
RC24631 (W0809-020) September 4, 2008
Computer Science

IBM Research Report

Analyzing and Improving Table Space Allocation

 Shanchan Wu
Department of Computer Science

University of Maryland
College Park, MD

Yefim Shuf, Hong Min, Hubertus Franke
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Bala Iyer, Frances H. Villafuerte, Julie Watts
IBM Silicon Valley Lab

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Analyzing and Improving Table Space Allocation
 Shanchan Wu* Yefim Shuf

+
Hong Min

+

Hubertus Franke
+

Bala Iyer

Frances H Villafuerte
#
 Julie Watts

#

* Department of Computer Science, University of Maryland, College Park

+
IBM T.J. Watson Research Center

IBM Silicon Valley Lab

* wsc@cs.umd.edu
+, #

{yefim, hongmin, frankeh, balaiyer, francesv, jwatts}@us.ibm.com

ABSTRACT

Space allocation is a fundamental operation performed by a

database management system (DBMS) when it inserts a record

into a table. A good space allocation algorithm quickly locates

and reserves enough space for a record, places it closer to its

related records, and utilizes the available space. Satisfying these

conflicting requirements is challenging and trade-offs are

carefully balanced by well-chosen heuristics. As a DBMS evolves

over time, especially a commercial DBMS, its space allocation

algorithm gets more sophisticated and complex and relies on

many heuristics. Technological changes, new applications, and

greater data volumes render many legacy heuristics ineffective.

These factors hinder understanding of space allocation behavior

under many workload conditions and make it difficult to enhance

the algorithm without causing performance regressions for some

of the workloads.

To facilitate research and study the performance of a table

space allocation algorithm of a modern DBMS in real-world

workload scenarios, we build an extensible simulation framework.

We analyze algorithm behavior and make surprising observations.

We use the findings to further improve the existing algorithm by

proposing algorithm enhancements and showing their benefits

with respect to key performance metrics. In conclusion, the

proposed framework has been effective in research to understand

the performance, improve the space allocation algorithms, and to

guide the developers of a commercial DBMS.

1. INTRODUCTION
 For a database management system (DBMS), the ability to

insert a record quickly and efficiently is critical. To maximize disk

space utilization while achieving high performance, database

designers use various strategies for storing records. As

improvements in processor speed continue to outpace

improvements in disk access time, I/O is increasingly a major

bottleneck in systems [1] and especially in large DBMS [2]. An

efficient space allocation strategy that minimizes I/O frequency is

essential. A common practice for improving read I/O performance

is to cluster records with similar key values. For some access

patterns, data clustering can significantly reduce or eliminate disk

seek time -- a major contributing factor to I/O time. Maintaining

data clustering is a desirable property for inserts. However, a mix

of inserts and deletes can easily cause disk space fragmentation.

Designing a table space allocation strategy that performs well

for various workloads is challenging. The tradeoffs like “add more

empty pages to a table space” or “fully utilize the existing space”

are not easily explored via the back of an envelope analysis.

Another requirement for a space allocation algorithm is to have

fewer contentions in a highly concurrent transaction processing

environment. We are not aware of any framework for space

allocation algorithms research.

In this paper, we study a representative table space allocation

algorithm of a commercial DBMS and its variations. To compare

different space allocation strategies, we build a simulation tool.

The tool is used to quantitatively answer “what if” questions that

arise during a space allocation strategy design and identify the

strengths and weaknesses of the strategy. The tool is also used to

pinpoint when record insert performance degrades. We use the

tool to analyze the algorithm under various conditions

representing real workload scenarios and to evaluate our

algorithm enhancements. It can be used to evaluate the

implication of using Solid State Disks (SSDs) [21, 22] whose

performance characteristics are different than Hard Disks (HDs).

Simulating various input patterns and their effect on the insertion

algorithm is a complicated modeling task and the tool that helps

accomplishing it has a considerable practical value.

Insert performance is one of the most challenging issues in real-

life usage of DBMS. Ability to complete new data imports in a

given time frame and to do so in a space usage efficient manner is

a key characteristic of a well performing DBMS. Our work

addresses key challenges in solving this important problem. This

paper makes the following contributions:

� It presents an extensible framework for simulating a broad

class of space allocation algorithms and evaluating them with

respect to various performance metrics on multi-threaded

workloads. The framework is used as a testbed to explore ideas

for improving space allocation algorithms and gain insights

into how such algorithms behave in real-world workload

scenarios.

� It evaluates a typical table space allocation algorithm of a

commercial DBMS and identifies conditions under which the

algorithm performs the best. As far as we know, it addresses

issues not previously investigated in the literature: it studies the

quality of the cluster ratio achieved and the scaling of the

algorithm when facing a large number of concurrent threads.

� It presents observations with practical performance

implications. We find that when record insertion is guided by a

clustered index, a random record sequence can be inserted

faster if it is pre-sorted in the clustered index key order. We

show that pre-sorting records is a way to improve the cluster

ratio. We also show that providing each thread with a distinct

starting point when searching for space can reduce contentions.

� It proposes space allocation algorithm enhancements and

quantifies their benefits. We show one enhancement for

reducing lock contentions during space search, another for

reducing the number of data pages fetched before a page with

enough free space is found, yet another enhancement to reduce

the space search path length for variable size records.

Quantifying relative benefits of proposed enhancements helps

decide which of them should be integrated into the

implemented algorithm of a DBMS.

The rest of this paper is organized as follows: in section 2, we

present related work; in section 3, we describe the organization of

a table space and a table space allocation algorithm of a modern

DBMS; in section 4, we describe our simulation framework; we

use the framework to exercise several workload scenarios to study

the space allocation algorithm in section 5; in section 6, we

propose algorithm enhancements and experimentally show their

benefits; in section 7, we discuss how the performance metrics

collected by our framework can be applied to analyze the actual

cost of a record insert in a real system; we summarize in section 8.

2. RELATED WORK
Research on the design space exploration of table space

allocation algorithms, while being important to the database

community, has seldom been presented in the academic literature.

Although there has been work on space management in 1996 [20],

in spite of technological changes, emergence of new applications,

and demands for rapid loading of high volumes of data, the

problem of space allocation has not been given adequate attention

since the publication of [20] and must be revisited.

McAuliffe et al. [20] studied object placement algorithms from

the standpoint of storage utilization and allocation performance

without regard to clustering. Their work is concerned with free

space management in heap files. They noted that many object

placement algorithms have serious performance deficiencies,

including excessive CPU or memory overhead, I/O traffic, or poor

disk utilization. Compared to [20], we focus on multi-threaded

workloads. We also use a more comprehensive set of performance

parameters for analyzing performance costs from two orthogonal

aspects: one that is dictated by the underlying hardware and

DBMS, and one that is driven by the algorithm.

Our goal is to improve DBMS performance by reducing the

CPU cost of allocating space for new records and creating a better

data layout that will ultimately lead to fewer I/O delays. There

has been work on improving I/O performance from different

angles: disk access optimizations, prefetching and architectures

for storing large volumes of data. Work has been done on arm

scheduling [5], bandwidth boosting [8], cache optimizations [9],

layout optimizations [6,7]. Performance modeling of disk drives

has been studied [10] and I/O simulation tools have been

developed. Sorting of RIDs was used to reduce I/O for bulk

deletes in [4]. We are first to build a research tool for

understanding the effects of various input patterns on the insertion

algorithm behavior.

Data prefetching was shown to reduce synchronous I/O

operations. Soloviev [12] studied prefetching in disk caches. Hsu

et al. [2] examine the logical I/O reference behavior of the peak

production database workloads from ten of the world’s largest

corporations. Their focus is on analyzing factors that affect how

these workloads respond to different techniques for caching,

prefetching, and write buffering. Wilson et al. [23] discussed the

design and evaluation of conventional dynamic memory allocators.

Chen et al. [13] applied data mining technique to discover block

correlations in storage systems, and show that correlation-directed

prefetching and data layout can reduce average I/O response times.

Due to the popularity of high-density Flash memory as data

storage medium, some began designing Flash-based DBMS [11].

Our tool can be used to explore algorithms for systems with

Flash-based storage.

There has been work on improving DBMS performance by

reducing resource access contentions. Most contentions that were

dealt with are at the transaction level. To ensure data integrity,

various locking schemes were proposed such as two-phase

locking [14] and tree locking [15]. Several concurrency control

techniques were investigated [13,14,16,17,18]. The contentions

addressed in the literature are largely contentions on accesses to

records and indexes of databases rather than contentions during

table space allocation, which is a focus of our paper. Mohan et al.

in [19] designed methods to improve concurrency and space

utilization by space reservation and space tracking.

3. TABLE SPACE AND TABLE SPACE

ALLOCATION ALGORITHM
Figure 3-1 shows table spaces and tables in a database. Since

table spaces reside in database partition groups, the table space

selected to hold a table defines how the data for the table is

distributed across database partitions. A single table space can

span several containers. Containers define physical storage for a

table space. A container can be a file system directory, a file with

a preset size, or a raw device such as an unformatted disk, a disk

partition, or a logical volume. Multiple containers from one or

more table spaces can be created on the same physical disk. For

better performance, each container can reside on a different disk.

HUMAN table space SCHEDULE table space

EMPLOYEE table DEPARTMENT table PROJECT table

Database partition group

Database

Container
 1

Container
 0

Container
 2

Container
 3

Figure 3-1. Table spaces and tables in a database

Header Page

Space Map Page 1

Data/Dictionary Page

Data/Dictionary Page

Data Page

Data Page

Data Page

Data Page

Space Map Page 2

Data Page

Data Page

Segment 1

Segment i

Segment n

0

1

2

Range of

Space

Map Page 1

Range of

Space

Map Page 2

k-1

k

k+1

Figure 3-2. The structure of a table space

Figure 3-2 shows the structure of a table space. A table space

contains multiple segments. Each segment contains a number of

pages. The typical page types are: a header page, a space map

page (SMAP), a compression dictionary page (if data is

compressed), and a data page. The header page describes the

table space. A space map page identifies data pages with enough

free space for new records. Each space map in a page set covers a

specific range of pages. A SMAP uses an indicator (several bits)

for each data page to indicate the level of free space on that page.

When a table space does not have enough available space to

accommodate a new record, an extension operation may occur, in

which case, new space is allocated at the end of a table space.

There is an index structure (an index tree) to keep track of the

order and locations of records in a table. The index tree is updated

after a record is inserted into a table. The number to the left of

each page in Figure 3-2 indicates page number of that page in a

table space. The location of a record is defined by page number of

the data page where the record is located and the offset of the

starting point of the record in the data page.

The table space allocation algorithm operates as follows:

(1) For a new record to be inserted, look up the record’s key in

an index tree of the table to find a desired location (i.e., a

candidate data page) for the record to be placed at. If the

record’s key value does not exist in the index, the nearest key

value in the index is used for identifying the candidate page.

(2) If the placement in step 1 fails, find space within the same

segment where the candidate data page is located.

(3) If failed in step 2, search from the first segment that has

free space forward to the last segment covered by the same

space map page. Note: A reference to the first segment that has

free space is updated when necessary.

(4) If failed in step 3, go to the last segment of the table space.

Search from the first page of the last segment to the last page

of the last segment.

(5) If failed in step 4 and if allocating new space will not cause

an extension, then allocate a new page.

(6) If failed in step 4 and if allocating new space will cause an

extension, then do an exhaustive search from the first segment

that has free space to the end of the table space. A reference to

the first segment that has free space is updated when necessary.

(7) If failed in step 6, allocate a new page with an extension.

An ideal table space allocation algorithm should be able to

quickly find enough free space for a record, waste no space, and

maintain data clustering. In some DBMS, the quality of data

clustering is measured by a cluster ratio. A cluster ratio gives an

indication of how closely the order of index entries on index leaf

pages matches the actual ordering of rows on data pages. The

higher the cluster ratio, the lower the cost of referencing data

pages during an index scan. To maintain a high cluster ratio, the

algorithm first tries to insert a record into a candidate page

referred by the index tree. Then it tries to insert records with the

same or similar keys into locations near each other. It considers

pages in the vicinity of a candidate page, i.e. the same segment

where the candidate data page is located, and in the next step,

considers pages in segments covered by the same space map page.

A good starting point to analyze performance of a space search

algorithm is to identify major factors influencing its performance.

The major factors for record insertions are I/O operations and

contentions. The I/O operations include reading space map pages

(SMAP) and data pages from a disk storage system. Since the size

of a buffer pool is finite and is usually much smaller than the size

of a corresponding table, a larger number of (random) page

fetching operations usually results in more misses in a buffer pool

and more I/O operations. To reduce I/O operations, each thread

maintains in memory one recently used data page and one SMAP

page. When a thread tries to access a data page or a SMAP that

already resides in memory, an I/O operation is avoided. Once a

thread fetches and successfully uses a new data page or a new

SMAP page, it maintains them in memory to speed up access.

In a SMAP, the number of bits representing how much space is

free on each data page is small (for space efficiency) and the

information on free space is not frequently updated (to allow for

more concurrency). So even if a SMAP indicates that a data page

may have enough free space, when the data page is fetched, there

might not be enough free space for a new record.

The following are some performance metrics used to evaluate

the algorithm in terms of CPU and I/O activities and contentions:

� The percentage of records that are inserted into an initial

candidate data page identified via an index tree lookup.

� The number of pages that are checked in a SMAP before a

successful insert.

� The number of data pages and SMAP pages that are fetched

before finding free space to insert a record.

� The number of page latches or locks that are contended

with during a space search.

Our simulation tool tracks these and other performance metrics.

4. THE SIMULATION FRAMEWORK
In this section, we describe the architecture of the simulation

framework / tool. To reduce the memory footprint, the tool does

not store the content of records, but only keys and records’ sizes.

The tool inputs record sequences and outputs statistical results.

The input sequences are generated by an input workload generator

(or by using the instrumentation features of a DBMS). It generates

various input streams with different attributes. The attributes are

configurable.

Each thread in this multi-threaded tool operates on a separate

input sequence. Many parameters such as the time to insert a

record, the wait time for a latch, the properties of a table space,

are configurable. We use a B-tree to implement an index. To find

a candidate page from an index, we try to look for a record with

the same key, or the nearest higher key, or the nearest lower key.

The index is updated after a record is inserted. We implemented a

Lock-Manager to simulate concurrent access issues and

contentions.

Figure 4-1 describes the structure of the simulation framework.

Input Generator

Input Stream 1

Input Stream 2

Input Stream n

Configuration Files

State of Table Space

Data Structure

(Table Space,

Segment,

Page, Space Map,

Index, …)

Algorithms

Statistics

Save Statistical

Results

Output

Load the State

Figure 4-1. The structure of the simulation framework

The tool is used as follows. After the input generator generates

desired sequences of input records, they are saved. Then the

simulator is started to concurrently process input sequences with

multiple threads and collect statistical data for performance

metrics. At the end of a simulation, the state of a table space can

be saved on a disk. The next time, if we want to continue from a

particular state of a table space, we can configure the tool to load

the saved state of a table space and process more input streams.

This lets us to use identical initial states for different experiments.

5. EXPERIMENTAL ANALYSIS OF THE

ALGORITHM
In this section, we analyze the characteristics and performance

of the algorithm with different workloads. Intuitively, it is faster

to find space for a new record when a table space has a substantial

amount of free space than when a table space is almost filled. To

study how the performance metrics of the algorithm change when

the state of a table space changes, we simulate a real banking

application example where a table space grows from being sparse

to being full. We find a particular state when performance metrics

deteriorate sharply and propose techniques to mitigate this

performance problem. We also investigate how the characteristics

of input record sequences affect algorithm, performance. The

study of this scenario will help us make decisions on whether or

how to preprocess input sequences before inserting records. For

this purpose, we compare and analyze performance metrics for the

ordered record sequences and unordered record sequences.

5.1 A Banking Application Example
Let us consider a database design for a representative banking

application workload. The data is organized by a clustering index

on a data attribute such as account number. There is a fair amount

of free space left on each page. When there is account activity, the

banking application closes the old account record by updating its

ending timestamp, and inserts a new record for the same account,

preferably near the account record that has just been closed.

For this type of a database and application design, it is expected

that the table space, which initially has a lot of free space, will

grow full over time as more transactions are processed and more

records are inserted. The application expects table space re-

organizations and extensions to be performed periodically to

space out records in the table space. However, when some

accounts are more active than others, free space around these

accounts becomes scarce and new records corresponding to these

accounts are placed elsewhere. This prologs a space search

process for those records. The quality of data clustering degrades.

We simulate this workload and investigate potential

performance issues when the account access pattern is skewed.

The table space is pre-populated with records corresponding to all

bank accounts, with every page having some percentage of free

space. After that, several concurrent streams periodically insert

records into the table space. When there is sufficient free space in

a table space, a record can be inserted quickly. When the available

space decreases, it takes more effort to place a new record.

5.1.1 Experimental Analysis
The initial state of a table space is created by inserting a

sequence of records with non-duplicated sequential keys

corresponding to all account numbers. Each page is left with 80%

of free space (i.e. 20% of space is occupied by account data). We

use the 80/20 rule and designate 20% of accounts as very active

accounts that generate 80% of account activities. The remaining

80% moderately active accounts generate 20% of account

activities. We create input sequences representing this skewed

account activity pattern. Each sequence consists of many sub-

sequences representing daily bank activities. Each daily sub-

0%

20%

40%

60%

80%

100%

1 81 161 241 321

sub-sequences (days)

p
e
rc
e
n
ta
g
e

Candidate Page
Other Pages in the Same Segment
Other Segments in the Same SMAP
Last Segment of the Tablespace
Allocate Without an Extension
Allocate With an Extension
Exhaustive Search

Figure 5-1. The trend of where space for a record is found for the

“Banking application example”

0

50

100

150

200

250

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f
P
a
g
e
s

C
h
e
c
k
e
d

Figure 5-2. The trend of number of Pages Checked in SMAP for the

“Banking application example”

0

5

10

15

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
e
ra
ti
o
n
s

Figure 5-3. The trend of fetching page operations for the “Banking

application example”

0

1

2

3

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f
fe
tc
h
in
g

S
M
A
P
 o
p
e
ra
ti
o
n
s

Figure 5-4. The trend of fetching SMAP operations for the

“Banking application example”

0.690.77

0.00

0.25

0.50

0.75

1.00

Initial state Final state

c
lu
s
te
r
ra
ti
o

Figure 5-5. Cluster ratios

sequence covers 2.5% of distinct accounts and 365 sub-sequences

(365 days) make a long sequence of records. The records in each

sub-sequence can fill 0.5% of space of the initial table space.

The performance metrics of the experiment are shown in Figure 5-

1 through 5-5. In Figure 5-1 through 5-4, x-axis value

corresponds to a particular sub-sequence (a particular day). For

example, x=50 means the 50th subsequence or the 50th day.

Figure 5-1 shows where the records are inserted into (candidate

pages, other pages in the same segment and so on, corresponding

to algorithm steps described in Section 3) over time, represented

by a percentage of records in a sub-sequence. For example, when

x=1 (the first day), almost 100% of records are placed on

MAX point = 6375

MAX point = 357

MAX point = 51

candidate pages. When x is around 160, the initial table space is

almost full. Figure 5-2 shows the average number of pages

checked in SMAP per record insertion. Figure 5-3 and Figure 5-4

show the average number of fetching operations per record

insertion. Figure 5-5 shows that the cluster ratio is worse in the

final state, compared to the initial state.

The experimental results show that during the transition of a

table space from the almost full state to the full state, the

performance metrics are significantly worse. A few sparsely

located remaining free space slots in a table space cause a long

exhaustive search. After the transition state, the few sparsely

located remaining free space slots are filled and the indicator to

the first segment that contains available space is shifted to the

location near the end of a table space, which reduces the cost of

an exhaustive search. A table space may also be transitioning from

the full state to the almost full state because of deletion operations.

The deletion operations can create sparsely located free slots and

the algorithm will try to find those empty spots when new records

are inserted. This can lead to a long exhaustive search.

5.1.2 Mitigating Performance Problems
To mitigate performance problems during the transition state,

we evaluate ideas that use heuristics to avoid an exhaustive search.

One is to avoid an exhaustive search by anticipating and detecting

symptoms of the pre-transition state proactively. Another is to

stop performing an exhaustive search if a table space is almost full.

5.1.2.1 Avoiding an Exhaustive Search by

Anticipating and Detecting Symptoms of the Pre-

Transition State Proactively
For this banking application workload example, if it can be

detected by inspecting performance metrics (using a performance

reporting facility) that a transition state will occur soon, then we

can reorganize a table space proactively before more records are

inserted. Reorganizing involves sorting all data in a table space,

repopulating the table space with added space, and leaving a

reasonably high percentage of free space on each page. For

example, suppose the detected time is day 150 (i.e., 10 days

before a table space is full). Once a table space is reorganized, we

continue inserting the remaining data, i.e. data of day 151 through

day 365. The results are shown in Figure 5-6 through Figure 5-10.

A comparison of Figure 5-1 to 5-5 with Figure 5-6 to 5-10

indicates that performance metrics improved significantly (after

reorganizing a table space shortly before the transition state). The

cluster ratio in the final state is better -- it improved over the one

without proactive reorganization. Of course, reorganization comes

with its own cost in terms of time and space. So the cost/benefit of

reorganization and its impact on data insert performance and

query performance need to be considered and balanced.

5.1.2.2 Avoiding an Exhaustive Search of an Almost

Full Table Space
There is an alternative to the previously proposed idea of

performing reorganization in the pre-transition state. During the

insertion, after detecting that a table space is almost full and

anticipating that allocating new space will cause an extension, the

algorithm can be changed to skip an exhaustive search, and

directly allocate a new page with an extension. When a table

space is almost full, the probability that a new record will be

inserted into an initial candidate page is low. This is one of the

heuristics we can use to detect whether a table space is almost full.

We set a threshold of 30% to perform our experiment, i.e., a table

0%

20%

40%

60%

80%

100%

1 81 161 241 321

sub-sequences (days)

p
e
rc
e
n
ta
g
e

Candidate Page
Other Pages in the Same Segment
Other Segments in the Same SMAP
Last Segment of the Tablespace
Allocate Without an Extension
Allocate With an Extension
Exhaustive Search

Figure 5-6. The trend of where space for a record is found for

“Banking example” with reorganization at day 150

0

50

100

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f
P
a
g
e
s

C
h
e
c
k
e
d

 Figure 5-7. The trend of number of Pages Checked in SMAP for

“Banking example” with reorganization at day 150

0

5

10

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f

fe
tc
h
in
g
 p
a
g
e

o
p
e
ra
ti
o
n
s

Figure 5-8. The trend of fetching page operations for “Banking

workload example” with reorganization at day 150

0

1

2

3

1 81 161 241 321

sub-sequences (day s)

a
v
g
 #
 o
f

fe
tc
h
in
g

S
M
A
P

o
p
e
ra
ti
o
n
s

Figure 5-9. The trend of fetching SMAP operations for “Banking

example” with reorganization at day 150

0.930.77

0.00
0.25
0.50
0.75
1.00

Initial state Final state

c
lu
s
te
r
ra
ti
o

Figure 5-10. Cluster ratios with reorganization at day 150

space is almost full if no greater than 30% of records in a

particular time window (e.g. one day) are inserted into candidate

pages. The results are in Figure 5-11 through Figure 5-15.

Comparing the sizes of the final table space (after all records

were inserted) in the original algorithm and in the modified

algorithm, we notice that the difference in table space sizes is very

small, 0.99989 : 1. This means that applying this scheme will not

cause much more space to be consumed. There are no pulses in

Figures 5-12 through 5-14. In contrast, in the original algorithm,

the pulses appear in Figures 5-2 through 5-4. These pulses

indicate that substantially more work needs to be done to find free

space during the corresponding time period. Other than the pulses,

the values of other parts of the curves are similar. So the scheme

improves performance, with respect to performance metrics,

during the transition state of a table space while maintaining

performance metrics during other states of a table space.

5.1.3 Discussions
The behavior anticipated by an application is to insert data into

the pages dictated by an index, the “candidate pages.” When the

percentage of candidate page placements becomes very small,

extensions and re-organizations should be performed to add more

disk space, re-cluster records, and space out records in a table

space. Failing to anticipate this transition early enough, as shown,

could lead to a big performance degradation which is followed by

a steady state of sub-optimal record insert performance.

To mitigate the problem using approaches proposed in section

5.1.2, we can collect performance metrics during the insertion

process to predict an upcoming transition state. Several statistical

events can be used to indicate the approach of a transition state: (1)

the percentage of records that can be inserted into candidate pages

decreases quickly, (2) the percentage of records that are inserted

into other pages in the same segment where the candidate page is

located increases and then decreases, (3) the percentage of records

inserted into other segments covered by the same SMAP increases

and then decreases, and then (4) the percentage of records that are

inserted during an exhaustive search increases sharply. When an

approaching transition state is predicted by these indicators,

corresponding actions can be taken such as to advise a database

administrator to perform a table space re-organization or start an

automatic online table space re-organization.

The analysis of the space allocation algorithm suggests that in

addition to the I/O cost of space search, the CPU cost can be a

factor. We find there can be a noticeable CPU cost associated

with scanning SMAP pages which are likely cached in a buffer

pool. In the algorithm we examined, a performance bottleneck

associated with a space search is largely related to the number of

pages visited.

5.2 Ordered vs. Random Sequences
To reduce a time window to load data into databases, we

investigate whether “massaging” data prior to loading can reduce

the load time. One way to pre-process data is to sort it. In this

section, we investigate whether we should order records by key

values before loading.

To answer this question, we first analyze the characteristics of

indexing. When using an index, the index is consulted before an

insertion and then updated after the insertion. At the beginning,

when both a table space and an index are empty, the first record is

inserted into the first page in a table space and the index is

updated. When the page for a record pointed by the index is not

available (due to insufficient space or held latches), a table space

search algorithm is invoked. Over time, the table space grows

gradually, with space near the beginning being slowly filled and

leaving most of available space near the end of the table space.

Due to the characteristics of the cluster indexing, different

insertion behaviors are observed with ordered and random input

sequences. Since a record always gets the candidate page number

of the nearest key in the index, when inserting a record of ordered

sequences, the algorithm will likely first try a page (a candidate

page) near the end of a table space where the pages are likely to

have free space. When inserting a record of random sequences, a

candidate page pointed by an index can potentially be anywhere

in a table space. So we hypothesize that the algorithm finds free

space faster for ordered sequences. We validate our hypothesis.

0%

20%

40%

60%

80%

100%

1 81 161 241 321

sub-sequences (days)

p
e
rc
e
n
ta
g
e

Candidate Page
Other Pages in the Same Segment
Other Segments in the Same SMAP
Last Segment of the Tablespace
Allocate Without an Extension
Allocate With an Extension
Exhaustive Search

Figure 5-11. The Trend of where space for a record is found for a

“Banking workload example” with a detection scheme

0

50

100

150

200

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f
P
a
g
e
s

C
h
e
c
k
e
d

 Figure 5-12. The trend of number of pages checked in SMAP for

“Banking example” with a detection scheme

0

5

10

1 81 161 241 321

sub-sequences (days)
a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
e
ra
ti
o
n
s

Figure 5-13. The trend of fetching page operations for “Banking

example” with a detection scheme

0

1

2

3

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f

fe
tc
h
in
g
 S
M
A
P

o
p
e
ra
ti
o
n
s

Figure 5-14. The trend of fetching SMAP operations for “Banking

example” with a detection scheme

0.750.77

0.00
0.25
0.50
0.75
1.00

Initial state Final state

c
lu
s
te
r
ra
ti
o

Figure 5-15. Cluster ratios with a detection scheme

5.2.1 Experimental Analysis
We generate input sequences consisting of random permutations

of distinct keys. The number of concurrently processed input

sequences (N) is varied in our experiments. Each sequence in an

experiment is of the same length. Each thread processes a

different input sequence. We compared the results of two different

types of inputs: (1) all input sequences are ordered before they are

inserted; (2) all input sequences are in a random key order. The

simulation results for N = 10, 25, 40 and 55 are as follows.

Figures 5-16 and 5-17 show performance metrics on where the

records are inserted in a table space. It can be seen that when

input records are ordered (vs. random), they are more likely to be

placed on candidate pages and the algorithm is less likely to

search for space in the last segment in a table space. Overall, more

records in ordered sequences are placed successfully during the

first three steps of a space allocation flow (described in Section 3)

than in random sequence. This is an indication that the algorithm

performs better on ordered input records.

Figures 5-18 through 5-21 show the comparison of the average

number of page latch hits, the average number of pages checked

in SMAP, the average number of fetching data page operations,

and the average number of fetching SMAP operations, with two

different types of inputs: ordered sequences and random

sequences. From Figure 5-18 we can see that the average numbers

of page latch hits per record insertion in ordered sequences and in

random sequences are similar when N=10 and 20. When N

increases to 40 and 55, the average numbers of page latch hits per

record insertion in ordered sequences are less than those in

random sequences. Figure 5-19 through 5-21 show that the

average number of pages checked in the SMAP, the average

number of fetching data page operations, and the average number

of fetching SMAP operations per record insertion with ordered

sequences are all significantly smaller (i.e., better) than those with

random sequences. Altogether, the data in Figures 5-18 through 5-

21 further suggests that, to minimize the time to insert records

into a table space, it is advisable to order the records before

inserting. Furthermore, Figure 5-22 shows that the cluster ratio of

a table space is better when input sequences are pre-sorted.

6. ALGORITHM ENHANCEMENTS
In the previous section, we studied the algorithm using inputs

with different characteristics. In this section, we address issues

related to heavy contentions that are often present in highly multi-

threaded environments and the frequency of I/O operations. Our

goal is reducing contentions and I/O operations while at the same

time maintaining or improving a cluster ratio. In this section, we

propose three techniques that improve the space search algorithm

targeting the areas of reducing contentions and reducing I/O

operations. We show benefits with respect to performance metrics.

The three enhancements can be combined together, but for the

purpose of an analysis we evaluate them separately.

6.1 Reducing Contentions

6.1.1 The Observed Problem
When multiple threads try to insert records into a table space,

contentions on accesses to resources can have a significant impact

on performance. A thread waiting on a resource protected by a

lock will have to wait for the lock to be released before it can

proceed. Modern DBMS use fine grain locking and latching to

reduce contentions during record insertions and updates.

After investigating the table space allocation algorithm, we

found that contentions can be frequent during the search through

the last segment of a table space. The following explains the

reason for heavy contentions during the search through the last

segment. (a) If a table space is empty or almost empty (i.e., each

data page has plenty of free space), when a page is selected by an

index as a candidate page, there is a high probability that a record

can be inserted into that page. Even if a record cannot be inserted

into that candidate page (perhaps because other threads filled it),

it is still likely that the record can be inserted into a page in the

same segment or a page covered by the same SMAP. In this

situation, the performance is not a significant concern. (b)

However, when a table space is almost full (i.e., only a few pages

have enough free space for a new record), a thread will have to

search through many pages before successfully inserting a record.

Figure 5-16. Summary of where free space for a record is found for

10 threads (Ordered vs. Random)

Figure 5-17. Summary of where free space for a record is found for

25 threads (Ordered vs. Random)

0

1

2

3

10 25 40 55
of threads

a
v
g
 #
 o
f
h
it
ti
n
g
 p
a
g
e

la
tc
h
e
s

ordered sequences

random sequences

0

300

600

900

10 25 40 55
of threads

a
v
g
 #
 o
f
p
a
g
e
s

c
h
e
c
k
e
d

ordered sequences
random sequences

Figure 5-18. The average

numbers of page latch hits

Figure 5-19. The average

numbers of pages checked in SMAP

0

15

30

45

10 25 40 55
of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
s
.

ordered sequences
random sequences

0

2

4

6

8

10 25 40 55

of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

S
M
A
P
 o
p
s
.

ordered sequences
random sequences

Figure 5-20. The average numbers

of fetching data page operations

Figure 5-21. The average numbers

of fetching SMAP operations

0.00

0.25

0.50

0.75

1.00

10 25 40 55

of threads

c
lu
s
te
r
ra
ti
o

ordered sequences
random sequences

Figure 5-22. Cluster ratios

Eventually, if no space is found, the algorithm allocates one or

more new pages at the end of a table space. Hence, the pages in

the last segment are more likely to have free space than pages in

other segments. Therefore, when a table space is almost full, a

new record is more likely to be inserted into a page in the last

segment. In the original algorithm, when searching in the last

segment, all threads start from the same page and are likely to find

the same page with free space at about the same time. The first

0%

20%

40%

60%

A B C D E F G

P
e
rc
e
n
ta
g
e ordered sequences

random sequences

0%

20%

40%

60%

A B C D E F G

P
e
rc
e
n
ta
g
e ordered sequences

random sequences

A: Candidate Page

B: Other Pages in the Same Segment

C: Other Segments in the Same SMAP

D: Last Segment of the Tablespace

E: Allocate without an Extension

F: Allocate with an Extension

G: Exhaustive Search

A: Candidate Page

B: Other Pages in the Same Segment

C: Other Segments in the Same SMAP

D: Last Segment of the Tablespace

E: Allocate without an Extension

F: Allocate with an Extension

G: Exhaustive Search

thread that gets the page will lock it, perform space checking, and

insert into it. All subsequent threads checking the same page will

contend and wait until the page is unlocked.

6.1.2 A Proposed Enhancement
We propose the following technique to reduce contentions in

the last segment. Instead of letting all threads traverse through the

same sequence of pages from the same starting page in the last

segment, select a random page within the last segment as a start

searching page for each thread. Consequently, the first page found

to be available in the last segment by different threads will tend to

be different. Hence the chance of all threads contending on the

same page in the last segment will be reduced.

Besides reducing contentions, we also consider reducing the

number of page fetching operations by assigning a random offset

number for each thread when a thread starts. This random offset

number identifies the start searching page in the last segment of

the current table space. As newly allocated space becomes the last

segment of the growing table space, the offset number for each

thread to start a search within the last segment remains unchanged

until a thread terminates. For a period of time during the insertion,

the most recently visited data page and the most recently visited

SMAP for each thread are likely maintained in memory, and this

helps reduce the number of page fetching operations.

6.1.3 Experimental Results
We generate a number of sequences of distinct key values; each

sequence having the same number of records. We conduct

experiments using 10, 25, 40 and 55 sequences (concurrent

threads). We compare performance metrics of the original

algorithm and the enhanced algorithm (proposed in Section 6.1.2)

that reduces contentions.

The experimental results are in Figures 6-1 through 6-4. The

average number of page latch hits with the enhanced algorithm is

considerably smaller than with the original algorithm. With the

enhanced algorithm, the number of pages checked in SMAP and

the number of fetching operations are also smaller especially

when the number of threads is high (in experiments when number

of threads is greater than 40). There is no significant difference in

the cluster ratios. The performance metrics collectively

demonstrate that the proposed technique reduces contentions and

improves algorithm performance.

6.2 Using “Recent History Lookup List”

6.2.1 A Proposed Enhancement
To minimize the waste of space, a table space allocation

algorithm uses free space in a table space as much as possible

before allocating more space at the end of the table space.

A SMAP (space map page) is a structure that tracks the level of

available space in every data page, with each data page

represented by several bits in a SMAP. To find a page with

enough free space, each thread has to scan through all SMAP bits,

including those representing full pages.

One approach to speed up the process of searching for free space

is to keep track of only pages that have free space. However, if we

build a separate global structure to remember all data pages which

are not full (having free space to hold the shortest record), there

might not be enough memory to hold the structure and it is

preferable not to store it on a disk due to the cost of I/O

operations. An alternative is to keep track of a small subset of

pages that have enough free space; these few pages can be stored

0

250

500

750

1000

10 25 40 55 # of threads

a
v
g
 #
 o
f
p
a
g
e
s

c
h
e
c
k
e
d Original Algorithm

Random Start Page

in Last Segment

Figure 6-1. The average numbers of pages checked in SMAP

0

1

2

3

10 25 40 55
of threads

a
v
g
 #
 o
f
h
it
ti
n
g

p
a
g
e
 l
a
tc
h
e
s Original Algorithm

Random Start Page

in Last Segment

Figure 6-2. The average numbers of page latch hits

0

20

40

60

10 25 40 55
of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
e
ra
ti
o
n
s

Original Algorithm

Random Start Page

in Last Segment

Figure 6-3. The average numbers of fetching page operations

0

2

4

6

8

10 25 40 55
of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

S
M
A
P
 o
p
e
ra
ti
o
n
s

Original Algorithm

Random Start Page

in Last Segment

Figure 6-4. The average numbers of fetching SMAP operations

0.00

0.25

0.50

0.75

1.00

10 25 40 55 # of threads

c
lu
s
te
r
ra
ti
o

Original Algorithm

Random Start Page in

Last Segment

Figure 6-5. Cluster ratios

in main memory. A page in the small subset is re-used for free

space until it is full and replaced by another page. The reused

page in the subset also has better locality than a page identified by

scanning SMAP. Consequently, we propose a data structure to

hold a few available pages and corresponding strategies to access

the structure when looking for space and updating the structure.

We use RHL_LIST (Recent History Lookup LIST) to denote this

structure as pages in the list are recently found available and used

for insertion.

We design the RHL_LIST structure as follows. The RHL_LIST

structure is a fixed size array. Each item in RHL_LIST contains a

pointer (reference) to a data page, a pointer (reference) to a SMAP

page that is relevant to this data page, and a status flag indicating

the status of this item in RHL_LIST. There are three possible

status states for each item: AVAILABLE, TRASH, BUSY. The

AVAILABLE status of an item indicates that the page in this item

is not currently occupied by any thread and there is enough free

space on this page. The TRASH status indicates that the page

does not have enough free space and can be replaced by another

available page. The BUSY status of a page indicates that the page

is currently occupied by a thread.

The strategy of the table space allocation algorithm by using

RHL_LIST is as following.

(1) For a new record to be inserted, look up the record’s key in

an index tree of the table to find a desired location (i.e., a

candidate data page) for the record to be placed at. If the

record’s key value does not exist in the index, the nearest key

value in the index is used for identifying the candidate page. If

not successful, try to get an available page from the RHL_LIST

and insert the record into the page. Update RHL_LIST when

applicable (more details on updating are described later).

(2) If the placement in step 1 fails, find space within the same

segment where the candidate data page is located. If not

successful, try to get an available page from the RHL_LIST and

insert the record into the page. Update RHL_LIST when

applicable (more details on updating are described later).

(3) If failed in step 2, search from the first segment that has

free space forward to the last segment covered by the same

space map page. Note: A reference to the first segment that has

free space is updated when necessary. If not successfully, try to

get an available page from the RHL_LIST and insert the record

into the page. Update RHL_LIST when applicable (more

details on updating are described later).

(4) If failed in step 3, go to the last segment of the table space.

Search from the first page of the last segment to the last page

of the last segment. If not successfully, try to get an available

page from the RHL_LIST and insert the record into the page.

Update RHL_LIST when applicable (more details on updating

are described later).

(5) If failed in step 4 and if allocating new space will not cause

an extension, then allocate a new page.

(6) If failed in step 4 and if allocating new space will cause an

extension, then do an exhaustive search from the first segment

that has free space to the end of the table space. A reference to

the first segment that has free space is updated when necessary.

(7) If failed in step 6, allocate a new page with an extension.

In this strategy, we alternate between the search steps in the

original space allocation algorithm and the search using

RHL_LIST (the differences are underlined).

There are three main operations on the RHL_LIST structure: (i)

to update the status of an item, (ii) to get an available page

through the items in the RHL_LIST, and (iii) to insert a new item

into RHL_LIST with the pointer to a new page which has enough

free space and a pointer to a relevant SMAP. The pseudo code for

these three operations is as follows:
update_status_of_page(item, newStatus){

temporarily latch the item. // when leaving that item, unlatch it.
If (item.status != BUSY) item.status = newStatus

}

get_one_available_page(){

for each item in the RHL_LIST by starting from a random position{

 temporarily latch the item. // when leaving that item, unlatch it.
if (item.status == AVAILABLE){

check the available size of the page in the item.

if the size of the page is less than the maximum size of a record, update

the status of this item to be TRASH, go to next item; otherwise, return

this item.

}else{

go to next item.

}

}

return null // fail to get an available page from the RHL_LIST

}

0

250

500

750

1000

10 25 40 55
of threads

a
v
g
 #
 o
f
p
a
g
e
s

c
h
e
c
k
e
d Original

Algorithm

RHL_LIST

Algorithm

Figure 6-6. The average numbers of pages checked in SMAP

0

1

2

3

10 25 40 55
of threads

a
v
g
 #
 o
f
h
it
ti
n
g

p
a
g
e
 l
a
tc
h
e
s

Original

Algorithm

RHL_LIST

Algorithm

Figure 6-7. The average numbers of page latch hits

0

20

40

60

10 25 40 55 # of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
e
ra
ti
o
n
s

Original

Algorithm

RHL_LIST

Algorithm

Figure 6-8. The average numbers of fetching page operations

0

2

4

6

8

10 25 40 55 # of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

S
M
A
P
 o
p
e
ra
ti
o
n
s

Original

Algorithm

RHL_LIST

Algorithm

Figure 6-9. The average numbers of fetching SMAP operations

0.00

0.25

0.50

0.75

1.00

10 25 40 55
of threads

c
lu
s
te
r
ra
ti
o

Original Algorithm

RHL_LIST

Algorithm

Figure 6-10. Cluster ratios

insert_one_new_item(newPage, newSMAP){

for each item in the RHL_LIST by starting from a random position {

temporarily latch the item. // when leaving that item, unlatch it.
if (item.status == TRASH){

item.page = newPage; item.status = AVAILABLE; item.smap = newSmap

return

}else{

go to next item.

}

}

}

When a page is obtained from the RHL_LIST, the status of the

item where the page is located in the RHL_LIST is set to BUSY.

After the page is processed by a thread, the status is set to be

AVAILABLE or TRASH depending on the available space on

that page. If the available space is greater than the maximum size

of the records of the table, then it will be set to AVAILABLE,

otherwise, it will be set to TRASH. The status of an item may also

be changed from AVAILABLE to TRASH during the

get_one_available_page() operation by a thread. When a thread

traverses through the RHL_LIST, even if it finds the status of an

item to be AVAILABLE, it has to check the space on the page to

see whether it is indeed AVAILABLE (because the available

space of that page may be changed by some threads without

accessing the RHL_LIST, i.e., via other parts of searching). If the

available space is smaller than necessary to hold the record, the

status of that item is changed to TRASH. When a record is

successfully inserted into a page and if after that the available

space of that page is still greater than the maximum size of the

records, we try to insert a new item having a pointer to that page

into RHL_LIST. The insertion will not be successful if there are

no TRASH pages in RHL_LIST. This operation is inexpensive

because it is in-memory and no extra objects are created. As the

latch time on each item in RHL_LIST is very short, the contention

on RHL_LIST items is not an obvious performance concern.

The data pages (and the corresponding SMAP pages) that are

referenced via RHL_LIST are more likely to be in memory. When

inserting records into those pages, we do not have to fetch them

from a disk and it reduces I/O operations.

6.2.2 Experimental Results
We generate a number of sequences of distinct key values; each

sequence having the same number of records. We conduct

experiments using 10, 25, 40 and 55 sequences (concurrent

threads). We compare performance metrics of the original

algorithm and the enhanced algorithm using the RHL_LIST. The

experimental results are shown in Figures 6-6 through 6-10.

Although cluster ratios do not change, other performance metrics

(e.g., the number of pages checked and the number of pages

fetched during a space search) improve significantly. In Figures 6-

6 through 6-9, the curves for the algorithm using RHL_LIST are

almost flat, while the curves for the original algorithm are

growing quickly. This demonstrates that the enhanced algorithm

using RHL_LIST has better scalability.

6.2.3 Discussion
Earlier in this section, we proposed an enhancement to the

space allocation algorithm and showed that referring to the recent

history lookup list (RHL_LIST) improved record insert efficiency.

The RHL_LIST is a structure to keep a small set of recently

visited data pages that have free space. Attempting to insert

records directly into these pages reduces time spent on searching

for free space.

As an alternative to tracking data pages that have free space, we

can keep (in a data structure) a set of SMAP pages each of which

indicates that at least some of their data pages have free space.

The modified space search algorithm would first check the

candidate page, then try to search in some SMAP pages in that

structure, then try to search in the last segment, and then proceed

as in the original algorithm. The structure which keeps a set of

SMAP pages will need to be kept up to date. When and how to

update the structure as well as a performance analysis are left for

the future work.

6.3 Reducing Search for Available Space

6.3.1 A Proposed Enhancement
In the original algorithm described in section 3, when inserting

a new record, before making a decision to allocate more space at

the end of a table space for a new record, a potentially long search

has to be made to better utilize existing space. In a workload with

variable record sizes, as a result of frequent inserts and updates,

the free space is largely fragmented into small empty slots (where

larger records cannot be placed). For this scenario, our intuition

is that (a) for large records, we should find a way to shorten a

0

250

500

750

1000

10 25 40 55 # of threads

a
v
g
 #
 o
f
p
a
g
e
s

c
h
e
c
k
e
d

Original Algorithm

Conditional Append

Figure 6-11. The average numbers of pages checked in the SMAP

0

1

2

3

10 25 40 55 # of threads

a
v
g
 #
 o
f
h
it
ti
n
g

p
a
g
e
 l
a
tc
h
e
s

Original Algorithm

Conditional Append

Figure 6-12. The average numbers of page latch hits

0

20

40

60

10 25 40 55 # of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

p
a
g
e
 o
p
e
ra
ti
o
n
s

Original Algorithm

Conditional Append

Figure 6-13. The average numbers of fetching page operations

0

2

4

6

8

10 25 40 55
of threads

a
v
g
 #
 o
f
fe
tc
h
in
g

S
M
A
P

o
p
e
ra
ti
o
n
s Original Algorithm

Conditional Append

Figure 6-14. The average numbers of fetching SMAP operations

0.00

0.25

0.50

0.75

1.00

10 25 40 55
of threads

c
lu
s
te
r
ra
ti
o

Original Algorithm

Conditional Append

Figure 6-15. Cluster ratios

60%

70%

80%

90%

100%

5 10 25 40 num of last pages (M)

s
p
a
c
e
 u
ti
liz
a
ti
o
n

10 threads

25 threads

40 threads

55 threads

Figure 6-16. Space utilization

60%

70%

80%

90%

100%

0
.0
9

0
.1

0
.1
8

0
.2

0
.2
5

0
.4

0
.4
5

0
.5

0
.6
3

0
.7
3 1 1 1

1
.6

2
.5 4

#_of_last_pages/#_of_threads (M/N)

s
p
a
c
e
 u
ti
liz
a
ti
o
n

Figure 6-17. Space utilization with respect to

#_of_last_pages/#_of_threads (M/N)

search path and (b) for small records, we can still try to use the

original search path to maximize space utilization.

We propose the following enhancement. (a) For a large record,

we first try a candidate page; if we cannot insert the record in the

candidate page, then we skip both the search for pages in the

same segment and the search for pages covered by the same space

map page. We attempt to place the record into one of the last M

pages at the end of the table space. If we cannot successfully

insert the record into one of the last M pages, we allocate a new

page for this record. If the new allocation needs an extension, then

the exhaustive search before the extension is also bypassed. (b)

For a small record, we follow the original search path, except that

when searching in the last segment, we use the last M pages to

replace the last segment. Whether a record is large or small, when

searching in the last M pages, we apply the same technique

described in section 6.1 and select a random start page for a

search in the last M pages. We call this enhanced algorithm

Conditional Append Algorithm or CAA.

For our experiments, we define large size records as those

records whose sizes are greater than the average record size. We

find that CAA has better performance characteristics than the

original algorithm. When properly selecting the parameter M

(which indicates the number of pages at the end of the table space

where large records are placed), CAA and the original algorithm

consume similar amounts of table space. CAA improves the

performance metrics for the following reason: (1) It directly

reduces a search path for large records; (2) The availability of

small slots unused by large records in the last M pages shortens

the time to find space for small records; (3) Randomizing a

starting lookup page for each thread helps reduce contentions.

We find experimentally that in high contention environments,

when the parameter M is too small (compared to the number of

threads), CAA might underutilize space. The reason is that when

many threads with large records fail to find space in the last M

pages at about at the same time, there is a chance these threads

start to allocate new pages concurrently. When the number of

these new pages is significantly larger than parameter M, some

new pages allocated by threads will reside outside the range of

last M pages from the end of the table space. As a result, they are

not available for the search step in the last M pages dictated by

CAA. Consequently, these pages might be under filled in the

immediate future. Other than the above observation regarding

very small M values, our experiments show that the value of M

does not significantly affect performance characteristics.

6.3.2 Experimental Results
We generate a number of sequences of distinct key values; each

sequence having the same number of records. The sizes of the

records we use are distributed between 100 and 250 bytes. The

average record size is 175 and a standard deviation is 35. We

conduct experiments using 10, 25, 40 and 55 concurrent threads.

Parameter M is set to (# of threads)/2. We compare performance

metrics of the original algorithm and CAA. The experimental

results, shown in Figures 6-11 through 6-15, demonstrate that

CAA has better performance metrics. To illustrate how parameter

M affects space utilization, we evaluate CAA by varying M and

the number of threads. Figure 6-16 shows space utilization over

various values of M and the number of threads. To understand

how the space utilization is related to the ratio of (M : number of

threads), we display data presented in Figure 6-16 in a different

format shown in Figure 6-17. We observe that when M exceeds

(number of threads / 2) the space utilization gets greater than 90%.

In conclusion, we can leverage this observation: a DBMS can

make observations on the number of concurrent threads and

dynamical adjust parameter M to ensure it operates in the mode to

achieve the highest space utilization.

7. PERFORMANCE FACTORS ANALYSIS
In the two previous sections, we evaluate the table space

allocation algorithm and a few enhancements with respect to

several performance metrics. In this section, we further analyze

how the performance metrics relate to performance.

The ultimate performance measures are average response times

and throughput for record inserts (while maintaining good space

utilization). Some previous work [20] used “objects created per

second” metric to analyze the performance. This is a throughput

measure and by itself does not provide enough details to explain

how the throughput is affected by the cost of each step of the

space search process. In addition to providing a throughput

measure, our framework allows us to get a breakdown on the cost

of each step of the space search process and identify bottlenecks

by plugging-in hardware and DBMS dependent parameters. We

explain how it can be done using the performance model below:
avg_cost_to_insert_a_record = (cost_of_index_look_up)

 + (cost_of_check_a_page_in_SMAP) * avg_numPagesCheckedInSMAP

 + (cost_of_per_allocation_operation) * avg_numAllocationOperation

 + (cost_of_waiting_on_a_latch) * avg_numHittingPageLatches

 + (cost_of_fetching_a_data_page) * avg_numFetchingDataPages

 + (cost_of_fetching_a_SMAP_page) * avg_numFetchingSMAPs

 + (cost_of_insertion_into_a_page)

We call the parameter values in the parentheses, which are

dependent on DBMS and hardware, system parameters. We call

the remaining parameters algorithm parameters. For fixed values

of system parameters, when we reduce the values of algorithm

parameters by algorithm changes, as we show in previous sections,

the avg_cost_to_insert_a_record will decrease and the performance

will improve. We use the following system parameters:

cost_of_index_look_up is the time cost of the primary index look

up. We can make an assumption that non-leaf index pages are

cached in a buffer pool. A percentage of leaf pages area accessed

from disk units while the other pages are cached in a buffer pool.

cost_of_check_a_page_in_SMAP is the cost of checking SMAP

if a page has enough space (i.e. the cost of checking a few bytes).

cost_of_per_allocation_operation is the cost to allocate a page

(or several pages depending on the allocation scheme) at the end

of the table space. It is an amortized cost between allocations that

need extensions and those that do not.

cost_of_waiting_on_a_latch is the cost of waiting for a latch

until the waiting thread can access the resource protected by the

latch. This cost is related to the speed of an operation on the

contented resource and the waiting scheme. If the waiting scheme

is always wait until success then it is mainly related to the

operation speed on the contented resource (a page).

cost_of_fetching_a_data_page is the cost of fetching a page from

the disk or the memory. In most cases, a percentage of data pages

will be fetched from disk units while the other data pages are

cached in a buffer pool.

cost_of_fetching_a_SMAP_page is the cost of fetching a SMAP

page. If we assume that all SMAP pages are kept in a buffer pool,

then it is a memory operation. Otherwise, its cost is similar to

cost_of_fetching_a_data_page, fetching a SMAP page with a

percentage of pages coming from disk units and other pages

cached in a buffer pool.

cost_of_insertion_into_a_page is the cost to insert a record into

a page which is already in memory. It includes the cost of finding

the free block via an offset table on the same page and then

locating the space to insert.

Three system parameters, cost_of_fetching_a_data_page

cost_of_index_look_up, cost_of_fetching_a_SMAP_page include

a cost of reading a page from disk units. This cost includes time

of transferring data on I/O channel, reading data from the cache in

the disk units, and potential disk seek time if the page is not found

in the cache. In a cost analysis using the performance model

above, we can make reasonable assumptions on the percentage of

page that are read from a cache based on the sizes of a cache and a

database.

7.1 Implications of SSD Technology
Recent technological changes help make SSDs [21, 22] more

affordable and available. SSDs present different performance

characteristics compared to HDs. Random read time is

significantly lower in SSDs than in HDs since there is no seek

time in SSDs. Sequential read access times in SSDs do not show a

similar scale of improvement over HDs as most pages are read

from a disk cache in both cases. The read and write speed of a

SSD is asymmetric as it takes longer to write. SSDs provide

interfaces (compatible with HDs) to applications such as DBMS.

When databases are migrated to SSDs, we can still apply the same

framework contributed by this paper to study space search

performance, using different system parameters learned from

SSDs. For example, we can make the same assumption that a

percentage of index, SMAP and data pages are cached in a

database buffer pool, another percentage is read from a disk cache,

and the rest of pages are read from a disk (which takes much less

time to read when using SSDs).

Other characteristics in SSDs that are different from those in

HDs include a rather limited number of erase (write) cycles due to

a wear out effect and an internal disk garbage collection to

mitigate this effect, a block level erase operation, possibly a

different physical and logical page mapping than in HDs, and etc.

In addition, the fact that enterprise class SSD storage remains

considerably more expensive than HDs suggests that better space

management, achieving lower internal in-page fragmentation, and

higher space utilization will be even more critical for an enterprise

DBMS using SSDs. These additional or different characteristics

provide new research and design opportunities to further optimize

DBMS overall performance and maximize space utilizations when

SSDs are used for backend stores. The optimizations in disk units

and DBMSs might further lead to different SSD database design

practices than HD. We plan to investigate these issues using our

simulation framework in the future work and further extend the

framework to accommodate advances in database design practices.

8. SUMMARY
Due to the constant technological changes, emergence of new

applications, and demands for rapid loading of high volumes of

data, the problem of space allocation in a DBMS becomes even

more important today than a decade ago. In this paper, we present

an in-depth study of the performance characteristics of a table

space allocation algorithm of a modern DBMS, make several

observations about its behavior with practical performance

implications, identify opportunities for optimization, propose and

evaluate several algorithm enhancements, and quantify their

benefits with respect to relevant performance metrics. To conduct

this research, we build an extensible simulation framework. In our

study, we look at the space allocation problem from a new angle

and consider factors like contentions in multi-threaded

environments and cluster ratios. We show that pre-sorting data

can lead to better insertion performance which has implications

for load utilities. We believe to be the first to build a research tool

for studying the effect of various input patterns on the space

allocation algorithm behavior for a DBMS. Our framework is

flexible and can be used to explore SSD optimized algorithms.

This simulation framework is being used by both database

researchers and by a development product team for (i) design

exploration and (ii) using real-world workload patterns to identify

high-value optimizations and avoid performance regressions. It

allows us to enhance the algorithm in response to new

requirements.

9. REFERENCES
[1] J. L. Hennessy, D. A. Patterson. Computer architecture: a

quantitative approach, Morgan Kaufmann Inc., 1996.

[2] W. W. Hsu, A. J. Smith, H. C. Young. I/O reference behavior of

production database workloads and the TPC benchmarks – an

analysis at the logical level. ACM Tran. on Database Systems

(TODS), v.26 n.1, p.96-143, March 2001.

[3] P. A. Franaszek, J. T. Robinson, A. Thomasian. Concurrency control

for high contention environments. ACM Tran. on Database Systems

(TODS), v.17 n.2, p.304-345, June 1992.

[4] A. Gartner, A. Kemper, D. Kossmann, B. Zeller. Efficient Bulk

Deletes in Relational Databases. In Proc. of the IEEE ICDE 2001,

p.183-192.

[5] B. L. Worthington, G. R. Ganger, Y. N. Patt, J. Wilkes. On-line

extraction of SCSI disk drive parameters. In Proc. of ACM

SIGMETRICS 1995, p.146-156.

[6] C. Ruemmler, J. Wilkes. Disk Shuffling. Technical Report HPL-91-

156, HP Laboratories, Oct 1991.

[7] W. W. Hsu, A. J. Smith, H. C. Young. The automatic improvement

of locality in storage systems. ACM Tran. on Computer Systems

(TOCS), v.23 n.4, p.424-473, Nov. 2005.

[8] D. A. Patterson, G. Gibson, R. H. Katz. A case for redundant arrays

of inexpensive disks. SIGMOD 1988, p.109-116.

[9] Y. Hu, Q. Yang. DCD – disk caching disk: a new approach for

boosting I/O performance. ISCA 1996, p.169-178.

[10] C. Ruemmler, J. Wilkes. An introduction to disk drive modeling.

Computer, v.27 n.3, p.17-28, March 1994.

[11] S. Lee, B. Moon. Design of Flash-Based DBMS: An in-page logging

approach. In Proc. of ACM SIGMOD 2007, p.55-66.

[12] V. Soloviev. Prefetching in segmented disk cache for multi-disk

systems. In Proc. of the 4th workshop on I/O in parallel and

distributed systems: part of the FCRC, p.69-82, 1996.

[13] Z. Li, Z. Chen, Y. Zhou. Mining block correlations to improve

storage performance. ACM Tran. on Storage (TOS), v.1 n.2, p.213-

245, May 2005.

[14] P. Felber and M. K. Reiter. Advanced Concurrency Control in Java.

Concurrency and Computation: Practice and Experience, 14(4):261-

285, 2002.

[15] A. Silberschatz and Z. Kedem. Consistency in Hierarchical Database

Systems. J. of ACM, 27(1), Jan. 1980.

[16] A. Reuter. A Concurrency on high-traffic data elements. In Proc. of

ACM PODS 1982, p.83-92.

[17] D. Gawlick, D. Kinkade. Varieties of concurrency control in
IMS/VS fast path. IEEE Database Eng., 4 (1985), 63-70.

[18] M. Hsu, B. Zhang. Performance evaluation of cautious waiting.

ACM TODS v.17 n.3, p.477-512, Sept. 1992.

[19] C. Mohan, D. Haderle. Algorithms for flexible space management in

transaction systems supporting fine-granularity locking. In Proc. of

EDBT 1994, p.131-144.

[20] M. L. McAuliffe, M. J. Carey, M. H. Solomon. Towards effective

and efficient free space management. In Proc. of the ACM SIGMOD

1996, p.389-400.

[21] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,

R. Panigrahy. Design Tradeoffs for SSD Performance. USENIX

2008, p.57-70.

[22] V. Prabhakaran, T. L. Rodeheffer, L. Zhou. Transactional Flash. In
proc. of ACM OSDI 2008, p.147-160.

[23] P. R. Wilson, M. S. Johnstone, M. Neely, D. Boles. Dynamic

Storage Allocation: A Survey and Critical Review. In proc. of

IWMM 1995, p.1-116.

