
RC24631 (W0809-020) September 4, 2008
Computer Science

IBM Research Report

Analyzing and Improving Table Space Allocation

 Shanchan Wu
Department of Computer Science

University of Maryland
College Park, MD 

Yefim Shuf, Hong Min, Hubertus Franke
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Bala Iyer, Frances H. Villafuerte, Julie Watts
IBM Silicon Valley Lab

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



 

Analyzing and Improving Table Space Allocation 
 Shanchan Wu*  Yefim Shuf

+ 
Hong Min

+
  

Hubertus Franke
+ 

Bala Iyer
# 

Frances H Villafuerte
#
 Julie Watts

#

* Department of Computer Science, University of Maryland, College Park       

 
+ 
IBM T.J. Watson Research Center                     

# 
IBM Silicon Valley Lab 

* wsc@cs.umd.edu               
+, # 

{yefim, hongmin, frankeh, balaiyer, francesv, jwatts}@us.ibm.com 

 

    

ABSTRACT 

Space allocation is a fundamental operation performed by a 

database management system (DBMS) when it inserts a record 

into a table. A good space allocation algorithm quickly locates 

and reserves enough space for a record, places it closer to its 

related records, and utilizes the available space. Satisfying these 

conflicting requirements is challenging and trade-offs are 

carefully balanced by well-chosen heuristics. As a DBMS evolves 

over time, especially a commercial DBMS, its space allocation 

algorithm gets more sophisticated and complex and relies on 

many heuristics. Technological changes, new applications, and 

greater data volumes render many legacy heuristics ineffective. 

These factors hinder understanding of space allocation behavior 

under many workload conditions and make it difficult to enhance 

the algorithm without causing performance regressions for some 

of the workloads.   

To facilitate research and study the performance of a table 

space allocation algorithm of a modern DBMS in real-world 

workload scenarios, we build an extensible simulation framework. 

We analyze algorithm behavior and make surprising observations. 

We use the findings to further improve the existing algorithm by 

proposing algorithm enhancements and showing their benefits 

with respect to key performance metrics. In conclusion, the 

proposed framework has been effective in research to understand 

the performance, improve the space allocation algorithms, and to 

guide the developers of a commercial DBMS.  

1. INTRODUCTION 
 For a database management system (DBMS), the ability to 

insert a record quickly and efficiently is critical. To maximize disk 

space utilization while achieving high performance, database 

designers use various strategies for storing records. As 

improvements in processor speed continue to outpace 

improvements in disk access time, I/O is increasingly a major 

bottleneck in systems [1] and especially in large DBMS [2]. An 

efficient space allocation strategy that minimizes I/O frequency is 

essential. A common practice for improving read I/O performance 

is to cluster records with similar key values. For some access 

patterns, data clustering can significantly reduce or eliminate disk 

seek time -- a major contributing factor to I/O time. Maintaining 

data clustering is a desirable property for inserts. However, a mix 

of inserts and deletes can easily cause disk space fragmentation. 

Designing a table space allocation strategy that performs well 

for various workloads is challenging. The tradeoffs like “add more 

empty pages to a table space” or “fully utilize the existing space” 

are not easily explored via the back of an envelope analysis. 

Another requirement for a space allocation algorithm is to have 

fewer contentions in a highly concurrent transaction processing 

environment. We are not aware of any framework for space 

allocation algorithms research. 

In this paper, we study a representative table space allocation 

algorithm of a commercial DBMS and its variations. To compare 

different space allocation strategies, we build a simulation tool. 

The tool is used to quantitatively answer “what if” questions that 

arise during a space allocation strategy design and identify the 

strengths and weaknesses of the strategy. The tool is also used to 

pinpoint when record insert performance degrades. We use the 

tool to analyze the algorithm under various conditions 

representing real workload scenarios and to evaluate our 

algorithm enhancements. It can be used to evaluate the 

implication of using Solid State Disks (SSDs) [21, 22] whose 

performance characteristics are different than Hard Disks (HDs). 

Simulating various input patterns and their effect on the insertion 

algorithm is a complicated modeling task and the tool that helps 

accomplishing it has a considerable practical value. 

Insert performance is one of the most challenging issues in real-

life usage of DBMS. Ability to complete new data imports in a 

given time frame and to do so in a space usage efficient manner  is 

a key characteristic of a well performing DBMS. Our work 

addresses key challenges in solving this important problem. This 

paper makes the following contributions: 

� It presents an extensible framework for simulating a broad 

class of space allocation algorithms and evaluating them with 

respect to various performance metrics on multi-threaded 

workloads. The framework is used as a testbed to explore ideas 

for improving space allocation algorithms and gain insights 

into how such algorithms behave in real-world workload 

scenarios. 

�     It evaluates a typical table space allocation algorithm of a 

commercial DBMS and identifies conditions under which the 

algorithm performs the best. As far as we know, it addresses 

issues not previously investigated in the literature: it studies the 

quality of the cluster ratio achieved and the scaling of the 

algorithm when facing a large number of concurrent threads.  

�     It presents observations with practical performance 

implications. We find that when record insertion is guided by a 

clustered index, a random record sequence can be inserted 

faster if it is pre-sorted in the clustered index key order. We 

show that pre-sorting records is a way to improve the cluster 

ratio. We also show that providing each thread with a distinct 

starting point when searching for space can reduce contentions. 

�     It proposes space allocation algorithm enhancements    and 

quantifies their benefits. We show one enhancement for 

reducing lock contentions during space search, another for 

reducing the number of data pages fetched before a page with 

enough free space is found, yet another enhancement to reduce 

the space search path length for variable size records. 



 

Quantifying relative benefits of proposed enhancements helps 

decide which of them should be integrated into the 

implemented algorithm of a DBMS. 

The rest of this paper is organized as follows: in section 2, we 

present related work; in section 3, we describe the organization of 

a table space and a table space allocation algorithm of a modern 

DBMS; in section 4, we describe our simulation framework; we 

use the framework to exercise several workload scenarios to study 

the space allocation algorithm in section 5; in section 6, we 

propose algorithm enhancements and experimentally show their 

benefits; in section 7, we discuss how the performance metrics 

collected by our framework can be applied to analyze the actual 

cost of a record insert in a real system; we summarize in section 8. 

2. RELATED WORK 
Research on the design space exploration of table space 

allocation algorithms, while being important to the database 

community, has seldom been presented in the academic literature. 

Although there has been work on space management in 1996 [20], 

in spite of technological changes, emergence of new applications, 

and demands for rapid loading of high volumes of data, the 

problem of space allocation has not been given adequate attention 

since the publication of [20] and must be revisited.  

McAuliffe et al. [20] studied object placement algorithms from 

the standpoint of storage utilization and allocation performance 

without regard to clustering. Their work is concerned with free 

space management in heap files. They noted that many object 

placement algorithms have serious performance deficiencies, 

including excessive CPU or memory overhead, I/O traffic, or poor 

disk utilization. Compared to [20], we focus on multi-threaded 

workloads. We also use a more comprehensive set of performance 

parameters for analyzing performance costs from two orthogonal 

aspects: one that is dictated by the underlying hardware and 

DBMS, and one that is driven by the algorithm. 

Our goal is to improve DBMS performance by reducing the 

CPU cost of allocating space for new records and creating a better 

data layout that will ultimately lead to fewer I/O delays.  There 

has been work on improving I/O performance from different 

angles: disk access optimizations, prefetching and architectures 

for storing large volumes of data. Work has been done on arm 

scheduling [5], bandwidth boosting [8], cache optimizations [9], 

layout optimizations [6,7]. Performance modeling of disk drives 

has been studied [10] and I/O simulation tools have been 

developed. Sorting of RIDs was used to reduce I/O for bulk 

deletes in [4]. We are first to build a research tool for 

understanding the effects of various input patterns on the insertion 

algorithm behavior. 

Data prefetching was shown to reduce synchronous I/O 

operations. Soloviev [12] studied prefetching in disk caches. Hsu 

et al. [2] examine the logical I/O reference behavior of the peak 

production database workloads from ten of the world’s largest 

corporations. Their focus is on analyzing factors that affect how 

these workloads respond to different techniques for caching, 

prefetching, and write buffering. Wilson et al. [23] discussed the 

design and evaluation of conventional dynamic memory allocators. 

Chen et al. [13] applied data mining technique to discover block 

correlations in storage systems, and show that correlation-directed 

prefetching and data layout can reduce average I/O response times. 

Due to the popularity of high-density Flash memory as data 

storage medium, some began designing Flash-based DBMS [11]. 

Our tool can be used to explore algorithms for systems with 

Flash-based storage. 

There has been work on improving DBMS performance by 

reducing resource access contentions. Most contentions that were 

dealt with are at the transaction level. To ensure data integrity, 

various locking schemes were proposed such as two-phase 

locking [14] and tree locking [15]. Several concurrency control 

techniques were investigated [13,14,16,17,18]. The contentions 

addressed in the literature are largely contentions on accesses to 

records and indexes of databases rather than contentions during 

table space allocation, which is a focus of our paper. Mohan et al. 

in [19] designed methods to improve concurrency and space 

utilization by space reservation and space tracking. 

3. TABLE SPACE AND TABLE SPACE 

ALLOCATION ALGORITHM 
Figure 3-1 shows table spaces and tables in a database. Since 

table spaces reside in database partition groups, the table space 

selected to hold a table defines how the data for the table is 

distributed across database partitions. A single table space can 

span several containers. Containers define physical storage for a 

table space. A container can be a file system directory, a file with 

a preset size, or a raw device such as an unformatted disk, a disk 

partition, or a logical volume. Multiple containers from one or 

more table spaces can be created on the same physical disk. For 

better performance, each container can reside on a different disk. 
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Figure 3-1. Table spaces and tables in a database 
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Figure 3-2. The structure of a table space 

Figure 3-2 shows the structure of a table space. A table space 

contains multiple segments. Each segment contains a number of 



 

pages. The typical page types are: a header page, a space map 

page (SMAP), a compression dictionary page (if data is 

compressed), and a data page.  The header page describes the 

table space. A space map page identifies data pages with enough 

free space for new records. Each space map in a page set covers a 

specific range of pages. A SMAP uses an indicator (several bits) 

for each data page to indicate the level of free space on that page. 

When a table space does not have enough available space to 

accommodate a new record, an extension operation may occur, in 

which case, new space is allocated at the end of a table space.  

There is an index structure (an index tree) to keep track of the 

order and locations of records in a table. The index tree is updated 

after a record is inserted into a table. The number to the left of 

each page in Figure 3-2 indicates page number of that page in a 

table space. The location of a record is defined by page number of 

the data page where the record is located and the offset of the 

starting point of the record in the data page. 

The table space allocation algorithm operates as follows: 

(1) For a new record to be inserted, look up the record’s key in 

an index tree of the table to find a desired location (i.e., a 

candidate data page) for the record to be placed at. If the 

record’s key value does not exist in the index, the nearest key 

value in the index is used for identifying the candidate page. 

(2) If the placement in step 1 fails, find space within the same 

segment where the candidate data page is located.  

(3) If failed in step 2, search from the first segment that has 

free space forward to the last segment covered by the same 

space map page. Note: A reference to the first segment that has 

free space is updated when necessary.    

(4) If failed in step 3, go to the last segment of the table space. 

Search from the first page of the last segment to the last page 

of the last segment.  

(5) If failed in step 4 and if allocating new space will not cause 

an extension, then allocate a new page. 

(6) If failed in step 4 and if allocating new space will cause an 

extension, then do an exhaustive search from the first segment 

that has free space to the end of the table space. A reference to 

the first segment that has free space is updated when necessary. 

(7) If failed in step 6, allocate a new page with an extension. 

An ideal table space allocation algorithm should be able to 

quickly find enough free space for a record, waste no space, and 

maintain data clustering. In some DBMS, the quality of data 

clustering is measured by a cluster ratio. A cluster ratio gives an 

indication of how closely the order of index entries on index leaf 

pages matches the actual ordering of rows on data pages. The 

higher the cluster ratio, the lower the cost of referencing data 

pages during an index scan. To maintain a high cluster ratio, the 

algorithm first tries to insert a record into a candidate page 

referred by the index tree. Then it tries to insert records with the 

same or similar keys into locations near each other. It considers 

pages in the vicinity of a candidate page, i.e. the same segment 

where the candidate data page is located, and in the next step, 

considers pages in segments covered by the same space map page. 

A good starting point to analyze performance of a space search 

algorithm is to identify major factors influencing its performance. 

The major factors for record insertions are I/O operations and 

contentions. The I/O operations include reading space map pages 

(SMAP) and data pages from a disk storage system. Since the size 

of a buffer pool is finite and is usually much smaller than the size 

of a corresponding table, a larger number of (random) page 

fetching operations usually results in more misses in a buffer pool 

and more I/O operations. To reduce I/O operations, each thread 

maintains in memory one recently used data page and one SMAP 

page. When a thread tries to access a data page or a SMAP that 

already resides in memory, an I/O operation is avoided. Once a 

thread fetches and successfully uses a new data page or a new 

SMAP page, it maintains them in memory to speed up access. 

In a SMAP, the number of bits representing how much space is 

free on each data page is small (for space efficiency) and the 

information on free space is not frequently updated (to allow for 

more concurrency). So even if a SMAP indicates that a data page 

may have enough free space, when the data page is fetched, there 

might not be enough free space for a new record.  

The following are some performance metrics used to evaluate 

the algorithm in terms of CPU and I/O activities and contentions: 

� The percentage of records that are inserted into an initial 

candidate data page identified via an index tree lookup. 

� The number of pages that are checked in a SMAP before a 

successful insert. 

� The number of data pages and SMAP pages that are fetched 

before finding free space to insert a record.  

� The number of page latches or locks that are contended 

with during a space search.   

Our simulation tool tracks these and other performance metrics. 

4. THE SIMULATION FRAMEWORK  
In this section, we describe the architecture of the simulation 

framework / tool. To reduce the memory footprint, the tool does 

not store the content of records, but only keys and records’ sizes. 

The tool inputs record sequences and outputs statistical results. 

The input sequences are generated by an input workload generator 

(or by using the instrumentation features of a DBMS). It generates 

various input streams with different attributes. The attributes are 

configurable.  

Each thread in this multi-threaded tool operates on a separate 

input sequence. Many parameters such as the time to insert a 

record, the wait time for a latch, the properties of a table space, 

are configurable. We use a B-tree to implement an index. To find 

a candidate page from an index, we try to look for a record with 

the same key, or the nearest higher key, or the nearest lower key. 

The index is updated after a record is inserted. We implemented a 

Lock-Manager to simulate concurrent access issues and 

contentions.  

Figure 4-1 describes the structure of the simulation framework. 
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Figure 4-1. The structure of the simulation framework 

The tool is used as follows. After the input generator generates 

desired sequences of input records, they are saved. Then the 

simulator is started to concurrently process input sequences with 

multiple threads and collect statistical data for performance 

metrics. At the end of a simulation, the state of a table space can 



 

be saved on a disk. The next time, if we want to continue from a 

particular state of a table space, we can configure the tool to load 

the saved state of a table space and process more input streams. 

This lets us to use identical initial states for different experiments. 

5. EXPERIMENTAL ANALYSIS OF THE 

ALGORITHM 
In this section, we analyze the characteristics and performance 

of the algorithm with different workloads. Intuitively, it is faster 

to find space for a new record when a table space has a substantial 

amount of free space than when a table space is almost filled. To 

study how the performance metrics of the algorithm change when 

the state of a table space changes, we simulate a real banking 

application example where a table space grows from being sparse 

to being full. We find a particular state when performance metrics 

deteriorate sharply and propose techniques to mitigate this 

performance problem. We also investigate how the characteristics 

of input record sequences affect algorithm, performance. The 

study of this scenario will help us make decisions on whether or 

how to preprocess input sequences before inserting records. For 

this purpose, we compare and analyze performance metrics for the 

ordered record sequences and unordered record sequences.  

5.1 A Banking Application Example 
Let us consider a database design for a representative banking 

application workload. The data is organized by a clustering index 

on a data attribute such as account number. There is a fair amount 

of free space left on each page. When there is account activity, the 

banking application closes the old account record by updating its 

ending timestamp, and inserts a new record for the same account, 

preferably near the account record that has just been closed. 

For this type of a database and application design, it is expected 

that the table space, which initially has a lot of free space, will 

grow full over time as more transactions are processed and more 

records are inserted. The application expects table space re-

organizations and extensions to be performed periodically to 

space out records in the table space. However, when some 

accounts are more active than others, free space around these 

accounts becomes scarce and new records corresponding to these 

accounts are placed elsewhere. This prologs a space search 

process for those records. The quality of data clustering degrades. 

We simulate this workload and investigate potential 

performance issues when the account access pattern is skewed. 

The table space is pre-populated with records corresponding to all 

bank accounts, with every page having some percentage of free 

space. After that, several concurrent streams periodically insert 

records into the table space. When there is sufficient free space in 

a table space, a record can be inserted quickly. When the available 

space decreases, it takes more effort to place a new record. 

5.1.1 Experimental Analysis 
The initial state of a table space is created by inserting a 

sequence of records with non-duplicated sequential keys 

corresponding to all account numbers. Each page is left with 80% 

of free space (i.e. 20% of space is occupied by account data). We 

use the 80/20 rule and designate 20% of accounts as very active 

accounts that generate 80% of account activities. The remaining 

80% moderately active accounts generate 20% of account 

activities. We create input sequences representing this skewed 

account activity pattern. Each sequence consists of many sub-

sequences  representing  daily  bank  activities.  Each  daily  sub-  
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Figure 5-1. The trend of where space for a record is found for the 

“Banking application example” 
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Figure 5-2. The trend of number of Pages Checked in SMAP for the 

“Banking application example” 
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Figure 5-3. The trend of fetching page operations for the “Banking 

application example” 
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Figure 5-4. The trend of fetching SMAP operations for the  

“Banking application example” 
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Figure 5-5. Cluster ratios 

sequence covers 2.5% of distinct accounts and 365 sub-sequences 

(365 days) make a long sequence of records. The records in each 

sub-sequence can fill 0.5% of space of the initial table space.  

The performance metrics of the experiment are shown in Figure 5-

1 through 5-5. In Figure 5-1 through 5-4, x-axis value 

corresponds to a particular sub-sequence (a particular day). For 

example, x=50 means the 50th subsequence or the 50th day. 

Figure 5-1 shows where the records are inserted into (candidate 

pages, other pages in the same segment and so on, corresponding 

to algorithm steps described in Section 3) over time, represented 

by a percentage of records in a sub-sequence. For example, when 

x=1 (the first day), almost 100% of records are placed on 

MAX  point = 6375 

MAX  point = 357 

MAX  point = 51 



 

candidate pages. When x is around 160, the initial table space is 

almost full. Figure 5-2 shows the average number of pages 

checked in SMAP per record insertion. Figure 5-3 and Figure 5-4 

show the average number of fetching operations per record 

insertion. Figure 5-5 shows that the cluster ratio is worse in the 

final state, compared to the initial state.   

The experimental results show that during the transition of a 

table space from the almost full state to the full state, the 

performance metrics are significantly worse. A few sparsely 

located remaining free space slots in a table space cause a long 

exhaustive search. After the transition state, the few sparsely 

located remaining free space slots are filled and the indicator to 

the first segment that contains available space is shifted to the 

location near the end of a table space, which reduces the cost of 

an exhaustive search. A table space may also be transitioning from 

the full state to the almost full state because of deletion operations. 

The deletion operations can create sparsely located free slots and 

the algorithm will try to find those empty spots when new records 

are inserted. This can lead to a long exhaustive search. 

5.1.2 Mitigating Performance Problems 
To mitigate performance problems during the transition state, 

we evaluate ideas that use heuristics to avoid an exhaustive search. 

One is to avoid an exhaustive search by anticipating and detecting 

symptoms of the pre-transition state proactively. Another is to 

stop performing an exhaustive search if a table space is almost full.  

5.1.2.1 Avoiding an Exhaustive Search by 

Anticipating and Detecting Symptoms of the Pre-

Transition State Proactively  
For this banking application workload example, if it can be 

detected by inspecting performance metrics (using a performance 

reporting facility) that a transition state will occur soon, then we 

can reorganize a table space proactively before more records are 

inserted. Reorganizing involves sorting all data in a table space, 

repopulating the table space with added space, and leaving a 

reasonably high percentage of free space on each page. For 

example, suppose the detected time is day 150 (i.e., 10 days 

before a table space is full). Once a table space is reorganized, we 

continue inserting the remaining data, i.e. data of day 151 through 

day 365. The results are shown in Figure 5-6 through Figure 5-10. 

A comparison of Figure 5-1 to 5-5 with Figure 5-6 to 5-10 

indicates that performance metrics improved significantly (after 

reorganizing a table space shortly before the transition state). The 

cluster ratio in the final state is better -- it improved over the one 

without proactive reorganization. Of course, reorganization comes 

with its own cost in terms of time and space. So the cost/benefit of 

reorganization and its impact on data insert performance and 

query performance need to be considered and balanced. 

5.1.2.2 Avoiding an Exhaustive Search of an Almost 

Full Table Space  
There is an alternative to the previously proposed idea of 

performing reorganization in the pre-transition state. During the 

insertion, after detecting that a table space is almost full and 

anticipating that allocating new space will cause an extension, the 

algorithm can be changed to skip an exhaustive search, and 

directly allocate a new page with an extension. When a table 

space is almost full, the probability that a new record will be 

inserted into an initial candidate page is low. This is one of the 

heuristics we can use to detect whether a table space is almost full. 

We set a threshold of 30% to perform our experiment, i.e., a table  
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Figure 5-6. The trend of where space for a record is found for 

“Banking example” with reorganization at day 150 
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 Figure 5-7. The trend of number of Pages Checked in SMAP for 

“Banking example” with reorganization at day 150 
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Figure 5-8. The trend of fetching page operations for “Banking 

workload example” with reorganization at day 150 
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Figure 5-9. The trend of fetching SMAP operations for  “Banking 

example” with reorganization at day 150 
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Figure 5-10. Cluster ratios with reorganization at day 150 

 

space is almost full if no greater than 30% of records in a 

particular time  window (e.g. one day) are  inserted into  candidate 

pages. The results are in Figure 5-11 through Figure 5-15.  

Comparing the sizes of the final table space (after all records 

were inserted) in the original algorithm and in the modified 

algorithm, we notice that the difference in table space sizes is very 

small, 0.99989 : 1. This means that applying this scheme will not 

cause much more space to be consumed. There are no pulses in 

Figures 5-12 through 5-14. In contrast, in the original algorithm, 

the pulses appear in Figures 5-2 through 5-4. These pulses 

indicate that substantially more work needs to be done to find free 

space during the corresponding time period. Other than the pulses, 

the values of other parts of the curves are similar. So the scheme 

improves performance, with respect to performance metrics, 

during the transition state of a table space while maintaining 

performance metrics during other states of a table space. 



 

5.1.3 Discussions 
The behavior anticipated by an application is to insert data into 

the pages dictated by an index, the “candidate pages.” When the 

percentage of candidate page placements becomes very small, 

extensions and re-organizations should be performed to add more 

disk space, re-cluster records, and space out records in a table 

space. Failing to anticipate this transition early enough, as shown, 

could lead to a big performance degradation which is followed by 

a steady state of sub-optimal record insert performance. 

To mitigate the problem using approaches proposed in section 

5.1.2, we can collect performance metrics during the insertion 

process to predict an upcoming transition state. Several statistical 

events can be used to indicate the approach of a transition state: (1) 

the percentage of records that can be inserted into candidate pages 

decreases quickly, (2) the percentage of records that are inserted 

into other pages in the same segment where the candidate page is 

located increases and then decreases, (3) the percentage of records 

inserted into other segments covered by the same SMAP increases 

and then decreases, and then (4) the percentage of records that are 

inserted during an exhaustive search increases sharply. When an 

approaching transition state is predicted by these indicators, 

corresponding actions can be taken such as to advise a database 

administrator to perform a table space re-organization or start an 

automatic online table space re-organization. 

The analysis of the space allocation algorithm suggests that in 

addition to the I/O cost of space search, the CPU cost can be a 

factor.  We find there can be a noticeable CPU cost associated 

with scanning SMAP pages which are likely cached in a buffer 

pool. In the algorithm we examined, a performance bottleneck 

associated with a space search is largely related to the number of 

pages visited.   

5.2 Ordered vs. Random Sequences 
To reduce a time window to load data into databases, we 

investigate whether “massaging” data prior to loading can reduce 

the load time. One way to pre-process data is to sort it. In this 

section, we investigate whether we should order records by key 

values before loading.  

To answer this question, we first analyze the characteristics of 

indexing. When using an index, the index is consulted before an 

insertion and then updated after the insertion. At the beginning, 

when both a table space and an index are empty, the first record is 

inserted into the first page in a table space and the index is 

updated. When the page for a record pointed by the index is not 

available (due to insufficient space or held latches), a table space 

search algorithm is invoked. Over time, the table space grows 

gradually, with space near the beginning being slowly filled and 

leaving most of available space near the end of the table space. 

Due to the characteristics of the cluster indexing, different 

insertion behaviors are observed with ordered and random input 

sequences. Since a record always gets the candidate page number 

of the nearest key in the index, when inserting a record of ordered 

sequences, the algorithm will likely first try a page (a candidate 

page) near the end of a table space where the pages are likely to 

have free space. When inserting a record of random sequences, a 

candidate page pointed by an index can potentially be anywhere 

in a table space. So we hypothesize that the algorithm finds free 

space faster for ordered sequences. We validate our hypothesis.   
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Figure 5-11. The Trend of where space for a record is found for a 

“Banking workload example” with a detection scheme 

0

50

100

150

200

1 81 161 241 321

sub-sequences (days)

a
v
g
 #
 o
f 
P
a
g
e
s

C
h
e
c
k
e
d

 
 Figure 5-12. The trend of number of pages checked in SMAP for 

“Banking example” with a detection scheme 
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Figure 5-13. The trend of fetching page operations for “Banking 

example” with a detection scheme 
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Figure 5-14. The trend of fetching SMAP operations for “Banking 

example” with a detection scheme 
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Figure 5-15. Cluster  ratios with a detection scheme 

5.2.1 Experimental Analysis 
We generate input sequences consisting of random permutations 

of distinct keys. The number of concurrently processed input 

sequences (N) is varied in our experiments. Each sequence in an 

experiment is of the same length. Each thread processes a 

different input sequence. We compared the results of two different 

types of inputs: (1) all input sequences are ordered before they are 

inserted; (2) all input sequences are in a random key order. The 

simulation results for N = 10, 25, 40 and 55 are as follows. 

Figures 5-16 and 5-17 show performance metrics on where the 

records are inserted in a table space.  It can be seen that when 

input records are ordered (vs. random), they are more likely to be 

placed  on  candidate  pages  and  the  algorithm  is  less  likely  to 

search for space in the last segment in a table space. Overall, more 

records in ordered sequences are placed successfully during the 



 

first three steps of a space allocation flow (described in Section 3) 

than in random sequence. This is an indication that the algorithm 

performs better on ordered input records.   

Figures 5-18 through 5-21 show the comparison of the average 

number of page latch hits, the average number of pages checked 

in SMAP, the average number of fetching data page operations, 

and the average number of fetching SMAP operations, with two 

different types of inputs: ordered sequences and random 

sequences. From Figure 5-18 we can see that the average numbers 

of page latch hits per record insertion in ordered sequences and in 

random sequences are similar when N=10 and 20. When N 

increases to 40 and 55, the average numbers of page latch hits per 

record insertion in ordered sequences are less than those in 

random sequences. Figure 5-19 through 5-21 show that the 

average number of pages checked in the SMAP, the average 

number of fetching data page operations, and the average number 

of fetching SMAP operations per record insertion with ordered 

sequences are all significantly smaller (i.e., better) than those with 

random sequences. Altogether, the data in Figures 5-18 through 5-

21 further suggests that, to minimize the time to insert records 

into a table space, it is advisable to order the records before 

inserting. Furthermore, Figure 5-22 shows that the cluster ratio of 

a table space is better when input sequences are pre-sorted. 

6. ALGORITHM ENHANCEMENTS  
In the previous section, we studied the algorithm using inputs 

with different characteristics. In this section, we address issues 

related to heavy contentions that are often present in highly multi-

threaded environments and the frequency of I/O operations.  Our 

goal is reducing contentions and I/O operations while at the same 

time maintaining or improving a cluster ratio. In this section, we 

propose three techniques that improve the space search algorithm 

targeting the areas of reducing contentions and reducing I/O 

operations. We show benefits with respect to performance metrics. 

The three enhancements can be combined together, but for the 

purpose of an analysis we evaluate them separately.  

6.1 Reducing Contentions 

6.1.1 The Observed Problem 
When multiple threads try to insert records into a table space, 

contentions on accesses to resources can have a significant impact 

on performance. A thread waiting on a resource protected by a 

lock will have to wait for the lock to be released before it can 

proceed. Modern DBMS use fine grain locking and latching to 

reduce contentions during record insertions and updates.  

After investigating the table space allocation algorithm, we 

found that contentions can be frequent during the search through 

the last segment of a table space. The following explains the 

reason for heavy contentions during the search through the last 

segment. (a) If a table space is empty or almost empty (i.e., each 

data page has plenty of free space), when a page is selected by an 

index as a candidate page, there is a high probability that a record 

can be inserted into that page. Even if a record cannot be inserted 

into that candidate page (perhaps because other threads filled it), 

it is still likely that the record can be inserted into a page in the 

same segment or a page covered by the same SMAP. In this 

situation, the performance is not a significant concern. (b) 

However, when a table space is almost full (i.e., only a few pages 

have enough free space for a new record), a thread will have to 

search through many pages before successfully inserting a record. 

 
Figure 5-16. Summary of where free space for a record is found for 

10 threads (Ordered vs. Random) 

 
Figure 5-17. Summary of where free space for a record is found for 

25 threads (Ordered vs. Random) 
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Figure 5-18. The average 

numbers of page latch hits 

Figure 5-19. The average 

numbers of pages checked in SMAP 
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Figure 5-20. The average numbers 

of fetching data page operations 

Figure 5-21. The average numbers 

of fetching SMAP operations 
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Figure 5-22. Cluster ratios 

Eventually, if no space is found, the algorithm allocates one or 

more new pages at the end of a table space. Hence, the pages in 

the last segment are more likely to have free space than pages in 

other segments. Therefore, when a table space is almost full, a 

new record is  more  likely to be  inserted  into a  page  in the  last 

segment. In the original algorithm, when searching in the last 

segment, all threads start from the same page and are likely to find 

the same page with free space at about the same time. The first 
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thread that gets the page will lock it, perform space checking, and 

insert into it. All subsequent threads checking the same page will 

contend and wait until the page is unlocked.   

6.1.2 A Proposed Enhancement 
We propose the following technique to reduce contentions in 

the last segment. Instead of letting all threads traverse through the 

same sequence of pages from the same starting page in the last 

segment, select a random page within the last segment as a start 

searching page for each thread. Consequently, the first page found 

to be available in the last segment by different threads will tend to 

be different. Hence the chance of all threads contending on the 

same page in the last segment will be reduced.  

Besides reducing contentions, we also consider reducing the 

number of page fetching operations by assigning a random offset 

number for each thread when a thread starts. This random offset 

number identifies the start searching page in the last segment of 

the current table space. As newly allocated space becomes the last 

segment of the growing table space, the offset number for each 

thread to start a search within the last segment remains unchanged 

until a thread terminates. For a period of time during the insertion, 

the most recently visited data page and the most recently visited 

SMAP for each thread are likely maintained in memory, and this 

helps reduce the number of page fetching operations.   

6.1.3 Experimental Results 
We generate a number of sequences of distinct key values; each 

sequence having the same number of records. We conduct 

experiments using 10, 25, 40 and 55 sequences (concurrent 

threads). We compare performance metrics of the original 

algorithm and the enhanced algorithm (proposed in Section 6.1.2) 

that reduces contentions. 

The experimental results are in Figures 6-1 through 6-4. The 

average number of page latch hits with the enhanced algorithm is 

considerably smaller than with the original algorithm. With the 

enhanced algorithm, the number of pages checked in SMAP and 

the number of fetching operations are also smaller especially 

when the number of threads is high (in experiments when number 

of threads is greater than 40). There is no significant difference in 

the cluster ratios. The performance metrics collectively 

demonstrate that the proposed technique reduces contentions and 

improves algorithm performance. 

6.2 Using “Recent History Lookup List” 

6.2.1 A Proposed Enhancement       
To minimize the waste of space, a table space allocation 

algorithm uses free space in a table space as much as possible 

before allocating more space at the end of the table space.  

A SMAP (space map page) is a structure that tracks the level of 

available space in every data page, with each data page 

represented by several bits in a SMAP. To find a page with 

enough free space, each thread has to scan through all SMAP bits, 

including those representing full pages. 

One approach to speed up the process of searching for free space 

is to keep track of only pages that have free space. However, if we 

build a separate global structure to remember all data pages which 

are not full (having free space to hold the shortest record), there 

might not be enough memory to hold the structure and it is 

preferable not to store it on a disk due to the cost of I/O 

operations. An alternative is to keep track of a small subset of 

pages that have enough free space; these few pages can be stored  
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Figure 6-1. The average numbers of pages checked in SMAP 
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Figure 6-2. The average numbers of page latch hits 
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Figure 6-3. The average numbers of fetching page operations 
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Figure 6-4. The average numbers of fetching SMAP operations 
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Figure 6-5. Cluster ratios 

in main memory. A page in the small subset is re-used for free 

space until it is full and replaced by another page. The reused 

page in the subset also has better locality than a page identified by 

scanning SMAP. Consequently, we propose a data structure to 

hold a few available pages and corresponding strategies to access 

the structure when looking for space and updating the structure. 

We use RHL_LIST (Recent History Lookup LIST) to denote this 

structure as pages in the list are recently found available and used 

for insertion. 

We design the RHL_LIST structure as follows. The RHL_LIST 

structure is a fixed size array. Each item in RHL_LIST contains a 

pointer (reference) to a data page, a pointer (reference) to a SMAP 

page that is relevant to this data page, and a status flag indicating 

the status of this item in RHL_LIST. There are three possible 

status states for each item: AVAILABLE, TRASH, BUSY. The 

AVAILABLE status of an item indicates that the page in this item 

is not currently occupied by any thread and there is enough free 

space on this page. The TRASH status indicates that the page 

does not have enough free space and can be replaced by another 

available page. The BUSY status of a page indicates that the page 

is currently occupied by a thread.     



 

The strategy of the table space allocation algorithm by using 

RHL_LIST is as following. 

(1) For a new record to be inserted, look up the record’s key in 

an index tree of the table to find a desired location (i.e., a 

candidate data page) for the record to be placed at. If the 

record’s key value does not exist in the index, the nearest key 

value in the index is used for identifying the candidate page. If 

not successful, try to get an available page from the RHL_LIST 

and insert the record into the page. Update RHL_LIST when 

applicable (more details on updating are described later). 

(2) If the placement in step 1 fails, find space within the same 

segment where the candidate data page is located. If not 

successful, try to get an available page from the RHL_LIST and 

insert the record into the page. Update RHL_LIST when 

applicable (more details on updating are described later). 

(3) If failed in step 2, search from the first segment that has 

free space forward to the last segment covered by the same 

space map page. Note: A reference to the first segment that has 

free space is updated when necessary. If not successfully, try to 

get an available page from the RHL_LIST and insert the record 

into the page. Update RHL_LIST when applicable (more 

details on updating are described later).     

(4) If failed in step 3, go to the last segment of the table space. 

Search from the first page of the last segment to the last page 

of the last segment. If not successfully, try to get an available 

page from the RHL_LIST and insert the record into the page. 

Update RHL_LIST when applicable (more details on updating 

are described later). 

(5) If failed in step 4 and if allocating new space will not cause 

an extension, then allocate a new page. 

(6) If failed in step 4 and if allocating new space will cause an 

extension, then do an exhaustive search from the first segment 

that has free space to the end of the table space. A reference to 

the first segment that has free space is updated when necessary. 

(7) If failed in step 6, allocate a new page with an extension. 

In this strategy, we alternate between the search steps in the 

original space allocation algorithm and the search using 

RHL_LIST (the differences are underlined). 

There are three main operations on the RHL_LIST structure: (i) 

to update the status of an item, (ii) to get an available page 

through the items in the RHL_LIST, and (iii) to insert a new item 

into RHL_LIST with the pointer to a new page which has enough 

free space and a pointer to a relevant SMAP. The pseudo code for 

these three operations is as follows: 
update_status_of_page(item, newStatus){ 

temporarily latch the item. // when leaving that item, unlatch it. 
If (item.status != BUSY) item.status = newStatus 

} 

  

get_one_available_page( ){ 

for each item in the RHL_LIST by starting from a random position{ 

            temporarily latch the item. // when leaving that item, unlatch it. 
if  (item.status == AVAILABLE){ 

check the available size of the page in the item. 

if the size of the page is less than the maximum size of a record, update 

the status of this item to be TRASH, go to next item; otherwise, return 

this item. 

}else{ 

go to next item. 

} 

} 

return null // fail to get an available page from the RHL_LIST  

} 

 

0

250

500

750

1000

10 25 40 55
# of threads

a
v
g
 #
 o
f 
p
a
g
e
s

c
h
e
c
k
e
d Original

Algorithm

RHL_LIST

Algorithm 

 
Figure 6-6. The average numbers of pages checked in SMAP 
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Figure 6-7. The average numbers of page latch hits 
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Figure 6-8. The average numbers of fetching page operations 
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Figure 6-9. The average numbers of fetching SMAP operations 
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Figure 6-10. Cluster ratios 

 

insert_one_new_item(newPage, newSMAP ){ 

for each item in the RHL_LIST by starting from a random position { 

temporarily latch the item. // when leaving that item, unlatch it. 
if  (item.status == TRASH){ 

item.page = newPage; item.status = AVAILABLE; item.smap = newSmap 

return 

}else{ 

go to next item. 

} 

} 

} 

 

When a page is obtained from the RHL_LIST, the status of the 

item where the page is located in the RHL_LIST is set to BUSY. 

After the page is processed by a thread, the status is set to be 

AVAILABLE or TRASH depending on the available space on 

that page. If the available space is greater than the maximum size 

of the records of the table, then it will be set to AVAILABLE, 

otherwise, it will be set to TRASH. The status of an item may also 

be changed from AVAILABLE to TRASH during the 

get_one_available_page( ) operation by a thread. When a thread 

traverses through the RHL_LIST, even if it finds the status of an 

item to be AVAILABLE, it has to check the space on the page to 

see whether it is indeed AVAILABLE (because the available 



 

space of that page may be changed by some threads without 

accessing the RHL_LIST, i.e., via other parts of searching). If the 

available space is smaller than necessary to hold the record, the 

status of that item is changed to TRASH. When a record is 

successfully inserted into a page and if after that the available 

space of that page is still greater than the maximum size of the 

records, we try to insert a new item having a pointer to that page 

into RHL_LIST. The insertion will not be successful if there are 

no TRASH pages in RHL_LIST. This operation is inexpensive 

because it is in-memory and no extra objects are created. As the 

latch time on each item in RHL_LIST is very short, the contention 

on RHL_LIST items is not an obvious performance concern.   

The data pages (and the corresponding SMAP pages) that are 

referenced via RHL_LIST are more likely to be in memory. When 

inserting records into those pages, we do not have to fetch them 

from a disk and it reduces I/O operations. 

6.2.2 Experimental Results 
We generate a number of sequences of distinct key values; each 

sequence having the same number of records.  We conduct 

experiments using 10, 25, 40 and 55 sequences (concurrent 

threads). We compare performance metrics of the original 

algorithm and the enhanced algorithm using the RHL_LIST. The 

experimental results are shown in Figures 6-6 through 6-10. 

Although cluster ratios do not change, other performance metrics 

(e.g., the number of pages checked and the number of pages 

fetched during a space search) improve significantly. In Figures 6-

6 through 6-9, the curves for the algorithm using RHL_LIST are 

almost flat, while the curves for the original algorithm are 

growing quickly. This demonstrates that the enhanced algorithm 

using RHL_LIST has better scalability.  

6.2.3 Discussion 
Earlier in this section, we proposed an enhancement to the 

space allocation algorithm and showed that referring to the recent 

history lookup list (RHL_LIST) improved record insert efficiency. 

The RHL_LIST is a structure to keep a small set of recently 

visited data pages that have free space. Attempting to insert 

records directly into these pages reduces time spent on searching 

for free space.  

As an alternative to tracking data pages that have free space, we 

can keep (in a data structure) a set of SMAP pages each of which 

indicates that at least some of their data pages have free space.  

The modified space search algorithm would first check the 

candidate page, then try to search in some SMAP pages in that 

structure, then try to search in the last segment, and then proceed 

as in the original algorithm.  The structure which keeps a set of 

SMAP pages will need to be kept up to date. When and how to 

update the structure as well as a performance analysis are left for 

the future work. 

6.3 Reducing Search for Available Space 

6.3.1 A Proposed Enhancement       
In the original algorithm described in section 3, when inserting 

a new record, before making a decision to allocate more space at 

the end of a table space for a new record, a potentially long search 

has to be made to better utilize existing space. In a workload with 

variable record sizes, as a result of frequent inserts and updates, 

the free space is largely fragmented into small empty slots (where 

larger records cannot be placed).  For this scenario, our intuition 

is  that (a) for  large  records,  we should find a way  to   shorten a  
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Figure 6-11. The average numbers of pages checked in the SMAP 
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Figure 6-12. The average numbers of page latch hits 
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Figure 6-13. The average numbers of fetching page operations 
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Figure 6-14. The average numbers of fetching SMAP operations 
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Figure 6-15. Cluster ratios 
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Figure 6-16. Space utilization 
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Figure 6-17. Space utilization with respect to 
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search path and (b) for small records, we can still try to use the 

original search path to maximize space utilization.  

We propose the following enhancement. (a) For a  large record, 

we first try a candidate page; if we cannot insert the record in the 

candidate page, then we skip both the search for  pages in the 



 

same segment and the search for pages covered by the same space 

map page. We attempt to place the record into one of the last M 

pages at the end of the table space. If we cannot successfully 

insert the  record  into one of the last M pages, we allocate a new 

page for this record. If the new allocation needs an extension, then 

the exhaustive search before the extension is also bypassed. (b) 

For a small record, we follow the original search path, except that 

when searching in the last segment, we use the last M pages to 

replace the last segment. Whether a record is large or small, when 

searching in the last M pages, we apply the same technique 

described in section 6.1 and select a random start page for a 

search in the last M pages. We call this enhanced algorithm 

Conditional Append Algorithm or CAA. 

For our experiments, we define large size records as those 

records whose sizes are greater than the average record size. We 

find that CAA has better performance characteristics than the 

original algorithm. When properly selecting the parameter M 

(which indicates the number of pages at the end of the table space 

where large records are placed), CAA and the original algorithm 

consume similar amounts of table space. CAA improves the 

performance metrics for the following reason: (1) It directly 

reduces a search path for large records; (2) The availability of 

small slots unused by large records in the last M pages shortens 

the time to find space for small records; (3) Randomizing a 

starting lookup page for each thread helps reduce contentions.  

We find experimentally that in high contention environments, 

when the parameter M is too small (compared to the number of 

threads), CAA might underutilize space. The reason is that when 

many threads with large records fail to find space in the last M 

pages at about at the same time, there is a chance these threads 

start to allocate new pages concurrently. When the number of 

these new pages is significantly larger than parameter M, some 

new pages allocated by threads will reside outside the range of 

last M pages from the end of the table space. As a result, they are 

not available for the search step in the last M pages dictated by 

CAA. Consequently, these pages might be under filled in the 

immediate future. Other than the above observation regarding 

very small M values, our experiments show that the value of M 

does not significantly affect performance characteristics. 

6.3.2 Experimental Results  
We generate a number of sequences of distinct key values; each 

sequence having the same number of records. The sizes of the 

records we use are distributed between 100 and 250 bytes. The 

average record size is 175 and a standard deviation is 35. We 

conduct experiments using 10, 25, 40 and 55 concurrent threads. 

Parameter M is set to (# of threads)/2. We compare performance 

metrics of the original algorithm and CAA. The experimental 

results, shown in Figures 6-11 through 6-15, demonstrate that 

CAA has better performance metrics. To illustrate how parameter 

M affects space utilization, we evaluate CAA by varying M and 

the number of threads. Figure 6-16 shows space utilization over 

various values of M and the number of threads. To understand 

how the space utilization is related to the ratio of (M : number of 

threads), we display data presented in  Figure 6-16 in a different 

format shown in Figure 6-17. We observe that when M exceeds 

(number of threads / 2) the space utilization gets greater than 90%. 

In conclusion, we can leverage this observation: a DBMS can 

make observations on the number of concurrent threads and 

dynamical adjust parameter M to ensure it operates in the mode to 

achieve the highest space utilization. 

7. PERFORMANCE FACTORS ANALYSIS  
In the two previous sections, we evaluate the table space 

allocation algorithm and a few enhancements with respect to 

several performance metrics. In this section, we further analyze 

how the performance metrics relate to performance.  

The ultimate performance measures are average response times 

and throughput for record inserts (while maintaining good space 

utilization). Some previous work [20] used “objects created per 

second” metric to analyze the performance. This is a throughput 

measure and by itself does not provide enough details to explain 

how the throughput is affected by the cost of each step of the 

space search process. In addition to providing a throughput 

measure, our framework allows us to get a breakdown on the cost 

of each step of the space search process and identify bottlenecks 

by plugging-in hardware and DBMS dependent parameters. We 

explain how it can be done using the performance model below:   
avg_cost_to_insert_a_record = (cost_of_index_look_up) 

  + (cost_of_check_a_page_in_SMAP) * avg_numPagesCheckedInSMAP 

  + (cost_of_per_allocation_operation) * avg_numAllocationOperation 

  + (cost_of_waiting_on_a_latch) * avg_numHittingPageLatches  

  + (cost_of_fetching_a_data_page) * avg_numFetchingDataPages  

  + (cost_of_fetching_a_SMAP_page) * avg_numFetchingSMAPs  

  + (cost_of_insertion_into_a_page)  

We call the parameter values in the parentheses, which are 

dependent on DBMS and hardware, system parameters. We call 

the remaining parameters algorithm parameters. For fixed values 

of system parameters, when we reduce the values of algorithm 

parameters by algorithm changes, as we show in previous sections, 

the avg_cost_to_insert_a_record will decrease and the performance 

will improve. We use the following  system parameters: 

cost_of_index_look_up is the time cost of the primary index look 

up. We can make an assumption that non-leaf index pages are 

cached in a buffer pool. A percentage of leaf pages area accessed 

from disk units while the other pages are cached in a buffer pool. 

cost_of_check_a_page_in_SMAP is the cost of checking SMAP 

if a page has enough space (i.e. the cost of checking a few bytes). 

cost_of_per_allocation_operation is the cost to allocate a page 

(or several pages depending on the allocation scheme) at the end 

of the table space. It is an amortized cost between allocations that 

need extensions and those that do not.  

cost_of_waiting_on_a_latch is the cost of waiting for a latch 

until the waiting thread can access the resource protected by the 

latch. This cost is related to the speed of an operation on the 

contented resource and the waiting scheme. If the waiting scheme 

is always wait until success then it is mainly related to the 

operation speed on the contented resource (a page). 

cost_of_fetching_a_data_page is the cost of fetching a page from 

the disk or the memory. In most cases, a percentage of data pages 

will be fetched from disk units while the other data pages are 

cached in a buffer pool.  

cost_of_fetching_a_SMAP_page is the cost of fetching a SMAP 

page. If we assume that all SMAP pages are kept in a buffer pool, 

then it is a memory operation. Otherwise, its cost is similar to 

cost_of_fetching_a_data_page, fetching a SMAP page with a 

percentage of pages coming from disk units and other pages 

cached in a buffer pool. 

cost_of_insertion_into_a_page is the cost to insert a record into 

a page which is already in memory. It includes the cost of finding 

the free block via an offset table on the same page and then 

locating the space to insert. 



 

Three system parameters, cost_of_fetching_a_data_page  

cost_of_index_look_up, cost_of_fetching_a_SMAP_page include 

a  cost of reading a page from disk units. This cost includes time 

of transferring data on I/O channel, reading data from the cache in 

the disk units, and potential disk seek time if the page is not found 

in the cache. In a cost analysis using the performance model 

above, we can make reasonable assumptions on the percentage of 

page that are read from a cache based on the sizes of a cache and a 

database. 

7.1 Implications of SSD Technology 
Recent technological changes help make SSDs [21, 22] more 

affordable and available. SSDs present different performance 

characteristics compared to HDs. Random read time is 

significantly lower in SSDs than in HDs since there is no seek 

time in SSDs. Sequential read access times in SSDs do not show a 

similar scale of improvement over HDs as most pages are read 

from a disk cache in both cases. The read and write speed of a 

SSD is asymmetric as it takes longer to write. SSDs provide 

interfaces (compatible with HDs) to applications such as DBMS. 

When databases are migrated to SSDs, we can still apply the same 

framework contributed by this paper to study space search 

performance, using different system parameters learned from 

SSDs. For example, we can make the same assumption that a 

percentage of index, SMAP and data pages are cached in a 

database buffer pool, another percentage is read from a disk cache, 

and the rest of pages are read from a disk (which takes much less 

time to read when using SSDs).  

Other characteristics in SSDs that are different from those in 

HDs include a rather limited number of erase (write) cycles due to 

a wear out effect and an internal disk garbage collection to 

mitigate this effect, a block level erase operation, possibly a 

different physical and logical page mapping than in HDs, and etc. 

In addition, the fact that enterprise class SSD storage remains 

considerably more expensive than HDs suggests that better space 

management, achieving lower internal in-page fragmentation, and 

higher space utilization will be even more critical for an enterprise 

DBMS using SSDs. These additional or different characteristics 

provide new research and design opportunities to further optimize 

DBMS overall performance and maximize space utilizations when 

SSDs are used for backend stores. The optimizations in disk units 

and DBMSs might further lead to different SSD database design 

practices than HD.  We plan to investigate these issues using our 

simulation framework in the future work and further extend the 

framework to accommodate advances in database design practices.    

8. SUMMARY 
Due to the constant technological changes, emergence of new 

applications, and demands for rapid loading of high volumes of 

data, the problem of space allocation in a DBMS becomes even 

more important today than a decade ago. In this paper, we present 

an in-depth study of the performance characteristics of a table 

space allocation algorithm of a modern DBMS, make several 

observations about its behavior with practical performance 

implications, identify opportunities for optimization, propose and 

evaluate several algorithm enhancements, and quantify their 

benefits with respect to relevant performance metrics. To conduct 

this research, we build an extensible simulation framework. In our 

study, we look at the space allocation problem from a new angle 

and consider factors like contentions in multi-threaded 

environments and cluster ratios. We show that pre-sorting data 

can lead to better insertion performance which has implications 

for load utilities. We believe to be the first to build a research tool 

for studying the effect of various input patterns on the space 

allocation algorithm behavior for a DBMS. Our framework is 

flexible and can be used to explore SSD optimized algorithms. 

This simulation framework is being used by both database 

researchers and by a development product team for (i) design 

exploration and (ii) using real-world workload patterns to identify 

high-value optimizations and avoid performance regressions. It 

allows us to enhance the algorithm in response to new 

requirements. 
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