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Abstract This paper addresses the problem of generating strong convex relaxations of Mixed Inte-
ger Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult
because they combine two kinds of non-convexities: integer variables and non-convex quadratic con-
straints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive pro-
gramming and the lift-and-project methodology. In particular, we propose new methods for generating
valid inequalities by using the equation Y = xxT . We use the concave constraint 0 < Y − xxT to
derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix
Y − xxT with positive eigenvalues, the second type of disjunctions are obtained by combining several
eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint
Y − xxT < 0 to derive convex quadratic cuts, and we combine both approaches in a cutting plane
algorithm. We present computational results to illustrate our findings.

1 Introduction

In this paper we study the mixed integer quadratically constrained program defined as follows:

(MIQCP′)

min aT
0 x

s.t.
xT Aix + aT

i x + bi ≤ 0 , i = 1 . . .m ;
xj ∈ Z , j ∈ NI ;

l ≤ x ≤ u ,

where N = {1, . . . , n} denotes the set of variables, NI = {1, . . . , p} denotes the set of integer constrained
variables, Ai (i = 1 . . .m) are n × n symmetric (usually not positive semidefinite) matrices, ai (i =
0 . . .m), l and u are n-dimensional vectors and bi (i = 1 . . .m) are scalars. The decision variant of
MIQCP′ is well known to be undecidable, even in the pure integer case, when the variables are not
bounded (see [16]). Many natural applications of MIQCP′ can be found in the global-optimization
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literature. In this paper our focus is to derive tight convex relaxations for MIQCP′ by using cutting
plane approaches.

A standard approach to derive a convex relaxation of MIQCP′ is to first introduce extra variables
Yij = xixj in the formulation. Consequently, the following lifted reformulation of MIQCP′ is obtained1

(MIQCP)

min aT
0 x

s.t.
Ai.Y + aT

i x + bi ≤ 0 , i = 1 . . .m ;
xj ∈ Z , j ∈ NI ;

l ≤ x ≤ u ;
Y = xxT .

Note that the only non-convex constraint in MIQCP is the set of non-linear equations Y = xxT ,
which can be relaxed as a pair of SDP inequalities Y −xxT

< 0 and xxT −Y < 0. The former of these
inequalities can be expressed as a LMI (Linear Matrix Inequality) on the cone of positive semi-definite
matrices, while treatment of the latter non-convex inequality constitutes the emphasis of this paper.

One of the common predicaments for non-convex problems is that they are composed of seemingly
innocuous looking non-convex constraints (for example xi ∈ {0, 1}) linked together through a set of
(usually linear or convex) constraints. For instance, a mixed integer 0-1 linear program is composed of a
linear program and {0, 1}-constraints on some of the variables. In these kind of problems, convexifying
the non-convex constraints does not yield any significant improvement until the convexification process
explicitly takes into account the (convex) constraints linking the non-convexities together. For instance,
convexifying the 0-1 constraints on a set of variables in a mixed integer linear program (MILP) yields
the unit hypercube, which obviously offers little help in solving the MILP.

Interestingly, most of the existing convexification-based approaches in Mixed Integer Non-Linear
Programming (MINLP) fail to take the linking constraints into account and work exclusively with
simple non-convex sets, and try to derive closed form expressions for the convexified sets [31,32]. Some
other approaches try to perform local convexification and impose that by additional constraints. For
instance, imposing the SDP constraint Y − xxT < 0 falls into this category of approaches. Naturally,
we are interested in an approach which takes a holistic view of the problem and tries to capitalize on
the interaction between the problem constraints. In this paper, we use the framework of disjunctive
programming to accomplish this goal.

Classical disjunctive programming of Balas [2] requires a linear relaxation of the problem and a
disjunction that is satisfied by all the feasible solution to the problem. As is now customary in the
MINLP literature, we will use the outer-approximation (OA) of MIQCP as the quintessential convex
relaxation. We use the phrase “suitably defined OA” in this paper to emphasize the dependence of OA
under discussion on the solution (x̂, Ŷ ) to the convex relaxation of MIQCP.

As for the choice of disjunctions, we seek the sources of non-convexities in MIQCP. Evidently,
MIQCP has two of these, namely, the integrality conditions on the xj (j ∈ NI) variables and the
non-linear equations Y = xxT . Integrality constraints have been used to derive disjunctions in MILP
for the past five decades, and we do not add anything new to this body of work (also see [29]) . Our
main contribution lies in deriving valid disjunctions from Y = xxT , by analyzing the eigenvectors of
the matrix Ŷ − x̂x̂T (defined with respect to a solution (x̂, Ŷ ) of the current relaxation), and deriving
“univariate expressions” of the form Y.ccT ≤ (cT x)2 which are subsequently used to derive disjunctive
cuts.

The rest of the paper is organized as follows. In §2, we revisit some of the basic ideas in disjunctive
programming and give a detailed description of our disjunctive cut generator. In §3, we derive a
large class of valid disjunctions for MIQCP and establish interesting connections with elementary
0-1 disjunctions in MILP. In §4, we investigate the problem of designing disjunctions that use more
problem information than is available from the eigenvectors of Ŷ − x̂x̂T . We introduce the notion of the
width of a disjunction, and show that disjunctions with smaller widths are likely to give rise to stronger
disjunctive cuts. We build on this observation and design a MILP model to find better disjunctions.
We also briefly discuss a scheme for diversifying the class of disjunctions based on the Grahm-Schmidt
orthogonalization procedure. Finally, in §5, we report computational results on three types of instances:
selected problems from GLOBALLib [17], some examples of MIQCP instances from [20] which arise in

1 For symmetric matrices A and B of conformable dimensions, we define A.B = tr(AB).
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chemical engineering applications and some continuous boxed-constrained Quadratic Programs (QPs)
from [34].

Proofs of most of the propositions presented in this paper are straightforword, and hence omitted
for the sake of brevity. A preliminary version of this paper appeared in the 2008 IPCO Proceedings
[23].

2 Disjunctive Programming

In this section we review some of the basic ideas from disjunctive programming and give a de-
tailed description of our cut generator. Given a polytope P = {x | Ax ≥ b} , a disjunction D =
∨q

t=1 (Dtx ≥ dt) and a point x̂ ∈ P , a central question in disjunctive programming is to show that
x̂ ∈ Q = clconv ∪q

t=1 {x ∈ P | Dtx ≥ dt} or find a valid inequality αx ≥ β for Q that is violated by x̂ .
This question arises in several areas of computational optimization where the specific form of the

polytope P and disjunction D is governed by the underlying application. For instance, in the context
of MILP, the polytope P usually represents the LP-relaxation of the MILP, while the disjunctions
are obtained by exploiting the integrality constraints (see for example [3,5]). Similarly, in the context
of probabilistic programming, P usually represents the deterministic variant of the problem, while
the disjunction is derived from the so-called p-efficient frontier [26,25]. In the context of MIQCP, P
will represent a suitably chosen outer-approximation of MIQCP, while the disjunction is obtained
by exploiting the integrality constraints on the variables xj (j ∈ NI) or from the eigenvectors of the
matrix Y − xxT (see §3).

The theorem that follows formulates the separation problem mentioned above as a linear program.
It follows immediately from the results presented in [2].

Theorem 1 x̂ ∈ Q if and only if the optimal value of the following Cut-Generation Linear Program
(CGLP) is non-negative.

(CGLP)

min αx̂ − β
s.t.

α = utA + vtDt , t = 1 . . . q ;
β ≤ utb + vtdt , t = 1 . . . q ;

ut, vt ≥ 0 , t = 1 . . . q ;
∑q

t=1 (utξ + vtξt) = 1 ,

where ξ, ξt (t = 1 . . . q) are any non-negative vectors of conformable dimensions that satisfy ξt >
0 (t = 1 . . . q) . If the optimal value of the CGLP is negative, and (α, β, u1, v1, . . . , uq, vq) is an optimal
solution of the CGLP, then αx ≥ β is a valid inequality for Q which cuts off x̂ .

The constraint
∑q

t=1 (utξ + vtξt) = 1 of the CGLP, referred to as the normalization constraint,
plays a central role in determining the strength and numerical stability of the resulting cut (see [5]).
In our computational results, we used the following normalization:

1. ξt
i = 1 , ∀ i = 1 . . .mt , t = 1 . . . q , where mt denotes the number of rows in the matrix Dt .

2.

ξi =

{

0 , for i ∈ L ;
||ai||1 , otherwise,

where L denotes the set of lower-bound constraints in Ax ≥ b , while ai denotes the ith row of the
matrix A .

The above normalization has two important characteristics. First, it implicitly scales the constraints
in Ax ≥ b (other than the lower-bound constraints) so that all of them have a ℓ1-norm of 1 , which
in turn significantly improves the numerical properties of the resulting cut. Second, assigning a nor-
malization coefficient of zero to the lower-bound constraints allows us to handle these constraints as
bounds on variables associated with the dual of the CGLP, thereby speeding up the overall algorithm
to solve the CGLP.

In order to use the machinery of disjunctive programming to strengthen the formulation of MIQCP,
we need a class of disjunctions that are satisfied by every feasible solution to MIQCP. Note that
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MIQCP has two sources of non-convexities, namely the integrality constraints on xj (j ∈ NI) vari-
ables, and the equality constraints Y = xxT . While the former can be used to derive split disjunctions,
as is usually done in MILP, the latter need to be handled more carefully. The section that follows gives
a novel way of deriving valid disjunctions from the constraints Y = xxT .

3 Valid Disjunctions for MIQCP

Throughout the paper, unless otherwise stated, we denote by (x̂, Ŷ ) the solution to a convex relaxation
of MIQCP which we want to cut off.

Note that for c ∈ R
n , any feasible solution to MIQCP satisfies (cT x)2 = Y.ccT , which in turn is

equivalent to the following two inequalities (cT x)2 ≤ Y.ccT and (cT x)2 ≥ Y.ccT . The former of these
two inequalities is a convex quadratic constraint that can be readily added to the formulation. The
second constraint (cT x)2 ≥ Y.ccT , on the other hand, gives rise to the following disjunction which is
satisfied by every feasible solution to MIQCP:

(1)

[

ηL(c) ≤ cT x ≤ θ
−(cT x)(ηL(c) + θ) + θηL(c) ≤ −Y.ccT

]

∨

[

θ ≤ cT x ≤ ηU (c)
−(cT x)(ηU (c) + θ) + θηU (c) ≤ −Y.ccT

]

,

where ηL(c) = min{cT x | (x, Y ) ∈ P̃} , ηU (c) = max{cT x | (x, Y ) ∈ P̃} , P̃ is a suitably chosen

relaxation of MIQCP and θ ∈ (ηL(c), ηU (c)) . In our computational experiments, we chose P̃ to
be a suitably defined outer-approximation of MIQCP and θ = cT x̂ . The above disjunction can be
derived by splitting the range [ηL(c), ηU (c)] of the function cT x over P̃ into two intervals [ηL(c), θ] and
[θ, ηU (c)] and constructing a secant approximation of the function −(cT x)2 in each of the intervals,
respectively. The above disjunction can be used to derive disjunctive cuts by using the apparatus of
CGLP. Furthermore, for any integer q > 1 , a q-term disjunction can be obtained by splitting the
[ηL(c), ηU (c)] interval into q parts and constructing a secant approximation of −(cT x)2 in each one
of the q intervals. Non-convex inequalities of the form (cT x)2 ≥ Y.ccT are referred to as univariate
expressions in the sequel.

From a computational standpoint, the only question that remains to be answered is, how can we
judiciously choose a vector c that is likely to give rise to strong cuts. We describe two procedures for

deriving such vectors; both of these procedures use the eigenvectors of the matrix Ẑ = Ŷ − x̂x̂T . Let
c1, . . . , cn denote a set of orthonormal eigenvectors of Ẑ , and let µ1 ≥ µ2 . . . ≥ µn be the corresponding
eigenvalues.

Let k ∈ {1, . . . , n} , and let c = ck . Note that if µk < 0 , then (cT x)2 ≤ Y.ccT is a valid convex

quadratic cut which cuts off (x̂, Ŷ ) . If µk > 0 , then (cT x)2 ≥ Y.ccT is a valid inequality (albeit non-

convex) for MIQCP which cuts off (x̂, Ŷ ) . Consequently, in this case the disjunction derived from
(cT x)2 ≥ Y.ccT is a good candidate for generating disjunctive cuts. In our computational experiments,

we added a convex quadratic cut from every negative eigenvalue of Ẑ , and generated a disjunctive cut
(if any) from every positive eigenvalue of Ẑ .

Two comments are in order. First, the relaxation of MIQCP obtained by replacing Y = xxT by
Y − xxT < 0 has been studied by several other authors ([19,28,8,1]). From an engineering viewpoint,
incorporating the positive semi-definiteness condition Y − xxT < 0 as part of the relaxation poses a
serious hurdle, since most general purpose solvers for nonlinear optimization (such as Ipopt [35] and
FilterSQP [15]) are not designed to handle conic constraints of the form Y − xxT < 0 , or equivalently

[

1 x
xT Y

]

< 0 .

Special purpose software packages for conic programming (such as SeDuMi [30]), on the other hand,
cannot handle arbitrary convex constraints. Since our solver for the convex relaxations Ipopt [35]
is a general purpose solver, we incorporated the effect of Y − xxT < 0 by iteratively generating
convex quadratic inequalities (cT x)2 ≤ Y.ccT derived from eigenvectors c of Ẑ associated with negative
eigenvalues.

Second, our approach of strengthening the relaxation of MIQCP by generating disjunctive cuts can
also be viewed as convexifying the feasible region of MIQCP. Convexification of non-convex feasible



4 Saxena, Bonami & Lee

regions is an active research area in the MINLP community ([31,32,33,34]). Most of these convexifi-
cation based approaches, however, aim to convexify non-convex problem constraints individually, and
often fail to exploit the interaction across problem constraints to derive stronger cuts. A disjunctive
programming based approach, such as the one presented in this paper, takes a holistic view of the
problem and tries to draw stronger inferences à la disjunctive cuts by combining information from all
of the problem constraints.

Balas [2] showed that mixed 0-1 linear programs (M01LP) are special cases of facial disjunctive
programs which possess the sequential convexifiability property. Simply put, this means that under
suitable qualification conditions, the closed convex hull of all feasible solutions to a M01LP can be
obtained by imposing the 0-1 condition on the binary variables sequentially; i.e. by imposing the 0-1
condition on the first binary variable and convexifying the resulting set, followed by imposing the
0-1 condition on the second variable, and so on. The theorem that follows proves a similar result for
MIQCP.

Theorem 2 Suppose that the feasible region of MIQCP is bounded, and that all of the integer-
constrained variables in MIQCP are also constrained to be binary. Let c1, . . . , cn denote a set of
mutually-orthogonal unit vectors in R

n, and let

S0 =







(x, Y )

∣

∣

∣

∣

∣

∣

Ai.Y + aT
i x + bi ≤ 0 i = 1 . . .m

l ≤ x ≤ u
Y − xxT < 0







Sj = clconv
(

Sj−1 ∩
{

(x, Y ) | Y.cjc
T
j ≤ (cT

j x)2
})

for j = 1 . . . n

Sn+j = clconv (Sn+j−1 ∩ {(x, Y ) | xj ∈ {0, 1}}) for j = 1 . . . p .

The following statements hold true:

Sn = clconv







(x, Y )

∣

∣

∣

∣

∣

∣

Ai.Y + aT
i x + bi ≤ 0 i = 1 . . .m

l ≤ x ≤ u
Y − xxT = 0







Sn+p = clconv











(x, Y )

∣

∣

∣

∣

∣

∣

∣

Ai.Y + aT
i x + bi ≤ 0 i = 1 . . .m

l ≤ x ≤ u
Y − xxT = 0

xj ∈ {0, 1} j = 1 . . . p











.

⊓⊔
The above theorem follows immediately from the results presented in [6] and the observation that

{(x, Y ) | Y − xxT < 0}∩ {(x, Y ) | Y.cjcj ≤ (cT
j x)2 ∀j = 1 . . . n} = {(x, Y ) | Y = xxT }, where c1, . . . cn

is any set of mutually orthogonal unit vectors in R
n. Some remarks are in order.

First, the boundedness assumption in the above theorem can be relaxed by imposing the qualifica-
tion condition discussed in [6]; the resulting theorem, however, is too technical and of limited interest
in context of the current paper. Second, note that the above theorem holds true for any choice of mu-
tually orthogonal unit vectors c1, . . . cn in R

n. Alternatively, for any set of such n mutually orthogonal
unit vectors, MIQCP can be reformulated as

min



















aT
0 x

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ai.Y + aT
i x + bi ≤ 0 i = 1 . . .m

l ≤ x ≤ u
Y − xxT < 0

Y.cjc
T
j ≤ (cT

j x)2 j = 1 . . . n
xj ∈ {0, 1} j = 1 . . . p



















.

For the purpose of cuts generation, we would like to use a reformulation that most effectively elucidates
the infeasibility of the solution (x̂, Ŷ ) of the convex relaxation w.r.t MIQCP. In other words, we are
interested in a set of mutually orthogonal unit vectors {c1, . . . , cn} that maximize the infeasibility

maxj=1...n cT
j (Ŷ − x̂x̂T )cj of (x̂, Ŷ ) w.r.t the corresponding reformulation of MIQCP. Clearly, the set

of eigenvectors of Ŷ − x̂x̂T constitutes an optimal solution to the above problem. Thus our choice of
using the eigenvectors of Ŷ − x̂x̂T to construct univariate expressions can be viewed as a dynamic
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reformulation scheme which rotates the coordinate axes so as to amplify the hidden infeasibilities of
Ŷ − x̂x̂T w.r.t MIQCP.

Third, there is a distinct difference between M01LP and MIQCP in each step of the sequential
convexification process. To see this, note that M01LP with a single binary variable is a polynomial-
time solvable problem; in fact, Balas [2] gives a polynomial-sized lifted linear-programming formulation
of this problem. On the other hand, a similar problem in the context of MIQCP involves minimizing
a linear function over a non-convex set of the form,















(x, Y )

∣

∣

∣

∣

∣

∣

∣

∣

Ai.Y + aT
i x + bi ≤ 0 i = 1 . . .m

l ≤ x ≤ u
Y − xxT < 0

Y.ccT ≤ (cT x)2















,

for some unit vector c. It is not immediately clear if this is a polynomial-time solvable problem; in fact,
its likely to be a NP-hard problem itself (see [21]).

4 More disjunctions

Note that univariate expressions derived from eigenvectors of Ẑ are oblivious to other constraints in the
problem. In other words, these eigenvectors are not influenced by most of the problem constraints, and
hence do not completely exploit the problem structure. In this section, we give a systematic procedure
for generating univariate expressions that utilize all of the problem constraints, and are hence likely
to give rise to stronger cuts (also see §5).

For c ∈ R
n , let ηL(c) = min{cT x | (x, Y ) ∈ P} and ηU (c) = max{cT x | (x, Y ) ∈ P}, for a suitably

chosen outer approximation P of MIQCP. Let η(c) = ηU (c) − ηL(c) denote the width of the interval
[ηL(c), ηU (c)] . The following inequality represents the secant approximation of the function −(cT x)2

in the [ηL(c), ηU (c)] interval, and is hence a valid disjunctive cut derived from the disjunction (1).

(2) −cT x(ηL(c) + ηU (c)) + ηL(c)ηU (c) ≤ −Y.ccT .

The proposition that follows gives a closed-form expression for the maximum error incurred by the
secant approximation of the negative square function in a bounded interval.

Proposition 1 Let f : R → R such that f(x) = −x2 , and let g(x) = −x(a+b)+ab represent the secant
approximation of f(x) in the [a, b] (a, b ∈ R) interval; then maxx∈[a,b] (f(x) − g(x)) = (a − b)2/4 .

As a direct consequence of the above proposition, it follows that secant-approximation error incurred
by (2) is proportional to η(c)2 . Consequently, we can use −η(c) as a proxy to measure the strength
of the disjunctive cuts obtainable from Y.ccT ≤ (cT x)2 . The proposition that follows shows that η(c)
can be computed by solving a linear program.

Proposition 2 Let P = {(x, Y ) | Ax + BY ≥ b} , where B is a tensor of conformable dimensions.
Then

η(c) = −max (u + v)T b
s.t.

uA = c ;
−vA = c ;
u.B = 0 ;
v.B = 0 ;
u, v ≥ 0 .

To summarize, we are looking for vectors c ∈ R
n whose univariate expression Y.ccT ≤ (cT x)2 is

violated by (x̂, Ŷ ) and has a small width η(c) . Note that if we restrict our attention to the sub-

space spanned by eigenvectors of Ẑ with positive eigenvalues, then the first condition is automatically
satisfied. Thus, we can model the problem of determining a vector c that gives the best univariate
expression as
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min η(c) − ǫ
(

∑n

j=1 |λj |µj

)

s.t.
c =

∑n

j=1 λjcj
∑n

j=1 |λj | = 1 ;
λj = 0 , ∀j ∈ {1 . . . n} s.t. µj ≤ 0 .

In the above model, the constraint
∑n

j=1 |λj | = 1 enforces that the ℓ1-norm of c expressed in

the basis defined by (c1, . . . , cn) is equal to 1 . The constraint λj = 0 ∀j s.t µj ≤ 0 ensures that

c lies in the subspace spanned by eigenvectors of Ẑ with positive eigenvalues. The penalty term

ǫ
(

∑n

j=1 |λj |µj

)

(ǫ = 10−4) expresses our desire to bias c toward eigenvectors with large eigenval-

ues. The above model can be easily recast as the following mixed integer program, referred to as
Univariate-expression Generating Mixed Integer Program (UGMIP):

(UGMIP)

min −(u + v)T b −
∑n

j=1 λ+
j µjǫ

s.t.
uA = c ;

−vA = c ;
u.B = 0 ;
v.B = 0 ;
u, v ≥ 0 ;

c =
∑n

j=1 λjcj ;
zj − 1 ≤ λj , ∀j = 1 . . . n ;

λj ≤ zj , ∀j = 1 . . . n ;
λ+

j ≤ λj + 2(1 − zj) , ∀j = 1 . . . n ;

λ+
j ≤ −λj + 2zj , ∀j = 1 . . . n ;

λ+
j ≥ 0 , ∀j = 1 . . . n ;

∑n

j=1 λ+
j = 1 ;

λj = 0 , ∀j ∈ {1 . . . n} s.t. µj ≤ 0 ;
zj ∈ {0, 1} j ∈ {1, . . . , n}.

Another idea that has played a significant role in the successful application of general-purpose
cutting planes in MILP is that of cut diversification [14,5]. Cut diversification refers to the strategy of
adding a batch of cuts, each of which affects a different part of the solution of the convex relaxation,
thereby triggering a collaborative action and yielding improvements that cannot be obtained by a
single cut. For instance, the tremendous practical performance of Mixed Integer Gomory Cuts is often
attributed to their well-diversified nature (see [9]). Interestingly, the above UGMIP can be easily
augmented to generate a set of diversified vectors instead of a single vector. To see this, suppose that

a set of vectors c̃k =
∑n

j=1 λ
(k)
j cj (i = 1 . . .K) has already been generated, and we are interested in

finding a vector c that is different from c̃k (k = 1 . . .K) . This can be accomplished by appending the
following constraints to UGMIP and resolving the resulting mixed integer program:

n
∑

j=1

λjλ
k
j = 0 ∀k = 1 . . .K .

This diversification scheme is motivated by the well known Grahm-Schmidt orthogonalization proce-
dure for generating an orthogonal basis of a finite-dimensional vector space. To see this, observe that
at the end of each step of the above diversification procedure, the new vector c is orthogonal to each
one of the vectors c̃k for k = 1 . . .K.

In our computational experiments, we solved UGMIP using CPLEX 10.1, enumerating at most 2000
branch-and-bound nodes. Furthermore, the diversification scheme mentioned above was used iteratively
until the resulting UGMIP became infeasible or CPLEX was unable to find a feasible solution within
the stipulated node limit.
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5 Computational Results

We report computational results in this section. Since the aim of these experiments was to assess the
performance of different classes of cutting planes and their relative strengths, we report the percentage
duality gap closed by each one of them at the root node. All of the experiments described in this
section used the following general setup:

1. Solve the convex relaxation of MIQCP.
2. Generate cutting planes to cut off (x̂, Ŷ ) .
3. If a violated cut was generated, then goto step (1), else STOP.

The above loop was repeated until a time-limit of 60 minutes was reached or the code was unable
to find any violated cut. We implemented the following three variants of cutting planes discussed in
the previous sections.

– Variant 1: Only convex quadratic cuts derived from eigenvectors associated with negative eigen-
values of Ŷ − x̂x̂T were used.

– Variant 2: Same as Variant 1, except that disjunctive cuts from univariate expression derived from
eigenvectors of Ẑ with positive eigenvalues were also used.

– Variant 3: Same as Variant 2 except that disjunctive cuts from additional univariate expressions
found by using the UGMIP machinery and diversification scheme were also used.

The three variants were implemented using the open-source framework Bonmin [7] from COIN-OR.
The nonlinear solver used is Ipopt [35], the eigenvalue problems are solved using Lapack and the
cut generation linear programs are solved using CPLEX 10.1. A few comments are in order. First,
we strengthen the initial convex relaxation of MIQCP by adding the following well-known RLT
inequalities [22,27], for i, j ∈ {1 . . . n} such that i ≤ j,

yij − lixj − ujxi + liuj ≤ 0
yij − ljxi − uixj + ljui ≤ 0
yij − ljxi − lixj + lj li ≥ 0
yij − ujxi − uixj + ujui ≥ 0 .

Second, while generating the disjunctive cuts, we remove all of the RLT inequalities from the
outer approximation except those which are binding at the solution of the convex relaxation. While
solving the CGLP we use a column-generation based approach to generate ut

i variables corresponding
to non-binding RLT inequalities. Because there is a huge number O(n2) of RLT inequalities, we found
it to be more efficient to use a column generation based approach to handle them while solving the
CGLPs, thereby exploiting the reoptimization capabilities of the CPLEX linear-programming solver.
Since Ipopt (as well as other interior-point methods) has very limited support for warm-starting, we
found it more suitable to supply all of the RLT inequalities simultaneously while solving the convex
relaxations.

Third, in order to control the size of the convex relaxation we used the following cut-purging
strategy. We check every third iteration if the optimal value of the convex relaxation has improved
over the last three iterations; if an improvement is detected, then we remove all of the cuts from the
current formulation that are not binding at the solution to the convex relaxation. Fourth, we used the
following mechanism to control the rank of the disjunctive cuts.2 At every third iteration, we make a
copy of the current convex relaxation, and use it to derive outer-approximation and disjunctive cuts in
the subsequent three iterations. Consequently, we generate only rank-1 cuts in the first three iterations,
only rank-2 cuts in the next three iterations and so on. Preliminary experimentation clearly suggests
that such a rank-control mechanism significantly improves the numerical properties of the cuts, and
delays the eventual tailing off behavior which often occurs in cutting-plane procedures.

Next we describe our computational results on the following three test-beds: GLOBALLib [17],
instances from Lee and Grossmann [20], and Box-QP instances from [34].

GLOBALLib is a repository of 413 global optimization instances of widely varying types and
sizes. Of these 413 instances, we selected all problems with at most 50 variables which can be easily

2 See [5] and [14] for importance of low-rank cuts in cutting plane procedures.
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V1 V2 V3
>99.99 % gap closed 16 23 23
98-99.99 % gap closed 1 44 52
75-98 % gap closed 10 23 21
25-75 % gap closed 11 22 20
0-25 % gap closed 91 17 13
Total Number of Instances 129 129 129
Average Gap Closed 24.80% 76.49% 80.86%

Table 1 Summary Results: GLOBALLib instances with non-zero Duality Gap

converted into instances of MIQCP. For instance, some of the problems have product-of-powers
terms (x1x2x3x4x5, x3

1, x0.75, etc.) which can be converted into quadratic expressions by introducing
additional variables. Additionally, some of the problems do not have explicit upper bounds on the
variables; for such problems we used linear programming techniques to determine valid upper bounds
thereby making them amenable to techniques discussed in this paper. The final set of selected problems
comprised 153 instances.3

Among the 153 instances, 24 instances have zero duality gap4; in other words the RLT relaxation
already closes 100% of the gap on these instances. Tables 6, 7 and 8 report the computational results on
the remaining 129 instances, while Table 1 reports the same in summarized form. The second column of
Tables 6, 7 and 8 reports the optimal value of the RLT relaxation of MIQCP, while the third column
reports the value of the best known solution. Note that either Variant 2 or Variant 3 closes more than
99% of the duality gap on some of the instances (st qpc-m3a, st ph13, st ph11, ex3 1 4, st jcbpaf2,
ex2 1 9 etc) on which Variant 1 is unable to close any gap. Furthermore, Variant 3 closes 10% more
duality gap than Variant 2 on some of the instances (ex2 1 1, ex3 1 4, ex5 2 4, ex7 3 1, ex9 2 3, st pan2
etc) showing the interest of disjunctions obtained from solution of the UGMIP problem.

Finally, in order to assess the performance of our code on the 24 instances with no duality gap,

we report the spectral norm of Ŷ − x̂x̂T in Table 9, where (x̂, Ŷ ) denotes the solution of the convex
relaxation at the last iteration of the respective variant. Note that we were able to generate almost-
feasible solutions (i.e spectral-norm ≤ 10−4) on 17 out of 24 instances.

The ex9⋆ instances in the GLOBALLib repository contain the linear-complementarity constraints
(LCC) xixj = 0 on a subset of variables. These constraints give rise to the following disjunction, (xi =
0) ∨ (xj = 0), which in turn can be embedded within the CGLP framework to generate disjunctive
cuts. In order to test the effectiveness of these cuts, we modified our code to automatically detect linear-
complementarity constraints, and use the corresponding disjunctions along with the default medley
of disjunctions to generate disjunctive cuts. Table 10 reports our computational results. It is worth
observing that while the default version of our code is unable to close any significant gap on the ex9 1 4
instance, when augmented with disjunctive cuts from the linear-complementarity constraints, it closes
100% of the duality gap.

Next we present our computational results on the MIQCP instances proposed in [20]. These
problems have both continuous and integer variables and quadratic constraints. They are of relatively
small size with between 10 and 54 variables. Table 2 summarizes the experiment. RLT is the value
of the RLT relaxation, Opt is the value of the global optimum of the problem and V1, V2 and V3
give the strengthened bound obtained by each of the three variants. As can be seen from the results
Variants 2 and 3 close almost all the gap for the secondx and third instance. For the first and fourth
example, the gap closed is not as much, but in all cases Variant 2 and 3 close substantially more gap
than Variant 1.

Next, we present our results on box-constrained QPs. The test bed consists of a subset the test
problems used in [34]. These problems are randomly generated box QPs with A0 of various densities.
For this experiment, we ran the three variants of our cut-generation procedures on the 42 problems
with 20, 30 and 40 variables. We found that the RLT relaxation of these problem when strengthened

3 These instances can be downloaded in AMPL .mod format from
www.andrew.cmu.edu/user/anureets/MIQCP

4 We define the duality gap closed by a relaxation I of MIQCP as, opt(I)−RLT

opt−RLT
× 100, where opt(I), RLT,

and opt denote the optimal value of I, the RLT relaxation of MIQCP and MIQCP, respectively.
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Instance RLT Opt V1 V2 V3
Example 1 -58.70 -11 -58.70 -37.44 -37.44
Example 2 -414.94 -14 -93.19 -14.26 -14.26
Example 3 -819.66 -510.08 -793.15 -513.61 - 511.10
Example 4 -499282.59 -116,575 -472,727.49 -363,487.69 -359,618.10

Table 2 Summary of results on the Lee-Grossmann examples.

V1 V2 V3 V2-SA V3-SA
>99.99 % 16 23 23 24 27
98-99.99 % 1 44 52 4 6
75-98 % 10 23 21 17 25
25-75 % 11 22 20 26 22
0-25 % 91 17 13 58 49
Average Gap Closed 24.80% 76.49% 80.86% 44.40% 52.56%

Table 3 Marginal Value of Disjunctive Programming

with the convex-quadratic cuts, already closes around 95% of the duality gap. Hence, in order to better
evaluate the performance of our cutting planes, we weakened the initial RLT relaxation (referred to as
wRLT in the sequel) by removing the inequalities yii ≤ xi; these inequalities are envelope inequalities
associated with the product term yii = xixi.

Table 11 summarizes the experiments. The second column of the table reports the optimal value
of the wRLT relaxation, whereas the third column of the table gives the value of the optimal solution
as reported in [34]. Overall, Variant 1 closes substantially less gap than Variants 2 and 3. On average
the amount of gap closed by Variant 1 is 46.81% while Variant 2 closes 65.28% and Variant 3 closes
71.51% .

Note that there are two ways of deriving a cut form a univariate expression (cT x)2 ≥ Y.ccT . First, we
can relax (cT x)2 ≥ Y.ccT to a disjunction (1), and embed the resulting disjunction in the framework of
CGLP to derive a disjunctive cut, as we currently do. Second, we can directly use the secant inequality
(2) to cut off the solution (x̂, Ŷ ) of the convex relaxation, if (x̂, Ŷ ) violates (2). While the former
approach takes a holistic view of the problem, it is also computationally more expensive than the
latter. Naturally, we are interested in the marginal value of disjunctive programming; i.e., how much
do we gain by using disjunctive cuts derived from a computationally-expensive CGLP machinery,
as compared to using the readily available secant inequality? In order to answer this question we
conducted the following experiment on 129 GLOBALLib instances with non-zero duality gap. We
modified our code so that once the univariate expression (cT x)2 ≥ Y.ccT has been generated, we
use the secant inequality (2) instead of invoking our disjunctive cut generator. Tables 12, 13 and 14
report the computational results, while Table 3 reports the same in summarized form. A suffix of ”SA”
indicates that the corresponding version of our code was modified to use the secant inequality (2)
instead of invoking the disjunctive cut generator.

Two comments are in order. First, versions of the code that use the secant inequality do close
a significant proportion of the gap, namely 44.40% and 52.56% with Variants 2 and 3, respectively.
Second, using disjunctive cuts improves these numbers to 76.49% and 80.86%, respectively, thereby
demonstrating the marginal benefits of disjunctive programming.

Note that Variants 2 and 3 also use the convex-quadratic cuts derived from eigenvectors of Ŷ − x̂x̂T

with negative eigenvalues. Similar to the above experiment, we designed the following experiment to
evaluate the marginal value of these convex-quadratic cuts in Variants 2 and 3. We modified our code
so that convex quadratic cuts were not added in each iteration, and only disjunctive cuts were used to
strengthen the initial formulation. Tables 15, 16 and 17 report the computational results, while Table
4 reports the same in summarized form. A suffix of ”Dsj” indicates that the corresponding version of
our code was modified to use only disjunctive cuts, and not the convex-quadratic cuts. Note that the
absence of the convex-quadratic cuts severely affects the performance of variants 2 and 3.

The basic premise of our paper lies in generating valid cutting planes for MIQCP from the spec-
trum of Ŷ − x̂x̂T . The results presented so far discuss the contribution of these cutting planes in
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V1 V2 V3 V2-Dsj V3-Dsj

>99.99 % 16 23 23 1 1
98-99.99 % 1 44 52 29 33
75-98 % 10 23 21 10 10
25-75 % 11 22 20 29 24
0-25 % 91 17 13 60 61
Average Gap Closed 24.80% 76.49% 80.86% 41.54% 42.90%

Table 4 Marginal Value of Convex Quadratic Cuts

Figure 1 Plot of the sum of the positive and negative eigenvalues for st jcbpaf2 with versions 1,2 and 3.

Figure 2 Plot of the sum of the positive and negative eigenvalues for ex 9 2 7 with versions 1,2 and 3.

reducing the duality gap; next we present detailed results on three instances to highlight their impact
on the spectrum itself. For each one of the three instances, we report the sum of the positive and
negative eigenvalues of Ŷ − x̂x̂T in each iteration of Variant 1, 2 and 3 of our algorithm. We chose one
instance for each one the three characterizations listed in Table 5.

% Duality Gap closed by
V1 V2 Instance Chosen

< 10 % > 90 % st jcbpaf2
> 40% < 60% ex9 2 7
< 10% < 10% ex7 3 1

Table 5 Selection Criteria

Figures 1, 3 and 2 report the key results. The horizontal axis represents the number of iterations
while the vertical axis reports the sum of the positive (broken line) and negative (solid line) eigenvalues

of Ŷ − x̂x̂T . Some remarks are in order.
First, the graph of the sum of negative eigenvalues converges to zero much faster than the corre-

sponding graph for positive eigenvalues. This is not surprising since the problem of eliminating the
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Figure 3 Plot of the sum of the positive and negative eigenvalues for ex 7 3 1 with versions 1,2 and 3.

negative eigenvalues is a convex programming problem, namely a SDP; our approach of adding convex-
quadratic cuts is just an iterative cutting-plane based technique to impose the Y −xxT < 0 condition.
Second, Variant 1 has a widely varying effect on the sum of positive eigenvalues of Y − xxT . This is
to be expected since the Y − xxT < 0 condition imposes no constraint on the positive eigenvalues
of Y − xxT . Furthermore, the sum of positive eigenvalues represents the part of the non-convexity of
MIQCP that is not captured by the SDP relaxation. Third, consider the graphs corresponding to
Variants 2 and 3 for the st jcbpaf2 instance. Note that for both of these variants, the sum of positive
eigenvalues decays to zero — albeit, the rate of decay is much higher for Variant 3 than for Variant 2.
This lends support to the observation that Variant 3 is able to close a higher fraction of the duality gap
in a fewer number of iterations, as compared to Variant 2. The same inference can be obtained by a
careful examination of tables 1, 6, 7 and 8; despite being more computationally demanding, Variant 3
is able to close more duality gap than Variants 1 and 2 (on average) while operating under the common
time-limit of 60 minutes.

6 Conclusion

Since the mid 90’s, SDP relaxations of certain combinatorial problems have received considerable at-
tention (for example, see [10,11,12,13,18]). Subsequently, the SDP relaxation of MIQCP has been
extensively studied, both in the theoretical and computational communities. While researchers con-
centrated on exploring the strengths and weaknesses of the convex constraint Y − xxT < 0, a detailed
investigation of its non-convex alter ego xxT − Y < 0 had remained an unchartered territory.

In this paper, we have described novel techniques for combining ideas from disjunctive program-
ming, lift-and-project methodology and spectral theory to generate cutting planes for MIQCP that
exploit the non-convex constraint xxT −Y < 0. We introduced the notion of univariate expressions and

discussed techniques for deriving them from eigenvectors of Ŷ − x̂x̂T with positive eigenvalues. These
univariate expressions were used to derive valid disjunctions which in turn were embedded in the CGLP
machinery to derive disjunctive cuts. We noticed the importance of the width of a univariate expression
and designed a MIP model to extract those such expressions having smaller width by taking combi-
nations of eigenvectors. All of the ideas presented in this paper were tested on a test-bed of MIQCP

problem instances comprising more than 200 instances. While the computational results corroborated
the usefulness of these ideas, the discussion on marginal contribution of disjunctive programming and
convex quadratic cuts further deepened our understanding of relaxations for MIQCP.

Interestingly, many of the ideas presented in this paper can be used to derive disjunctive cuts for
arbitrary non-convex MINLPs. For instance, consider a MINLP that includes a univariate non-convex
inequality of the form y ≤ f(x) , where f : R → R is a convex function, x, y ∈ R and L ≤ x ≤ U .
In this case, one can derive valid disjunctions by splitting the range of x into two intervals, say [L, θ]
and [θ, U ] (where θ ∈ (L, U)), and deriving secant approximations of f(x) in each one of the intervals.
The resulting pair of secant inequalities represent a valid disjunction for the MINLP, which in turn
can be used with a linear outer-approximation of the MINLP to derive disjunctive cuts via the CGLP
machinery. The key challenge lies in choosing a univariate inequality y ≤ f(x) that is likely to give rise
to strong disjunctive cuts; as we have demonstrated in this paper, at least for the case of MIQCP,
univariate inequalities derived from eigenvectors of Ŷ − x̂x̂T seem to work well.
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Finally, we would like to emphasize that all of the relaxations of MIQCP′ derived in this paper
are defined in the extended space obtained by introducing the yij variables. While these additional yij

variables enhance the expressive power of our cutting planes, they also increase the size of the formu-
lation drastically resulting in a huge computational overhead which is incurred at every node of the
branch-and-bound tree. Ideally, we would like to extract the strength of these extended reformulations
in the form of cutting planes that are defined only in the space of the x variables. Systematic ap-
proaches for constructing such convex relaxations of MIQCP′ constitute the topic of our forthcoming
paper [24].
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Appendix

% Duality Gap Closed Time(sec)
Instance RLT OPT V1 V2 V3 V1 V2 V3

alkyl -2.7634 -1.7650 0.00 55.83 63.75 10.621 3619.874 3693.810
circle 0.0000 4.5742 45.74 99.89 99.84 0.218 0.456 0.664

dispatch 3101.2805 3155.2879 100.00 100.00 100.00 0.044 0.052 0.066
ex2 1 1 -18.9000 -17.0000 0.00 72.62 99.92 0.009 704.400 17.835

ex2 1 10 39668.0556 49318.0180 22.05 99.37 99.82 6.719 29.980 70.168
ex2 1 5 -269.4528 -268.0146 0.00 99.98 99.99 0.020 0.173 0.188
ex2 1 6 -44.4000 -39.0000 0.00 99.95 99.97 0.023 3397.650 54.326
ex2 1 7 -6031.9026 -4150.4101 0.00 41.17 45.58 0.188 3607.439 3763.506
ex2 1 8 -82460.0000 15639.0000 0.00 84.70 92.75 0.491 3632.275 3627.700
ex2 1 9 -2.2000 -0.3750 0.00 98.79 99.73 0.140 1587.940 3615.766
ex3 1 1 2533.2008 7049.2480 0.00 15.94 22.13 1.391 3600.268 3681.021
ex3 1 2 -30802.7563 -30665.5387 49.74 99.99 99.99 0.035 0.083 0.108
ex3 1 3 -440.0000 -310.0000 0.00 99.99 99.99 0.013 0.064 0.096
ex3 1 4 -6.0000 -4.0000 0.00 86.31 99.57 0.009 21.261 581.295
ex4 1 1 -173688.7998 -7.4873 100.00 100.00 100.00 0.287 0.310 0.444
ex4 1 3 -7999.4583 -443.6717 56.40 93.54 99.86 0.080 0.285 0.552
ex4 1 4 -200.0000 0.0000 100.00 100.00 100.00 0.247 0.243 0.532
ex4 1 6 -24075.0002 7.0000 100.00 100.00 100.00 0.185 0.308 0.508
ex4 1 7 -206.2500 -7.5000 100.00 100.00 100.00 0.128 0.114 0.165
ex4 1 8 -29.0000 -16.7389 100.00 100.00 100.00 0.043 0.059 0.103
ex4 1 9 -6.9867 -5.5080 0.00 43.59 37.48 0.008 1.307 1.273

ex5 2 2 case1 -599.8996 -400.0000 0.00 0.00 0.00 0.011 0.016 0.935
ex5 2 2 case2 -1200.0000 -600.0000 0.00 0.00 0.00 0.021 0.047 0.511
ex5 2 2 case3 -875.0000 -750.0000 0.00 0.36 0.31 0.016 0.358 0.474

ex5 2 4 -2933.3334 -450.0000 0.00 79.31 99.92 0.046 68.927 1044.400
ex5 2 5 -9700.0001 -3500.0001 0.00 6.27 6.37 1.825 3793.169 3618.084
ex5 3 2 0.9979 1.8642 0.00 7.27 21.00 0.355 245.821 3672.529
ex5 3 3 1.6313 3.2340 0.00 0.21 0.18 3764.946 3693.758 7511.839
ex5 4 2 2598.2452 7512.2301 0.00 27.57 26.41 1.141 3614.376 3866.626
ex7 3 1 0.0000 0.3417 0.00 0.00 85.43 0.313 5.582 3622.223
ex7 3 2 0.0000 1.0899 0.00 59.51 70.26 0.788 3609.704 3614.759
ex8 1 3 -7.7486E+12 1.0000 0.04 0.04 0.00 0.509 0.494 0.641
ex8 1 4 -13.0000 0.0000 100.00 100.00 100.00 0.020 0.038 0.051
ex8 1 5 -3.3333 0.0000 68.30 68.97 68.96 0.839 1.246 100.476
ex8 1 7 -757.5775 0.0293 77.43 77.43 95.79 75.203 75.203 3615.517
ex8 1 8 -0.8466 -0.3888 0.00 76.49 90.88 7.722 3607.682 3628.366
ex8 4 1 -5.0000 0.6186 91.84 91.09 86.49 3659.232 3642.131 4180.427
ex8 4 2 -5.0000 0.4852 94.07 93.04 87.87 3641.875 3606.071 3757.098
ex9 1 4 -63.0000 -37.0000 0.00 0.00 1.55 0.077 0.603 244.126
ex9 2 1 -16.0000 17.0000 54.54 60.04 92.02 3603.428 2372.638 3622.960

Table 6 GLOBALLib Instances with non-zero Duality Gap (Part 1)



Convex Relaxations of Non-Convex MIQCP 15

% Duality Gap Closed Time(sec)
Instance RLT OPT V1 V2 V3 V1 V2 V3

ex9 2 2 -50.0000 100.0000 70.37 88.29 98.06 1227.898 3606.357 3610.411
ex9 2 3 -30.0000 0.0000 0.00 0.00 47.17 0.125 3.819 3625.114
ex9 2 4 -396.0000 0.5000 99.87 99.87 99.89 2.801 8.897 5.258
ex9 2 6 -406.0000 -1.0000 87.23 87.93 62.00 851.127 2619.018 1058.376
ex9 2 7 -9.0000 17.0000 42.31 51.47 86.25 3602.364 3628.249 3627.920

himmel11 -30802.7566 -30665.5387 49.74 99.99 99.99 0.053 0.082 0.120
house -5230.5433 -4500.0000 0.00 86.93 97.92 0.435 12.873 149.678
hydro 4019717.9291 4366944.1597 100.00 100.00 100.00 8.354 20.668 191.447

mathopt1 -912909.0091 1.0000 100.00 100.00 100.00 1.727 2.448 3.770
mathopt2 -11289.0001 0.0000 100.00 100.00 100.00 0.351 0.229 0.400
meanvar 0.0000 5.2434 100.00 100.00 100.00 0.179 0.276 0.657
nemhaus 0.0000 31.0000 53.97 100.00 100.00 0.836 0.198 0.355

prob05 0.3151 0.7418 0.00 99.78 99.49 0.007 0.165 0.173
prob06 1.0000 1.1771 100.00 100.00 100.00 0.023 0.024 0.031
prob09 -100.0000 0.0000 100.00 99.99 100.00 0.582 0.885 1.689
process -2756.5935 -1161.3366 7.68 88.05 95.03 6.379 3620.085 3611.299

qp1 -1.4313 0.0008 85.76 89.12 81.23 3659.085 3897.521 3700.918
qp2 -1.4313 0.0008 86.13 89.15 83.06 3643.188 4047.592 4255.863

rbrock -659984.0066 -5.6733 100.00 100.00 100.00 0.353 3.194 5.611
st bpaf1a -46.0058 -45.3797 0.00 81.73 88.52 0.049 0.894 3.790
st bpaf1b -43.1255 -42.9626 0.00 90.73 92.86 0.047 3.299 12.166

st bpv2 -11.2500 -8.0000 0.00 99.99 99.99 0.033 0.029 0.034
st bsj2 -0.6260 1.0000 0.00 99.98 99.96 0.009 1.974 2.235
st bsj3 -86768.5509 -86768.5500 0.00 0.00 0.00 0.012 0.011 0.011
st bsj4 -72700.0507 -70262.0500 0.00 99.86 99.80 0.014 1.715 1.384
st e02 171.4185 201.1591 0.00 99.88 99.95 0.008 0.095 0.118
st e03 -2381.8947 -1161.3366 29.58 91.63 92.82 715.006 3639.297 3613.883
st e05 3826.3885 7049.2493 0.00 50.43 58.38 0.194 16.217 41.354
st e06 0.0000 0.1609 0.00 0.00 0.00 0.215 0.726 1.911
st e07 -500.0000 -400.0000 0.00 99.97 99.97 0.042 0.350 0.383
st e08 0.3125 0.7418 0.00 99.81 99.89 0.008 0.208 0.171
st e09 -0.7500 -0.5000 0.00 92.58 92.58 0.012 0.014 0.018
st e10 -29.0000 -16.7389 100.00 100.00 100.00 0.036 0.045 0.069
st e18 -3.0000 -2.8284 100.00 100.00 100.00 0.015 0.018 0.022
st e19 -879.7500 -86.4222 93.50 95.21 95.18 0.373 0.613 0.991
st e20 -0.8466 -0.3888 0.00 76.38 90.88 7.409 3610.271 3623.275
st e23 -3.0000 -1.0833 0.00 98.40 98.40 0.011 0.087 0.108
st e24 0.0000 3.0000 0.00 99.81 99.81 0.007 0.501 0.657
st e25 0.2473 0.8902 87.20 100.00 100.00 0.312 0.161 0.247
st e26 -513.0000 -185.7792 0.00 99.96 99.96 0.006 0.036 0.050

Table 7 GLOBALLib Instances with non-zero Duality Gap (Part 2)
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% Duality Gap Closed Time(sec)
Instance RLT OPT V1 V2 V3 V1 V2 V3

st e28 -30802.7566 -30665.5387 49.74 99.99 99.99 0.051 0.088 0.118
st e30 -3.0000 -1.5811 0.00 0.00 0.00 0.014 0.035 6.489
st e33 -500.0000 -400.0000 0.00 99.94 99.95 0.047 0.457 0.382
st fp1 -18.9000 -17.0000 0.00 72.62 99.92 0.009 658.824 18.013
st fp5 -269.4528 -268.0146 0.00 99.98 99.99 0.018 0.175 0.180
st fp6 -44.4000 -39.0000 0.00 99.92 99.97 0.025 3603.767 54.613

st fp7a -435.5237 -354.7506 0.00 45.13 53.58 0.151 806.493 1801.106
st fp7b -715.5237 -634.7506 0.00 22.06 55.51 0.153 11.941 3610.617
st fp7c -10310.4738 -8695.0122 0.00 44.26 57.10 0.181 3621.180 3672.666
st fp7d -195.5237 -114.7506 0.00 50.03 55.53 0.111 3627.749 3734.806
st fp8 7219.4999 15639.0000 0.00 0.83 3.17 0.331 4.911 88.867

st glmp fp2 7.0681 7.3445 0.00 45.70 49.74 0.009 0.732 1.170
st glmp kk92 -13.3548 -12.0000 0.00 99.98 99.98 0.023 0.038 0.053
st glmp kky -3.0000 -2.5000 0.00 99.80 99.71 0.011 0.133 0.248
st glmp ss1 -38.6667 -24.5714 0.00 89.30 89.30 0.031 0.556 0.736

st ht -2.8000 -1.6000 0.00 99.81 99.89 0.006 0.142 0.451
st iqpbk1 -1722.3760 -621.4878 97.99 99.86 99.99 3.825 5.086 286.844
st iqpbk2 -3441.9520 -1195.2257 97.93 100.00 100.00 2.515 31.614 243.169
st jcbpaf2 -945.4511 -794.8559 0.00 99.47 99.61 2.650 3622.733 3636.491

st jcbpafex -3.0000 -1.0833 0.00 98.40 98.40 0.012 0.085 0.114
st kr -104.0000 -85.0000 0.00 99.93 99.95 0.008 0.090 0.131

st m1 -505191.3385 -461356.9389 0.00 99.96 99.96 0.222 368.618 756.237
st m2 -938513.6772 -856648.8187 0.00 70.19 58.99 1.226 3641.449 3876.446

st pan1 -5.6850 -5.2837 0.00 99.72 99.92 0.007 0.926 0.771
st pan2 -19.4000 -17.0000 0.00 68.54 99.91 0.009 3038.430 26.401
st ph1 -243.8112 -230.1173 0.00 99.98 99.98 0.011 0.225 0.059

st ph11 -11.7500 -11.2813 0.00 99.46 98.19 0.007 0.910 0.337
st ph12 -23.5000 -22.6250 0.00 99.49 99.62 0.006 0.353 0.311
st ph13 -11.7500 -11.2813 0.00 99.38 98.80 0.009 0.751 0.703
st ph14 -231.0000 -229.7222 0.00 99.85 99.86 0.010 0.051 0.131
st ph15 -434.7346 -392.7037 0.00 99.83 99.81 0.009 0.476 0.541
st ph2 -1064.4960 -1028.1173 0.00 99.98 99.98 0.014 0.159 0.062

st ph20 -178.0000 -158.0000 0.00 99.98 99.98 0.007 0.036 0.049
st ph3 -447.8488 -420.2348 0.00 99.98 99.98 0.011 0.031 0.039

st phex -104.0000 -85.0000 0.00 99.96 99.96 0.007 0.088 0.088
st qpc-m0 -6.0000 -5.0000 0.00 99.96 99.96 0.007 0.015 0.023
st qpc-m1 -612.2714 -473.7778 0.00 99.99 99.98 0.009 0.223 0.233

st qpc-m3a -725.0518 -382.6950 0.00 98.10 99.16 0.025 3615.442 3727.123
st qpc-m3b -24.6757 0.0000 0.00 100.00 100.00 0.021 0.566 1.648

st qpk1 -11.0000 -3.0000 0.00 99.98 99.98 0.007 0.110 0.053
st qpk2 -21.0000 -12.2500 0.00 71.34 83.33 0.025 3599.788 3622.692
st qpk3 -66.0000 -36.0000 0.00 33.53 50.04 0.077 3621.930 3778.200

st rv1 -64.2359 -59.9439 0.00 96.19 98.44 0.023 3607.723 3602.339
st rv2 -73.0007 -64.4807 0.00 88.79 81.85 0.079 3601.528 44.550
st rv3 -38.5155 -35.7607 0.00 40.40 72.68 0.108 112.028 3807.828
st rv7 -148.9816 -138.1875 0.00 45.43 62.28 0.269 3640.861 3880.783
st rv8 -143.5829 -132.6616 0.00 29.90 45.80 0.663 3696.452 3874.801
st rv9 -134.9131 -120.1164 0.00 20.56 31.64 1.019 3920.213 3675.654

st z -0.9674 0.0000 0.00 99.96 99.95 0.009 2.749 0.790

Table 8 GLOBALLib Instances with non-zero Duality Gap (Part 3)
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Spectral Norm of Y − xx
T

Instance RLT Opt V1 V2 V3
st e17 0.0019 0.0019 0.000000 0.000000 0.000000

st qpc-m3c 0.0000 0.0000 0.000000 0.000000 0.000000
st qpc-m4 0.0000 0.0000 0.000000 0.000000 0.000000

ex2 1 2 -213.0000 -213.0000 0.000000 0.000000 0.000000
ex2 1 4 -11.0000 -11.0000 0.000000 0.000000 0.000000
st e42 18.7842 18.7842 0.000000 0.000000 0.000000
st fp2 -213.0000 -213.0000 0.000000 0.000000 0.000000
st fp4 -11.0000 -11.0000 0.000000 0.000000 0.000000

st bpk1 -13.0000 -13.0000 0.000000 0.000000 0.000000
st bpk2 -13.0000 -13.0000 0.000000 0.000000 0.000000

st glmp fp1 10.0000 10.0000 0.000000 0.000000 0.000000
st ph10 -10.5000 -10.5000 0.000000 0.000000 0.000000
st bpv1 10.0000 10.0000 0.027262 0.000007 0.000007

st glmp ss2 3.0000 3.0000 0.043577 0.000021 0.000021
st glmp kk90 3.0000 3.0000 0.021689 0.000022 0.000022

st e34 0.0156 0.0156 0.064299 0.000030 0.000029
st e01 -6.6667 -6.6667 0.056653 0.000046 0.000046
st fp3 -15.0000 -15.0000 0.293089 0.302328 0.000139

ex2 1 3 -15.0000 -15.0000 0.297487 0.000962 0.000150
st glmp fp3 -12.0000 -12.0000 0.000637 0.000235 0.000235

ex14 1 2 0.0000 0.0000 0.171873 0.171873 0.001654
ex14 1 5 0.0000 0.0000 0.146196 0.229286 0.103878
ex14 1 6 0.0000 0.0000 0.182808 0.208698 0.219895
st robot 0.0000 0.0000 0.230963 0.227246 0.215491

Table 9 GLOBALLib Instances with zero Duality Gap

% Duality Gap Closed Time (sec)
Instance RLT Opt V2 V3 V2 V3

ex9 1 4 -63.0000 -37.0000 100.00 99.97 2.462 22.418
ex9 2 1 -16.0000 17.0000 99.95 99.95 3609.323 2351.308
ex9 2 2 -50.0000 100.0000 100.00 100.00 401.642 743.086
ex9 2 3 -30.0000 0.0000 99.99 99.99 27.718 522.123
ex9 2 4 -396.0000 0.5000 99.99 100.00 3.547 5.136
ex9 2 6 -406.0000 -1.0000 80.22 92.09 338.001 3652.873
ex9 2 7 -9.0000 17.0000 99.97 99.95 3607.258 3478.207

Table 10 GLOBALLib Instances with Linear Complementarity Constraints
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% Duality Gap Closed Time (sec)
Instance wRLT OPT V1 V2 V3 V1 V2 V3

spar020-100-1 -1137 -706.5 58.66 95.40 99.64 3635.459 3638.200 3646.691
spar030-090-3 -2619.5 -1494 60.25 86.37 92.68 3730.348 3701.849 3607.885
spar040-060-2 -3011 -2004.23 43.05 55.79 61.63 3813.728 3707.992 3879.912
spar020-100-2 -1328.5 -856.5 70.36 93.08 97.81 3629.580 3636.665 3634.559
spar030-100-1 -2683.5 -1227.13 59.97 81.10 87.48 3647.126 3692.504 3624.834
spar040-060-3 -3532 -2454.5 56.60 72.63 79.30 3688.747 3764.079 3716.242
spar020-100-3 -1224 -772 70.70 97.47 99.97 3609.973 3632.560 3621.301
spar030-100-2 -2870.5 -1260.5 50.56 72.87 82.52 3662.868 3697.329 3753.816
spar040-070-1 -3194.5 -1605 53.82 64.03 70.28 3716.161 3642.681 3929.653
spar030-060-1 -1472.5 -706 32.55 60.00 73.32 3685.753 3823.051 3742.955
spar030-100-3 -2831.5 -1511.05 63.32 84.10 90.29 3712.164 3606.496 3682.094
spar040-070-2 -3446.5 -1867.5 45.84 57.91 63.86 3695.329 3756.377 3767.655
spar030-060-2 -1741 -1377.17 62.19 91.16 93.04 3731.242 3715.979 3748.334
spar040-030-1 -1162 -839.5 14.16 31.05 42.21 3694.667 3719.223 3874.422
spar040-070-3 -3833.5 -2436.5 50.57 62.94 69.89 3783.908 3693.666 3656.632
spar030-060-3 -2073.5 -1293.5 53.27 77.41 85.36 3666.710 3696.495 3702.028
spar040-030-2 -1695 -1429 13.92 27.74 31.29 3814.827 3937.898 3910.581
spar040-080-1 -3969 -1838.5 42.80 58.37 64.47 3710.865 3808.258 3811.056
spar030-070-1 -1647 -654 30.74 57.39 70.49 3685.224 3786.025 3679.571
spar040-030-3 -1322 -1086 2.35 28.00 34.74 3639.965 3798.683 4079.434
spar040-080-2 -3902.5 -1952.5 51.27 66.96 71.16 3667.295 4062.433 3845.179
spar030-070-2 -1989.5 -1313 61.19 86.60 92.26 3642.745 3708.212 3653.440
spar040-040-1 -1641 -837 17.42 33.31 37.70 3689.320 3817.844 3883.183
spar040-080-3 -4440 -2545.5 61.18 72.31 77.20 3703.711 4057.149 3806.478
spar030-070-3 -2367.5 -1657.4 73.58 88.66 92.85 3680.997 3744.044 3731.627
spar040-040-2 -1967.5 -1428 24.27 35.19 39.92 3839.449 3968.111 3667.330
spar040-090-1 -4490 -2135.5 54.63 66.64 72.50 3715.925 3781.044 3977.672
spar030-080-1 -2189 -952.729 41.71 69.67 78.41 3706.572 3600.777 3715.601
spar040-040-3 -2089 -1173.5 14.76 26.71 30.88 3718.280 3972.902 4002.336
spar040-090-2 -4474 -2113 55.86 66.46 70.59 3815.415 3931.349 3615.504
spar030-080-2 -2316 -1597 53.96 86.25 92.48 3690.453 3627.132 3702.961
spar040-050-1 -2204 -1154.5 23.12 36.72 43.34 3750.454 3819.720 3619.095
spar040-090-3 -4641 -2535 61.08 73.49 78.86 3808.143 4003.706 3777.561
spar030-080-3 -2504.5 -1809.78 69.28 91.42 95.70 3642.447 3666.392 3735.913
spar040-050-2 -2403.5 -1430.98 27.17 40.87 48.62 3738.085 3610.640 3757.075
spar040-100-1 -5118 -2476.38 65.26 76.24 79.10 3848.559 3853.573 3631.410
spar030-090-1 -2521 -1296.5 54.64 81.15 89.47 3702.696 3676.815 3657.596
spar040-050-3 -2715 -1653.63 20.75 33.95 43.11 3709.104 3639.977 3865.383
spar040-100-2 -5043 -2102.5 54.47 63.89 70.40 3759.668 3658.261 3771.344
spar030-090-2 -2755 -1466.84 56.33 82.66 88.79 3658.607 3646.756 3663.516
spar040-060-1 -2934 -1322.67 35.83 47.75 54.57 3648.720 3760.964 3724.381
spar040-100-3 -5196.5 -1866.07 52.41 59.92 65.08 3712.925 3842.685 3950.384

Table 11 Box QP Instances
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% Duality Gap Closed Time(sec)
Instance RLT OPT V2 V3 V2-SA V3-SA V2 V3 V2-SA V3-SA

alkyl -2.7634 -1.7650 55.83 63.75 7.24 47.84 3619.874 3693.810 2171.990 3674.346
circle 0.0000 4.5742 99.89 99.84 99.96 99.72 0.456 0.664 0.306 0.391

dispatch 3101.2805 3155.2879 100.00 100.00 100.00 100.00 0.052 0.066 0.044 0.046
ex2 1 1 -18.9000 -17.0000 72.62 99.92 0.00 0.00 704.400 17.835 0.009 0.010

ex2 1 10 39668.0556 49318.0180 99.37 99.82 28.74 64.97 29.980 70.168 12.681 45.972
ex2 1 5 -269.4528 -268.0146 99.98 99.99 28.31 49.71 0.173 0.188 0.095 0.112
ex2 1 6 -44.4000 -39.0000 99.95 99.97 38.94 64.77 3397.650 54.326 0.066 0.297
ex2 1 7 -6031.9026 -4150.4101 41.17 45.58 0.00 0.72 3607.439 3763.506 0.672 410.503
ex2 1 8 -82460.0000 15639.0000 84.70 92.75 17.50 95.74 3632.275 3627.700 1.774 3675.957
ex2 1 9 -2.2000 -0.3750 98.79 99.73 99.97 99.98 1587.940 3615.766 3.962 39.335
ex3 1 1 2533.2008 7049.2480 15.94 22.13 0.03 0.68 3600.268 3681.021 45.468 1499.937
ex3 1 2 -30802.7563 -30665.5387 99.99 99.99 49.74 49.74 0.083 0.108 0.032 0.045
ex3 1 3 -440.0000 -310.0000 99.99 99.99 100.00 100.00 0.064 0.096 0.036 0.047
ex3 1 4 -6.0000 -4.0000 86.31 99.57 0.00 0.00 21.261 581.295 0.007 0.012
ex4 1 1 -173688.7998 -7.4873 100.00 100.00 100.00 100.00 0.310 0.444 0.275 0.294
ex4 1 3 -7999.4583 -443.6717 93.54 99.86 82.74 97.42 0.285 0.552 0.193 0.359
ex4 1 4 -200.0000 0.0000 100.00 100.00 100.00 100.00 0.243 0.532 0.199 0.401
ex4 1 6 -24075.0002 7.0000 100.00 100.00 100.00 100.00 0.308 0.508 0.193 0.267
ex4 1 7 -206.2500 -7.5000 100.00 100.00 100.00 100.00 0.114 0.165 0.136 0.207
ex4 1 8 -29.0000 -16.7389 100.00 100.00 100.00 100.00 0.059 0.103 0.051 0.080
ex4 1 9 -6.9867 -5.5080 43.59 37.48 3.82 3.82 1.307 1.273 0.029 0.042

ex5 2 2 case1 -599.8996 -400.0000 0.00 0.00 0.00 0.00 0.016 0.935 0.013 0.068
ex5 2 2 case2 -1200.0000 -600.0000 0.00 0.00 0.00 0.00 0.047 0.511 0.020 0.089
ex5 2 2 case3 -875.0000 -750.0000 0.36 0.31 0.00 0.02 0.358 0.474 0.074 0.204

ex5 2 4 -2933.3334 -450.0000 79.31 99.92 63.22 82.02 68.927 1044.400 1.536 9.487
ex5 2 5 -9700.0001 -3500.0001 6.27 6.37 0.00 1.59 3793.169 3618.084 3691.723 3692.598
ex5 3 2 0.9979 1.8642 7.27 21.00 6.15 15.13 245.821 3672.529 118.851 1127.986
ex5 3 3 1.6313 3.2340 0.21 0.18 0.00 0.00 3693.758 7511.839 3856.422 6574.641
ex5 4 2 2598.2452 7512.2301 27.57 26.41 0.00 1.67 3614.376 3866.626 3.387 2873.420
ex7 3 1 0.0000 0.3417 0.00 85.43 0.00 0.00 5.582 3622.223 0.303 4.036
ex7 3 2 0.0000 1.0899 59.51 70.26 0.00 0.00 3609.704 3614.759 0.911 108.323
ex8 1 3 -7.7486E+12 1.0000 0.04 0.00 0.00 0.04 0.494 0.641 0.207 0.503
ex8 1 4 -13.0000 0.0000 100.00 100.00 100.00 100.00 0.038 0.051 0.018 0.022
ex8 1 5 -3.3333 0.0000 68.97 68.96 68.30 68.30 1.246 100.476 0.861 3.062
ex8 1 7 -757.5775 0.0293 77.43 95.79 81.76 85.22 75.203 3615.517 91.659 1711.753
ex8 1 8 -0.8466 -0.3888 76.49 90.88 60.57 84.87 3607.682 3628.366 48.869 2072.270
ex8 4 1 -5.0000 0.6186 91.09 86.49 91.84 87.63 3642.131 4180.427 3655.223 4449.738
ex8 4 2 -5.0000 0.4852 93.04 87.87 94.07 89.48 3606.071 3757.098 3629.070 4433.259
ex9 1 4 -63.0000 -37.0000 0.00 1.55 0.00 36.55 0.603 244.126 0.168 448.719
ex9 2 1 -16.0000 17.0000 60.04 92.02 54.54 95.01 2372.638 3622.960 788.499 1005.569
ex9 2 2 -50.0000 100.0000 88.29 98.06 78.47 99.55 3606.357 3610.411 194.058 621.763
ex9 2 3 -30.0000 0.0000 0.00 47.17 0.00 46.51 3.819 3625.114 0.199 3600.542

Table 12 Disjunctive Cuts versus Secant Inequalities (Part 1)
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Instance RLT OPT V2 V3 V2-SA V3-SA V2 V3 V2-SA V3-SA
ex9 2 4 -396.0000 0.5000 99.87 99.89 99.87 100.00 8.897 5.258 3.240 2.627
ex9 2 6 -406.0000 -1.0000 87.93 62.00 85.02 70.84 2619.018 1058.376 1297.364 3652.779
ex9 2 7 -9.0000 17.0000 51.47 86.25 42.31 98.62 3628.249 3627.920 741.771 3176.606

himmel11 -30802.7566 -30665.5387 99.99 99.99 49.74 49.74 0.082 0.120 0.047 0.068
house -5230.5433 -4500.0000 86.93 97.92 81.68 93.76 12.873 149.678 2.052 33.518
hydro 4019717.9291 4366944.1597 100.00 100.00 100.00 100.00 20.668 191.447 8.756 114.413

mathopt1 -912909.0091 1.0000 100.00 100.00 100.00 100.00 2.448 3.770 1.318 2.492
mathopt2 -11289.0001 0.0000 100.00 100.00 100.00 100.00 0.229 0.400 0.236 0.270
meanvar 0.0000 5.2434 100.00 100.00 100.00 100.00 0.276 0.657 0.200 0.264
nemhaus 0.0000 31.0000 100.00 100.00 100.00 100.00 0.198 0.355 0.071 0.090

prob05 0.3151 0.7418 99.78 99.49 68.01 50.82 0.165 0.173 0.095 1.183
prob06 1.0000 1.1771 100.00 100.00 100.00 100.00 0.024 0.031 0.022 0.028
prob09 -100.0000 0.0000 99.99 100.00 100.00 100.00 0.885 1.689 0.593 0.862
process -2756.5935 -1161.3366 88.05 95.03 51.81 80.87 3620.085 3611.299 55.385 3603.806

qp1 -1.4313 0.0008 89.12 81.23 92.63 85.73 3897.521 3700.918 3674.194 4776.069
qp2 -1.4313 0.0008 89.15 83.06 92.75 82.88 4047.592 4255.863 3823.257 6236.168

rbrock -659984.0066 -5.6733 100.00 100.00 100.00 100.00 3.194 5.611 0.510 0.556
st bpaf1a -46.0058 -45.3797 81.73 88.52 0.00 0.00 0.894 3.790 0.104 0.506
st bpaf1b -43.1255 -42.9626 90.73 92.86 0.00 0.00 3.299 12.166 0.276 4.002

st bpv2 -11.2500 -8.0000 99.99 99.99 100.00 100.00 0.029 0.034 0.023 0.026
st bsj2 -0.6260 1.0000 99.98 99.96 55.43 85.32 1.974 2.235 0.027 0.476
st bsj3 -86768.5509 -86768.5500 0.00 0.00 0.00 0.00 0.011 0.011 0.010 0.011
st bsj4 -72700.0507 -70262.0500 99.86 99.80 0.00 0.00 1.715 1.384 0.014 0.016
st e02 171.4185 201.1591 99.88 99.95 100.00 100.00 0.095 0.118 0.094 0.084
st e03 -2381.8947 -1161.3366 91.63 92.82 66.62 75.89 3639.297 3613.883 461.562 3614.941
st e05 3826.3885 7049.2493 50.43 58.38 6.23 10.63 16.217 41.354 0.661 0.795
st e06 0.0000 0.1609 0.00 0.00 0.00 0.00 0.726 1.911 0.299 0.727
st e07 -500.0000 -400.0000 99.97 99.97 25.83 25.97 0.350 0.383 0.236 0.268
st e08 0.3125 0.7418 99.81 99.89 46.87 50.05 0.208 0.171 0.060 0.087
st e09 -0.7500 -0.5000 92.58 92.58 78.95 78.95 0.014 0.018 0.009 0.013
st e10 -29.0000 -16.7389 100.00 100.00 100.00 100.00 0.045 0.069 0.039 0.050
st e18 -3.0000 -2.8284 100.00 100.00 100.00 100.00 0.018 0.022 0.016 0.020
st e19 -879.7500 -86.4222 95.21 95.18 93.50 93.51 0.613 0.991 0.382 0.517
st e20 -0.8466 -0.3888 76.38 90.88 60.57 84.87 3610.271 3623.275 48.902 2118.320
st e23 -3.0000 -1.0833 98.40 98.40 97.10 97.10 0.087 0.108 0.065 0.083
st e24 0.0000 3.0000 99.81 99.81 0.00 0.00 0.501 0.657 0.008 0.010
st e25 0.2473 0.8902 100.00 100.00 100.00 100.00 0.161 0.247 0.119 0.117
st e26 -513.0000 -185.7792 99.96 99.96 96.07 96.08 0.036 0.050 0.040 0.050
st e28 -30802.7566 -30665.5387 99.99 99.99 49.74 49.74 0.088 0.118 0.051 0.068
st e30 -3.0000 -1.5811 0.00 0.00 0.00 0.00 0.035 6.489 0.008 0.069
st e33 -500.0000 -400.0000 99.94 99.95 25.68 27.05 0.457 0.382 0.269 0.248
st fp1 -18.9000 -17.0000 72.62 99.92 0.00 0.00 658.824 18.013 0.008 0.014

Table 13 Disjunctive Cuts versus Secant Inequalities (Part 2)
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st fp5 -269.4528 -268.0146 99.98 99.99 28.31 49.71 0.175 0.180 0.091 0.114
st fp6 -44.4000 -39.0000 99.92 99.97 38.94 64.77 3603.767 54.613 0.070 0.297

st fp7a -435.5237 -354.7506 45.13 53.58 0.00 0.01 806.493 1801.106 0.251 41.874
st fp7b -715.5237 -634.7506 22.06 55.51 0.00 9.04 11.941 3610.617 0.248 999.777
st fp7c -10310.4738 -8695.0122 44.26 57.10 0.00 0.01 3621.180 3672.666 0.327 14.381
st fp7d -195.5237 -114.7506 50.03 55.53 0.00 1.86 3627.749 3734.806 0.195 123.754
st fp8 7219.4999 15639.0000 0.83 3.17 0.00 0.00 4.911 88.867 0.314 37.445

st glmp fp2 7.0681 7.3445 45.70 49.74 0.00 0.00 0.732 1.170 0.008 0.017
st glmp kk92 -13.3548 -12.0000 99.98 99.98 100.00 100.00 0.038 0.053 0.013 0.015
st glmp kky -3.0000 -2.5000 99.80 99.71 0.11 16.66 0.133 0.248 0.215 0.942
st glmp ss1 -38.6667 -24.5714 89.30 89.30 74.82 74.82 0.556 0.736 0.084 0.099

st ht -2.8000 -1.6000 99.81 99.89 0.00 0.00 0.142 0.451 0.008 0.009
st iqpbk1 -1722.3760 -621.4878 99.86 99.99 99.88 99.75 5.086 286.844 30.682 376.196
st iqpbk2 -3441.9520 -1195.2257 100.00 100.00 100.00 99.98 31.614 243.169 20.452 593.524
st jcbpaf2 -945.4511 -794.8559 99.47 99.61 71.12 81.90 3622.733 3636.491 35.329 1730.322

st jcbpafex -3.0000 -1.0833 98.40 98.40 97.10 97.10 0.085 0.114 0.066 0.083
st kr -104.0000 -85.0000 99.93 99.95 62.70 62.70 0.090 0.131 0.025 0.034

st m1 -505191.3385 -461356.9389 99.96 99.96 0.00 75.52 368.618 756.237 3.147 3600.500
st m2 -938513.6772 -856648.8187 70.19 58.99 0.00 0.11 3641.449 3876.446 8.252 3758.175

st pan1 -5.6850 -5.2837 99.72 99.92 19.04 37.59 0.926 0.771 0.033 0.148
st pan2 -19.4000 -17.0000 68.54 99.91 0.00 0.00 3038.430 26.401 0.009 0.012
st ph1 -243.8112 -230.1173 99.98 99.98 0.00 100.00 0.225 0.059 0.012 0.033

st ph11 -11.7500 -11.2813 99.46 98.19 0.00 0.00 0.910 0.337 0.006 0.008
st ph12 -23.5000 -22.6250 99.49 99.62 0.00 0.00 0.353 0.311 0.008 0.011
st ph13 -11.7500 -11.2813 99.38 98.80 0.00 0.00 0.751 0.703 0.004 0.011
st ph14 -231.0000 -229.7222 99.85 99.86 0.00 0.00 0.051 0.131 0.010 0.010
st ph15 -434.7346 -392.7037 99.83 99.81 0.00 3.39 0.476 0.541 0.010 0.034
st ph2 -1064.4960 -1028.1173 99.98 99.98 0.00 100.00 0.159 0.062 0.015 0.034

st ph20 -178.0000 -158.0000 99.98 99.98 75.00 75.00 0.036 0.049 0.014 0.017
st ph3 -447.8488 -420.2348 99.98 99.98 0.00 0.00 0.031 0.039 0.011 0.014

st phex -104.0000 -85.0000 99.96 99.96 62.70 62.70 0.088 0.088 0.026 0.035
st qpc-m0 -6.0000 -5.0000 99.96 99.96 0.00 0.00 0.015 0.023 0.007 0.008
st qpc-m1 -612.2714 -473.7778 99.99 99.98 86.12 100.00 0.223 0.233 0.064 0.111

st qpc-m3a -725.0518 -382.6950 98.10 99.16 79.52 95.76 3615.442 3727.123 10.939 413.257
st qpc-m3b -24.6757 0.0000 100.00 100.00 100.00 100.00 0.566 1.648 0.064 0.133

st qpk1 -11.0000 -3.0000 99.98 99.98 97.04 97.04 0.110 0.053 0.161 0.261
st qpk2 -21.0000 -12.2500 71.34 83.33 0.00 1.02 3599.788 3622.692 0.024 10.685
st qpk3 -66.0000 -36.0000 33.53 50.04 0.00 0.00 3621.930 3778.200 0.073 450.765

st rv1 -64.2359 -59.9439 96.19 98.44 0.00 0.39 3607.723 3602.339 0.064 0.865
st rv2 -73.0007 -64.4807 88.79 81.85 0.00 1.32 3601.528 44.550 0.079 20.013
st rv3 -38.5155 -35.7607 40.40 72.68 0.00 13.74 112.028 3807.828 0.102 3618.842
st rv7 -148.9816 -138.1875 45.43 62.28 0.00 4.19 3640.861 3880.783 0.256 3639.194
st rv8 -143.5829 -132.6616 29.90 45.80 0.00 0.32 3696.452 3874.801 0.616 3636.131
st rv9 -134.9131 -120.1164 20.56 31.64 0.00 2.96 3920.213 3675.654 2.832 3605.675

st z -0.9674 0.0000 99.96 99.95 12.51 93.36 2.749 0.790 0.025 0.277

Table 14 Disjunctive Cuts versus Secant Inequalities (Part 3)
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alkyl -2.7634 -1.7650 55.83% 63.75% 0.00% 0.00% 3619.874 3693.810 1.591 32.800
circle 0.0000 4.5742 99.89% 99.84% 0.00% 0.00% 0.456 0.664 0.011 0.011

dispatch 3101.2805 3155.2879 100.00% 100.00% 0.00% 0.00% 0.052 0.066 0.009 0.008
ex2 1 1 -18.9000 -17.0000 72.62% 99.92% 70.27% 99.94% 704.400 17.835 316.184 15.284

ex2 1 10 39668.0556 49318.0180 99.37% 99.82% 93.61% 93.58% 29.980 70.168 223.946 262.330
ex2 1 5 -269.4528 -268.0146 99.98% 99.99% 99.86% 99.98% 0.173 0.188 0.207 0.203
ex2 1 6 -44.4000 -39.0000 99.95% 99.97% 99.93% 99.97% 3397.650 54.326 2026.656 91.494
ex2 1 7 -6031.9026 -4150.4101 41.17% 45.58% 41.71% 24.69% 3607.439 3763.506 3630.345 17.136
ex2 1 8 -82460.0000 15639.0000 84.70% 92.75% 88.73% 94.00% 3632.275 3627.700 3631.907 3706.784
ex2 1 9 -2.2000 -0.3750 98.79% 99.73% 91.84% 92.65% 1587.940 3615.766 3601.199 3608.268
ex3 1 1 2533.2008 7049.2480 15.94% 22.13% 1.12% 1.22% 3600.268 3681.021 245.717 682.051
ex3 1 2 -30802.7563 -30665.5387 99.99% 99.99% 0.00% 0.00% 0.083 0.108 0.044 0.064
ex3 1 3 -440.0000 -310.0000 99.99% 99.99% 99.99% 99.99% 0.064 0.096 0.119 0.177
ex3 1 4 -6.0000 -4.0000 86.31% 99.57% 96.52% 97.02% 21.261 581.295 720.933 36.999
ex4 1 1 -173688.7998 -7.4873 100.00% 100.00% 19.92% 20.17% 0.310 0.444 1.770 1.440
ex4 1 3 -7999.4583 -443.6717 93.54% 99.86% 81.46% 81.26% 0.285 0.552 0.271 0.339
ex4 1 4 -200.0000 0.0000 100.00% 100.00% 33.12% 33.12% 0.243 0.532 0.056 0.071
ex4 1 6 -24075.0002 7.0000 100.00% 100.00% 34.98% 31.98% 0.308 0.508 3.487 0.288
ex4 1 7 -206.2500 -7.5000 100.00% 100.00% 51.27% 51.27% 0.114 0.165 0.385 0.529
ex4 1 8 -29.0000 -16.7389 100.00% 100.00% 0.00% 0.00% 0.059 0.103 0.008 0.007
ex4 1 9 -6.9867 -5.5080 43.59% 37.48% 26.67% 27.17% 1.307 1.273 0.351 0.305

ex5 2 2 case1 -599.8996 -400.0000 0.00% 0.00% 0.00% 0.00% 0.016 0.935 0.016 0.052
ex5 2 2 case2 -1200.0000 -600.0000 0.00% 0.00% 0.00% 0.00% 0.047 0.511 0.066 0.086
ex5 2 2 case3 -875.0000 -750.0000 0.36% 0.31% 0.00% 0.00% 0.358 0.474 0.036 0.051

ex5 2 4 -2933.3334 -450.0000 79.31% 99.92% 18.52% 18.57% 68.927 1044.400 30.096 1.207
ex5 2 5 -9700.0001 -3500.0001 6.27% 6.37% 0.00% 0.00% 3793.169 3618.084 29.801 549.897
ex5 3 2 0.9979 1.8642 7.27% 21.00% 0.00% 0.00% 245.821 3672.529 0.474 1.838
ex5 3 3 1.6313 3.2340 0.21% 0.18% 0.00% 0.00% 3693.758 7511.839 3668.947 4086.645
ex5 4 2 2598.2452 7512.2301 27.57% 26.41% 1.51% 1.63% 3614.376 3866.626 353.722 677.163
ex7 3 1 0.0000 0.3417 0.00% 85.43% 0.00% 0.00% 5.582 3622.223 0.618 3.761
ex7 3 2 0.0000 1.0899 59.51% 70.26% 0.00% 0.00% 3609.704 3614.759 0.400 1.727
ex8 1 3 -7.7486E+12 1.0000 0.04% 0.00% 0.00% 0.00% 0.494 0.641 0.321 0.662
ex8 1 4 -13.0000 0.0000 100.00% 100.00% 18.19% 18.19% 0.038 0.051 0.362 0.543
ex8 1 5 -3.3333 0.0000 68.97% 68.96% 10.82% 10.02% 1.246 100.476 24.090 21.245
ex8 1 7 -757.5775 0.0293 77.43% 95.79% 49.33% 49.31% 75.203 3615.517 3609.473 3620.105
ex8 1 8 -0.8466 -0.3888 76.49% 90.88% 27.15% 28.65% 3607.682 3628.366 3602.924 3608.082
ex8 4 1 -5.0000 0.6186 91.09% 86.49% 0.00% 0.00% 3642.131 4180.427 0.918 2.201
ex8 4 2 -5.0000 0.4852 93.04% 87.87% 0.00% 0.00% 3606.071 3757.098 0.922 2.232
ex9 1 4 -63.0000 -37.0000 0.00% 1.55% 0.00% 0.00% 0.603 244.126 0.097 0.956
ex9 2 1 -16.0000 17.0000 60.04% 92.02% 0.00% 0.00% 2372.638 3622.960 0.137 1.097

Table 15 Marginal Value of Convex Quadratic Cuts (Part 1)
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ex9 2 2 -50.0000 100.0000 88.29% 98.06% 0.00% 5.05% 3606.357 3610.411 0.980 3601.772
ex9 2 3 -30.0000 0.0000 0.00% 47.17% 0.00% 0.00% 3.819 3625.114 0.599 4.895
ex9 2 4 -396.0000 0.5000 99.87% 99.89% 0.00% 0.00% 8.897 5.258 0.257 0.398
ex9 2 6 -406.0000 -1.0000 87.93% 62.00% 0.00% 0.00% 2619.018 1058.376 0.664 1.131
ex9 2 7 -9.0000 17.0000 51.47% 86.25% 0.00% 0.00% 3628.249 3627.920 0.272 0.813

himmel11 -30802.7566 -30665.5387 99.99% 99.99% 0.00% 0.00% 0.082 0.120 0.050 0.071
house -5230.5433 -4500.0000 86.93% 97.92% 5.43% 5.93% 12.873 149.678 28.838 150.973
hydro 4019717.9291 4366944.1597 100.00% 100.00% 0.00% 0.00% 20.668 191.447 0.218 0.405

mathopt1 -912909.0091 1.0000 100.00% 100.00% 1.27% 1.35% 2.448 3.770 0.783 2.119
mathopt2 -11289.0001 0.0000 100.00% 100.00% 32.54% 32.68% 0.229 0.400 0.627 0.944
meanvar 0.0000 5.2434 100.00% 100.00% 0.00% 0.00% 0.276 0.657 0.009 0.009
nemhaus 0.0000 31.0000 100.00% 100.00% 0.00% 0.00% 0.198 0.355 0.049 0.089

prob05 0.3151 0.7418 99.78% 99.49% 90.89% 90.62% 0.165 0.173 0.216 0.226
prob06 1.0000 1.1771 100.00% 100.00% 0.00% 0.00% 0.024 0.031 0.007 0.005
prob09 -100.0000 0.0000 99.99% 100.00% 0.00% 0.00% 0.885 1.689 0.008 0.012
process -2756.5935 -1161.3366 88.05% 95.03% 7.97% 7.70% 3620.085 3611.299 3612.928 3640.484

qp1 -1.4313 0.0008 89.12% 81.23% 59.58% 60.95% 3897.521 3700.918 3688.640 3720.181
qp2 -1.4313 0.0008 89.15% 83.06% 61.22% 61.37% 4047.592 4255.863 3642.175 3681.558

rbrock -659984.0066 -5.6733 100.00% 100.00% 0.00% 0.00% 3.194 5.611 0.010 0.009
st bpaf1a -46.0058 -45.3797 81.73% 88.52% 0.00% 0.00% 0.894 3.790 0.124 0.238
st bpaf1b -43.1255 -42.9626 90.73% 92.86% 0.00% 0.00% 3.299 12.166 0.301 0.356

st bpv2 -11.2500 -8.0000 99.99% 99.99% 69.16% 69.16% 0.029 0.034 0.374 0.536
st bsj2 -0.6260 1.0000 99.98% 99.96% 99.94% 99.95% 1.974 2.235 0.987 0.732
st bsj3 -86768.5509 -86768.5500 0.00% 0.00% 0.00% 0.00% 0.011 0.011 0.010 0.012
st bsj4 -72700.0507 -70262.0500 99.86% 99.80% 99.73% 99.92% 1.715 1.384 1.250 0.731
st e02 171.4185 201.1591 99.88% 99.95% 99.74% 99.83% 0.095 0.118 0.084 0.120
st e03 -2381.8947 -1161.3366 91.63% 92.82% 8.26% 8.61% 3639.297 3613.883 3615.422 3613.065
st e05 3826.3885 7049.2493 50.43% 58.38% 32.44% 40.00% 16.217 41.354 4.733 37.922
st e06 0.0000 0.1609 0.00% 0.00% 0.00% 0.00% 0.726 1.911 0.079 0.119
st e07 -500.0000 -400.0000 99.97% 99.97% 0.00% 0.00% 0.350 0.383 0.085 0.095
st e08 0.3125 0.7418 99.81% 99.89% 91.18% 90.87% 0.208 0.171 0.193 0.242
st e09 -0.7500 -0.5000 92.58% 92.58% 28.95% 28.95% 0.014 0.018 0.041 0.048
st e10 -29.0000 -16.7389 100.00% 100.00% 0.00% 0.00% 0.045 0.069 0.006 0.007
st e18 -3.0000 -2.8284 100.00% 100.00% 0.00% 0.00% 0.018 0.022 0.013 0.016
st e19 -879.7500 -86.4222 95.21% 95.18% 0.99% 0.99% 0.613 0.991 0.997 0.786
st e20 -0.8466 -0.3888 76.38% 90.88% 27.15% 28.65% 3610.271 3623.275 3600.675 3599.440
st e23 -3.0000 -1.0833 98.40% 98.40% 0.00% 0.00% 0.087 0.108 0.016 0.019
st e24 0.0000 3.0000 99.81% 99.81% 99.82% 99.82% 0.501 0.657 0.563 0.749
st e25 0.2473 0.8902 100.00% 100.00% 0.00% 0.00% 0.161 0.247 0.009 0.008
st e26 -513.0000 -185.7792 99.96% 99.96% 99.96% 99.96% 0.036 0.050 0.035 0.067

Table 16 Marginal Value of Convex Quadratic Cuts (Part 2)
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st e28 -30802.7566 -30665.5387 99.99% 99.99% 0.00% 0.00% 0.088 0.118 0.052 0.073
st e30 -3.0000 -1.5811 0.00% 0.00% 0.00% 0.00% 0.035 6.489 0.032 0.413
st e33 -500.0000 -400.0000 99.94% 99.95% 0.00% 0.00% 0.457 0.382 0.039 0.078
st fp1 -18.9000 -17.0000 72.62% 99.92% 70.27% 99.94% 658.824 18.013 311.516 15.417
st fp5 -269.4528 -268.0146 99.98% 99.99% 99.86% 99.98% 0.175 0.180 0.201 0.208
st fp6 -44.4000 -39.0000 99.92% 99.97% 99.93% 99.97% 3603.767 54.613 2166.810 95.078

st fp7a -435.5237 -354.7506 45.13% 53.58% 52.80% 59.79% 806.493 1801.106 3603.973 2125.128
st fp7b -715.5237 -634.7506 22.06% 55.51% 51.25% 64.63% 11.941 3610.617 3355.367 3643.094
st fp7c -10310.4738 -8695.0122 44.26% 57.10% 49.16% 59.84% 3621.180 3672.666 3646.248 3623.625
st fp7d -195.5237 -114.7506 50.03% 55.53% 53.38% 61.72% 3627.749 3734.806 3630.742 3657.918
st fp8 7219.4999 15639.0000 0.83% 3.17% 3.16% 3.90% 4.911 88.867 3629.451 251.935

st glmp fp2 7.0681 7.3445 45.70% 49.74% 0.00% 0.00% 0.732 1.170 0.033 0.041
st glmp kk92 -13.3548 -12.0000 99.98% 99.98% 44.42% 44.42% 0.038 0.053 0.114 0.147
st glmp kky -3.0000 -2.5000 99.80% 99.71% 0.00% 0.00% 0.133 0.248 0.072 0.123
st glmp ss1 -38.6667 -24.5714 89.30% 89.30% 40.55% 40.55% 0.556 0.736 0.254 0.359

st ht -2.8000 -1.6000 99.81% 99.89% 99.90% 99.87% 0.142 0.451 0.213 0.500
st iqpbk1 -1722.3760 -621.4878 99.86% 99.99% 0.00% 0.00% 5.086 286.844 0.008 0.012
st iqpbk2 -3441.9520 -1195.2257 100.00% 100.00% 0.00% 0.00% 31.614 243.169 0.009 0.009
st jcbpaf2 -945.4511 -794.8559 99.47% 99.61% 32.35% 34.94% 3622.733 3636.491 3602.511 3617.253

st jcbpafex -3.0000 -1.0833 98.40% 98.40% 0.00% 0.00% 0.085 0.114 0.017 0.015
st kr -104.0000 -85.0000 99.93% 99.95% 99.71% 99.94% 0.090 0.131 0.165 0.058

st m1 -505191.3385 -461356.9389 99.96% 99.96% 99.59% 99.52% 368.618 756.237 105.344 222.951
st m2 -938513.6772 -856648.8187 70.19% 58.99% 80.23% 53.62% 3641.449 3876.446 3650.336 3885.121

st pan1 -5.6850 -5.2837 99.72% 99.92% 99.91% 99.93% 0.926 0.771 0.414 0.181
st pan2 -19.4000 -17.0000 68.54% 99.91% 57.48% 99.93% 3038.430 26.401 15.446 21.076
st ph1 -243.8112 -230.1173 99.98% 99.98% 99.98% 99.70% 0.225 0.059 0.231 0.099

st ph11 -11.7500 -11.2813 99.46% 98.19% 99.46% 99.68% 0.910 0.337 0.166 0.393
st ph12 -23.5000 -22.6250 99.49% 99.62% 99.08% 99.65% 0.353 0.311 0.319 0.245
st ph13 -11.7500 -11.2813 99.38% 98.80% 96.98% 99.52% 0.751 0.703 0.118 1.096
st ph14 -231.0000 -229.7222 99.85% 99.86% 99.84% 99.88% 0.051 0.131 0.055 0.114
st ph15 -434.7346 -392.7037 99.83% 99.81% 99.85% 99.41% 0.476 0.541 0.712 0.304
st ph2 -1064.4960 -1028.1173 99.98% 99.98% 99.94% 99.97% 0.159 0.062 0.128 0.184

st ph20 -178.0000 -158.0000 99.98% 99.98% 99.98% 99.98% 0.036 0.049 0.038 0.046
st ph3 -447.8488 -420.2348 99.98% 99.98% 99.98% 99.98% 0.031 0.039 0.027 0.042

st phex -104.0000 -85.0000 99.96% 99.96% 99.71% 99.94% 0.088 0.088 0.166 0.059
st qpc-m0 -6.0000 -5.0000 99.96% 99.96% 99.96% 99.96% 0.015 0.023 0.015 0.023
st qpc-m1 -612.2714 -473.7778 99.99% 99.98% 99.95% 99.96% 0.223 0.233 0.162 0.276

st qpc-m3a -725.0518 -382.6950 98.10% 99.16% 99.64% 99.39% 3615.442 3727.123 776.578 291.805
st qpc-m3b -24.6757 0.0000 100.00% 100.00% 100.00% 100.00% 0.566 1.648 0.127 0.233

st qpk1 -11.0000 -3.0000 99.98% 99.98% 99.97% 99.98% 0.110 0.053 0.076 0.057
st qpk2 -21.0000 -12.2500 71.34% 83.33% 73.72% 84.68% 3599.788 3622.692 3612.000 3620.808
st qpk3 -66.0000 -36.0000 33.53% 50.04% 32.91% 53.32% 3621.930 3778.200 3618.484 3655.638

st rv1 -64.2359 -59.9439 96.19% 98.44% 98.48% 98.68% 3607.723 3602.339 829.402 2804.776
st rv2 -73.0007 -64.4807 88.79% 81.85% 88.92% 96.25% 3601.528 44.550 3623.841 3641.686
st rv3 -38.5155 -35.7607 40.40% 72.68% 58.70% 81.72% 112.028 3807.828 3599.892 3649.818
st rv7 -148.9816 -138.1875 45.43% 62.28% 44.27% 44.49% 3640.861 3880.783 2314.720 314.910
st rv8 -143.5829 -132.6616 29.90% 45.80% 37.15% 21.32% 3696.452 3874.801 3686.005 362.907
st rv9 -134.9131 -120.1164 20.56% 31.64% 24.00% 27.68% 3920.213 3675.654 3643.930 3610.947

st z -0.9674 0.0000 99.96% 99.95% 99.93% 99.95% 2.749 0.790 1.262 1.253

Table 17 Marginal Value of Convex Quadratic Cuts (Part 3)


