcc.ch/ 
2 http://www.eia.doe.gov/oiaf/1605/flash/flash.html 



 
Figure 2:  A 30-year CO2 emissions and fuel mix profile of a hypothetical utility under the assumption of no GHG 

emissions cap. 

Long term generation capacity planning is a critical aspect of the electric utility business due 
to the long economic lifetime (30-60 years), long development and lead-time, and large capital 
costs of the generation and transmission infrastructure.  The plans that are being drafted today 
must consider the impact of GHG emissions regulations, because optimal portfolios of generation 
capacity with and without such considerations are likely to be significantly different from each 
other. Figures 2 and 3 illustrate how the long-term electricity generation portfolios of a 
hypothetical utility might look like in a carbon-oblivious and a carbon-constrained scenario, 
respectively.  In the carbon-oblivious scenario of Figure 2, increasing demand is met by an 
increasing dependence on coal. As a result, while demand grows a little over 50% in 30 years, 
CO2 emissions nearly double over the same period. 

 
Figure 3: A 30-year CO2 emissions and fuel mix profile with a long-term resource planning approach that considers 

impending GHG emissions caps. 



 
 
The electricity generation portfolio of the same utility might look very different, like the one 

shown in Figure 3, under a hypothetical GHG regulatory regime that imposes a cap on emissions 
(shown as the dotted line in the figure).  The generation mix shown in Figure 3 must be carefully 
optimized to minimize the capital and operating costs, while meeting constraints on demand 
satisfaction and caps on emissions.  It will most certainly need to rely on a meticulous strategy of 
choosing various abatement options, fuel mixes, and capital investments in new capacity and 
retrofits, along with optimal timing of these decisions.  In reality, the problem of constructing an 
optimal portfolio is even more complex because of uncertainties surrounding the regulations and 
the various costs involved. 

 
Until recently, utilities would plan future power plant constructions based on their projections 

for relatively few variables with a moderate degree of unpredictability, such as fuel availability 
and costs, demand projections, and environmental regulations, etc. Lately, however, they are 
rapidly finding themselves in an extremely complex and uncertain planning environment. While 
there is a consensus on the inevitability of binding federal regulations to limit GHG emissions, 
there is still considerable discussion and speculation regarding the nature and timing of such 
regulations, their impact on electric utilities, and the feasibility and costs of various abatement 
options. There are three key new sources of uncertainty that the utilities must consider: (a) 
direct impact of regulations, in terms of timing and costs of GHG emissions regulations; (b) 
indirect impact of regulations, in terms of changes in fuel prices, fuel transportation costs, 
wholesale electricity market prices, air pollutant permit prices, and demand; and, (c) future costs, 
performance, and adoption rates of new technologies for emissions abatement (such as, carbon 
capture and storage or CCS), generation (such as, solar PV), and consumption (such as, plug-in 
hybrids, and demand-response enabled with advanced metering infrastructure). A decision maker 
at a utility faced with the task of developing a strategic resource plan that is cognizant of pending 
carbon regulation needs to be able to develop a portfolio of different generation units over the 
planning horizon (typically 25-30 years) that minimizes expected cost (or other risk measures) 
while complying with CO2 limits. To develop such a portfolio, the decision maker needs to design 
an investment policy that considers the significant regulatory, financial, political (e.g., will nuclear 
ever by socially palatable again in the U.S.) and technological uncertainties.  

 
In this report, we discuss a novel patent-pending stochastic optimization based decision 

support system that allows a decision maker to model this problem and identify a portfolio of 
abatement options that minimizes the cost of abatement over a long time horizon.  We provide a 
comparison of a typical scenario based analysis that many utilities currently use, and contrast this 
against an optimal resource plan generated using our integrated analysis framework.  Our tool 
can consider various abatement options such as (a) shifting the fuel source mix away from coal, 
(b) investing in non-fossil sources like nuclear or renewables, (c) investment in ICCG (integrated 
gasification combined cycle) plants with CCS (carbon capture and storage), (d) investment in 
demand-side management programs including smart metering infrastructure, (e) enabling and 
encouraging increased profusion of distributed generation using wind and solar, (f) CCS retrofit 
for existing fossil fuel units, (g) entering land-use contracts for afforestation and conservation 
tillage to offset CO2 emissions, (h) strategic buying, selling, and banking of CO2 allowance over 
time, (i) the extent of power purchased, vis-à-vis, power generated in-house, in order to satisfy 
demand, etc. The system is designed to allow for easy addition of other abatement options for 
which sufficient cost and performance models become available. It is capable of modeling the 
aforementioned regulatory, market, and technological uncertainties. A key feature of our system 
is that it allows a decision maker to supply an explicit risk-based3 objective function to the tool to 

                                                 
3 We consider symmetric risk measures (e.g. standard deviation as a measure of variability), as well as asymmetric, tail-
risk measures that are mature in the financial literature to model worst-case outcomes, such as Value-at-Risk (VaR) and 
Conditional-Value-at-Risk (CVaR). 



optimize. In other words, it would create a portfolio with minimum expected cost such that the 
risk (probability) of the total cost exceeding its expected value, or any user-specified value, by a 
certain given factor is within a user specified tolerance. 
 
 
2.  Capacity Planning Challenge in a Carbon Constrained Future 

 
 The most common resource planning methods used today are based on scenario analysis 
over a set of hand-crafted portfolios.  Uncertainty is handled by simulations (Monte-Carlo 
techniques) over a small number of predefined scenarios in order to generate the probability 
distributions around cost and compliance estimates.  Portfolios are then ranked across the above, 
limited number of predefined scenarios using measures such as expected cost or other risk 
measures from the finance literature such as, Percentiles, Value-at-Risk, or Conditional-Value-at-
Risk.   
   
 Consider a utility with a current generation mix close to that at the beginning of the 30-
year planning horizon shown in Figures 2 and 3. The utility faces a number of difficult choices 
over the next 30 years.  Its optimal behavior is highly dependent on the aforementioned 
uncertain factors.  For the sake of presentation tractability, let’s explore just three of these 
uncertainties: 
 

1. Will there be a CO2 emissions cap placed on the utility and if so, what will the price of an 
emissions allowance be? 

2. What will be the feasibility and cost of building new coal units, as well as retrofitting 
existing coal units with carbon capture and storage (CCS) equipment. 

3. Will nuclear base-load generating capacity plants be a viable investment option? 
 
 For the CO2 regulatory uncertainty, we’ll consider three possible scenarios: (i) no 
emissions cap, (ii) a “moderate” emissions cap with moderately priced allowances, and (iii) a 
“severe” emissions cap with costly allowances.  For the CCS uncertainty, we’ll consider two 
possible outcomes: (i) CCS is not viable, (ii) it’s viable at “moderate” cost.  For the nuclear 
availability question, we assume two possible outcomes: (i) nuclear is viable (politically, 
economically, or otherwise) and (ii) it is not. 
 
 We can view the decision problem facing the utility using a decision tree tracing each of 
the possible realizations of the future and the likely preferred portfolio strategy.  This is shown in 
Figure 4.  Given the projected demand growth, the utility will need to invest in new generating 
capacity within the planning horizon. The choices (nuclear, NGCC, PC, IGCC with CCS, 
renewables, demand-side management, etc.) will depend on how the “future plays out” with 
respect to the uncertain inputs.  Figure 4 shows how the optimal strategy differs depending on 
the path taken in the tree.  Each path represents one realization of our artificially bounded future.  
Take, for example, the interesting case of “severe” CO2 regulations.  In this case, there might be 
a real strategy-based argument for early investment in zero or relatively low CO2-emitting 
generation technologies and early retirement of older, less efficient units.  Such a strategy would 
allow the utility to obtain revenue by selling valuable CO2 allowances in the market. In a 
“moderate” regulatory scenario, on the other hand, the utility might get away by simply 
supplementing an almost carbon-oblivious portfolio with demand reduction, modifying fuel mix, 
some investment in renewables, and purchasing allowances. 
 

Utility planners often use this type of gating analysis to come up with a narrow set of 
possible portfolios based on their stated expectations of certain key parameters.  Then the 
selected portfolios are subjected to more detailed analysis to establish bounds on costs and other 
values of interest to regulators and ratepayers. 



 
 

Figure 4: Decision tree showing possible preferred outcomes under input parameter uncertainty for three parameters. 



 There are a number of limitations with looking at the decision problem this way.   First 
and perhaps most obvious one is that, in the interest of problem tractability, the number of 
uncertain inputs in the model has to be fairly limited.  While such an approach for capacity 
planning might have been practical until now, the increase in the number of uncertain inputs due 
to impending emissions regulations makes the number of scenarios intractable.  Although 
computers can assist the utility decision maker enumerate the possibilities, hand-crafting the 
portfolios under each scenario, which is a common practice today, would not be feasible.  
Consider the case of just five uncertain inputs with five possible outcomes each.  In this case, an 
analyst would need to create portfolios for over three thousand scenarios.  Another problem with 
this approach is that there is no reason to expect that the odds of a particular outcome for an 
uncertain input are independent of the values of other uncertain inputs.  For example, it’s 
plausible that if “severe” CO2 regulations did come to pass, political and popular support for 
nuclear plants might change since they are based on a mature zero-emitting technology and can 
displace existing large coal plants with minimal grid disruptions.   Another limitation of the 
approach is that the important time dimension of the problem tends to get lost.  For all of the 
aforementioned uncertainties, capturing the “when” is as important as modeling the “if”, “how 
much”, and “what” aspects.  The reason is that the relative likelihood of various outcomes is 
strongly related to time.  For example, the probability of CCS being a viable option in 2010 is 
relatively low, but significantly higher in 2020. The consequence of these limitations is that a 
decision made based on such an approach may not be robust to all the possible outcomes that 
may occur over time.  Since only the analysis and selection of portfolios is automated, not their 
creation, a preferred portfolio chosen by this approach may be highly suboptimal with respect to 
both the expected cost and the cost uncertainty. 
 
3.  An Integrated Capacity Planning Approach 

 

 
 

Figure 5: An overview of the integrated analysis framework. 
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In order to address some of the aforementioned limitations, we have constructed a 
decision support tool that can handle practically any number of uncertain inputs in a continuous, 
integrated, and time-indexed fashion without becoming computationally intractable.  Our tool 
allows for the explicit modeling of correlated uncertain inputs, using probability distributions and 
dependence structures like correlations, and uses formalized optimization methods such as 
mixed-integer linear programming and stochastic optimization to provide a utility decision maker 
with near-globally-optimal plant operations and capacity investment portfolios that are robust in 
the face of all modeled uncertainties. A decision maker at an electric utility could use this tool to 
meaningfully translate information about variation in portfolio costs across multiple scenarios into 
the selection of a single preferred portfolio. Furthermore, the tradeoff between the twin 
objectives of minimizing expected portfolio costs and minimizing uncertainty in portfolio costs (in 
terms of financially meaningful risk measures of the cost distribution) is explicitly handled in this 
framework.  Figure 5 provides an overview of the framework. 

 
At the core of this framework is a stochastic optimization engine that provides the ability 

to optimally pick the portfolio that minimizes the expected cost of compliance for a given utility 
over a set of uncertain compliance options.  In the framework that we have developed, 
uncertainties are modeled using probability density functions that may or may not vary with time.  
For example, Figure 6 shows how the CO2 regulatory uncertainty is modeled as time-dependent 
(hypothetical, selected for purely illustrative purposes) distributions.  The first curve marked 
“2010-2012” shows that the modeler expects that in the near term it is most likely that CO2 
emissions will be priced at zero (i.e., no carbon cap or tax at all) with some small probability that 
CO2 could be priced up to $3/ton emitted.  In contrast, the second curve marked “2016-2018” 
represents a much different expectation that, by that time, CO2 regulation will come to bear and 
the allowance price or tax will be in the $15-25/ton range with an expected value of $20/ton.  
Similar uncertainty distributions could be specified for more time periods and other uncertain 
parameters. 

 

 
 Figure 6: Example of modeling CO2 regulatory uncertainty using probability density functions. 

  
 It is important to point out that simply providing the capability of modeling uncertainty 
this way is necessary but not sufficient for enabling better decision making.  The specification of 
the forms of the distribution is potentially a difficult job and would presumably need to be done 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0 5 10 15 20 25 30 
CO2 Allowance Price ($/ton) 

P
ro

b
ab

ili
ty

 D
en

si
ty

 

2010-2012 
2016-2018 



with careful consultation between utility planners, forecasters, and regulatory overseers to make 
sure that reasonably realistic distributions are selected.  This process in itself is potentially a 
beneficial exercise for utilities because independent and careful scrutiny of inputs before the 
analysis makes the ultimate modeling results based on said inputs more defensible.  
 Assuming that all uncertain parameters (load growth, technological costs, fuel costs, 
regulatory uncertainties, etc.) are modeled in a similar fashion as the CO2 allowance price 
example, our decision making framework can accept these inputs and pass them through a 
stochastic optimizer engine.  The engine will select a least-cost (expressed in present value 
terms) time-dependent portfolio for meeting future load and CO2 regulatory requirements.  For 
example, for the hypothetical utility represented in Figure 3, the optimization engine will yield a 
portfolio with the least expected cost that can be operated to meet the expected demand and 
emissions cap at any given time during the planning horizon using the available fuel options. The 
options do not have to come bundled together as a given pre-selected portfolio.  The 
optimization engine that we have developed treats each option (CCS, natural gas re-dispatch, 
investment in renewable sources, etc.) as discrete, selecting each automatically to form an 
optimal portfolio of investment and plant operations decisions.  The solution consists of the 
“best” mix of the options and the optimal timing to introduce each of the options. Thus, it is 
ideally suited for addressing strategic questions, such as, “is it better to invest in emissions 
lowering technologies now or later?”  
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Figure 7: Distribution of costs over planning horizon for two optimal (depending on desired risk vs. expected value 
tradeoff) investment portfolios. 

 
We now discuss the second key feature of our analysis tool.  Just like the uncertain 

inputs are represented by probability distributions, the cost of a portfolios generated by the tool 
itself is a probability distribution and is a part of the tool’s output. Figure 7 shows the distribution 
of the present value of the capital and operating costs associated with two hypothetical long-
term electricity generation capacity portfolios.  The tool could generate either of the portfolios as 
the “optimal” portfolio, depending on the form of the objective function specified in the 
optimization model.  The first, with an expected value of about $15B, represents the case where 
the expected cost is low, but there is a higher risk of the cost substantially exceeding the 
expected cost.  The second distribution, with a mean of $18B, has a higher expected cost, but a 



much smaller variance than the first.  This added certainty that costs will not vary substantially 
from the expected value may be valuable enough to many utilities and regulators to make the 
second portfolio the preferred choice even though it has a higher expected cost.  Our tool allows 
the decision maker to explicitly specify this desired level of tradeoff between expected costs and 
uncertainty in costs and the optimization engine will factor this in when solving for the optimal 
portfolio. In addition to symmetric risk measures like standard deviation that measure variability 
(“surprise”), our tool also allows the decision-maker to focus on asymmetric, tail-based risk 
measures such as Value-at-Risk, or Conditional-Value-at-Risk, if the objective is to minimize (or 
contain, within some user-specified tolerance) the worst-case value of the cost distribution, say 
the 99th percentile of the cost distribution. 

It should be noted that the optimization model can be used to provide two types of 
outputs. Firstly, for a given scenario, we can augment the current practice of using Monte Carlo 
simulation with risk-aware, stochastic optimization to generate the optimal timing of investments 
to manage risk at minimum expected cost. Secondly, across all possible scenarios, we can 
generate an optimal portfolio, both in terms of the optimal mix (extent), as well as, optimal 
timing of investments, to manage the risks associated with carbon compliance at minimum 
expected cost. 

 
4.  Summary and Conclusion 

 
 The widely expected impending greenhouse gas emissions regulations in the United 
States are likely to fundamentally transform the electricity generation business in the coming 
decades.  While preparing for a carbon constrained future, electric utilities face a far more 
complex generation capacity planning task than they are used to.  This planning complexity 
stems from the highly uncertain primary and secondary effects of the future emissions 
regulations on virtually all aspects of the electric utility business.  Current analytical tools are 
inadequate for both portfolio selection under a large number of uncertain inputs and for explicitly 
modeling tradeoffs between the usually conflicting goals of minimizing expected portfolio costs 
and minimizing the uncertainty in portfolio costs.  In this report, we have described a novel 
patent-pending integrated capacity planning framework to aid utilities plan their generating 
capacity under the uncertainties of a carbon-constrained future.  Our framework has the 
capability of modeling uncertainties in the inputs to yield a portfolio with the least expected costs 
within the risk tolerance of a decision maker.  We believe that electric utilities would need this 
capability for effectively planning their long-term generating capacity. 

 
 


