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On mixing inequalities: rank, closure and cutting plane proofs

Sanjeeb Dash Oktay Günlük

September 8, 2008

Abstract

We study the mixing inequalities which were introduced by Günlük and Pochet (2001). We
show that a mixing inequality which mixes n MIR inequalities has MIR rank at most n if it is
a type I mixing inequality and at most n − 1 if it is a type II mixing inequality. We also show
that these bounds are tight for n = 2.

Given a mixed-integer set PI = P ∩ Z(I) where P is a polyhedron and Z(I) = {x ∈ R
n :

xi ∈ Z ∀i ∈ I}, we define mixing inequalities for PI . We show that the elementary mixing
closure of P with respect to I can be described using a bounded number of mixing inequalities,
each of which has a bounded number of terms. This implies that the elementary mixing closure
of P is a polyhedron.

Finally, we show that any mixing inequality can be derived via a polynomial length MIR
cutting plane proof. Combined with results of Dash (2006) and Pudlák (1997), this implies
that there are valid inequalities for a certain mixed-integer set that cannot be obtained via a
polynomial-size mixing cutting-plane proof.

1 Introduction

Günlük and Pochet [6] study the polyhedral structure of the so-called mixing set

S =
{

s ∈ R+, z ∈ Z
n : s + zk ≥ bk for k = 1, . . . , n

}
where 0 < b1 < b2 < . . . < bn ≤ 1, and show that the following n-term mixing inequalities are
valid for S:

s + b1z1 +
n∑

k=2

(bk − bk−1)zk ≥ bn, (1)

s + (b1 + 1 − bn)z1+
n∑

k=2

(bk − bk−1)zk ≥ bn. (2)

Note that if bn = 1, inequalities (1) and (2) are identical. These inequalities are called “mix-
ing” inequalities as they combine, or mix, mixed-integer rounding (MIR) inequalities based on
individual constraints, namely

s + bkzk ≥ bk, (3)
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for k = 1, . . . , n. Notice that if n = 1, the mixing inequality (1) becomes the MIR inequality (3)
and the mixing inequality (2) simply becomes the inequality defining S. MIR inequalities
were introduced by Nemhauser and Wolsey [7] and they are obtained by applying a simple
procedure to any implied (base) inequality. Nemhauser and Wolsey [8] also showed that split
cuts, introduced by Cook, Kannan and Schrijver [2] are equivalent to MIR inequalities. The
inequalities (3) are not the only MIR inequalities for S; see [5] for a recent study on MIR
inequalities.

The original description of the mixing set and the mixing inequalities does not assume 0 < bi ≤ 1
but for the sake of simplicity, and without loss of generality, we make this assumption. Notice
that in the definition of S, the zi variables do not have lower bounds and therefore if bi �∈ (0, 1]
for some i, it possible to simply “shift” variable zi by �bi	−1 and then replace bi with bi−�bi	+1
to obtain bi ∈ (0, 1]. The mixing inequalities (1) and (2) are identical to the ones presented in
[6] after this simple transformation. We note that MIR inequalities are known to be invariant
under “shifting”, and more generally, under unimodular transformations [5].

Let I ′ = {i1, . . . , it} be a subset of {1, . . . , n} and let proj[I′](S) denote the projection of S in
the space of the s and zi variables for i ∈ I ′. In other words, proj[I′](S) = {s ∈ R+, z ∈ Z

|I′| :
s + zk ≥ bk, ∀k ∈ I ′}. Clearly the mixing inequalities

s + bi1zi1 +
|I′|∑
k=2

(bik
− bik−1)zik

≥ bi|I′| , (4)

s + (bi1 + 1 − bi|I′|)zi1+
|I′|∑
k=2

(bik
− bik−1)zik

≥ bi|I′| (5)

for proj[I′](S) are also valid for S. We refer to inequality (4) as mix1I′ , and to inequality (5) as
mix2I′ , and say that these are |I ′|-term mixing inequalities, of type I and type II, respectively.
Günlük and Pochet in [6] show that mix1I′ and mix2I′ are facet defining for the convex hull of
S for all I ′ ⊆ {1 . . . , n}, and these inequalities completely describe the convex hull of S.

One of our main contributions in this paper is to show how mixing inequalities can be obtained
by repeatedly applying the MIR procedure. More precisely, we show that the inequality mix1I′

has MIR-rank at most |I ′| and mix2I′ has MIR-rank at most |I ′| − 1. In addition, for |I ′| = 2,
we show that these bounds can be tight. We also show that the inequalities mix1I′ and mix2I′

have MIR cutting-plane proofs of length O(|I ′|2) from the inequalities defining S. This result,
when combined with a recent result by Dash [3], implies that cutting-plane proofs of infeasibility
for mixed-integer sets using mixing inequalities have exponential worst-case complexity.

In addition, we define mixing inequalities for general mixed-integer sets and formulate the sep-
aration problem as a quadratic mixed-integer program. Using this formulation, we then study
the elementary closure of mixing inequalities and show that it is polyhedral. More precisely, we
show that the mixing closure of any given mixed integer set can be described using a bounded
number of mixing inequalities each of which has a bounded number of terms.

The rest of the paper is organized as follows: we next define MIR inequalities and give some
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of their well-known properties. We present our results on the rank of mixing inequalities in
Section 2. In Section 3 we define mixing inequalities for general sets and study some of their
basic properties. In Section 4 we define the elementary closure of mixing inequalities for general
sets and show that it is polyhedral. Finally, in Section 5, we give a polynomial length MIR
cutting-plane proof of mixing inequalities.

1.1 Preliminaries

Wolsey [10] defines a two variable mixed-integer set Q =
{
s ∈ R, z ∈ Z : s + z ≥ b, s ≥ 0

}
and shows that the basic mixed-integer inequality

s + b̂z ≥ b̂ �b	 , (6)

where b̂ = b−(�b	−1) is valid and facet-defining for Q. This observation can be used to generate
valid inequalities for a general mixed-integer set PI = P ∩ Z(I) where

P = {x ∈ R
n : Ax ≥ b }, Z(I) = {x ∈ R

n : xi ∈ Z ∀i ∈ I},

and I is a subset of {1, . . . , n}. We assume that any non-negativity constraints on some of the
variables are included in the system Ax ≥ b. Let v = Ax − b and note that v ≥ 0 for all x ∈ P .
Assume A has m rows and let λ ∈ R

m be a row vector such that (λA)i is (a) integral for i ∈ I,
and (b) 0 for i �∈ I. Define λ+ by λ+

i = max{λi, 0}. Then the equation −λv + (λA)x = λb is
valid for P and so is the inequality

(−λ)+v + (λA)x ≥ λb. (7)

In addition, for all points in PI , (−λ)+v is non-negative and (λA)x is integral. Let β = λb. The
basic mixed-integer inequality implies that (−λ)+v + β̂(λA)x ≥ β̂ �β	 , or equivalently

(−λ)+(Ax − b) + β̂(λA)x ≥ β̂ �β	 , (8)

is a valid inequality for points in PI (recall that β̂ = β− (�β	−1)). This inequality is the mixed-
integer rounding (MIR) inequality generated by λ. Inequality (7) is called the base inequality of
the MIR inequality. See [5] for other ways of defining the MIR inequality, and the equivalence
of (8) with the definition in [8].

Some well known properties of the MIR inequalities are the following:

1. The MIR inequality (8) generated by −λ is equivalent to the one generated by λ.

2. If a point x∗ ∈ P violates the MIR inequality (8), then

(a) x∗ satisfies �β� < (λA)x∗ < �β	;
(b) λ+v∗ < 1, where v∗ = Ax∗ − b.

An inequality cx ≥ d is called a split cut for PI if cx ≥ d is satisfied by points in P ∩ {αx ≤ β}
and P ∩{αx ≥ β+1}, where α, β are integral and αi = 0 for i �∈ I. We say that cx ≥ d is derived
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using the disjunction αx ≤ β ∨ αx ≥ β + 1. It is known that for β̂ �= 0, the inequality (8) is
a split cut for PI derived using the disjunction (λA)x ≤ �β� ∨ (λA)x ≥ �β	. In addition, every
split cut for PI is also an MIR inequality generated by some λ ∈ R

m [8].

2 MIR rank of mixing inequalities

The elementary MIR closure of P with respect to I, denoted by P [1], is the set of points in P

that satisfy all MIR inequalities that can be generated using the inequalities defining P and the
integrality of the variables xi for i ∈ I. It is known that P [1] is a polyhedral set [2] and therefore
it suffices to consider only a finite number of (un-dominated) MIR inequalities to obtain the
MIR closure. For any integer t ≥ 2, let P [t] be the MIR closure of P [t−1] with respect to I.
Define P [0] = P . We say that a valid inequality for PI has MIR-rank t, for some integer t ≥ 1,
if it is valid for P [t], but not valid for P [t−1]. If a valid inequality is implied by Ax ≥ b, then it
has MIR-rank 0.

2.1 MIR rank of type I mixing inequalities

We next study the MIR rank of type I mixing inequalities and show that the rank of the |I ′|-
term mixing inequality (4) is at most |I ′|. For simplicity, we use S[t] to denote S

[t]
LP where SLP

stands for the continuous relaxation of S. We start with analyzing inequality (1).

Theorem 2.1 Inequality mix1{1,...,n} is valid for S[n] and therefore it has MIR rank at most
n.

Proof. A mixing inequality with only one term (e.g., mix1{1}) is just an MIR inequality and
has MIR rank 1. Assume the theorem is true for mixing inequalities with n− 1 terms. We next
show that mix1{1,...,n} is a split cut for S[n−1] derived from the disjunction:

(z1 ≥ z2) ∨ (z1 ≤ z2 − 1).

As every split cut for S[n−1] is also an MIR cut for S[n−1], the theorem will follow.

For any point (s̄, z̄) in S[n−1] which satisfies z1 ≥ z2,

s̄ + b1z̄1 +
n∑

k=2

(bk − bk−1)z̄k ≥ s̄ + b2z̄2 +
n∑

k=3

(bk − bk−1)z̄k ≥ bn.

The second inequality above is true as points in S[n−1] satisfy mix1{2,...,n}.

We now consider a point (s̄, z̄) in S[n−1] which satisfies z1 ≤ z2 − 1.
Case 1: Assume (s̄, z̄) satisfies z2 ≤ zk for all k = 3, . . . , n. This fact, along with the inequality
z1 ≤ z2 − 1, implies that z̄1 + 1 ≤ z̄k for k ≥ 2. Therefore

s̄ + b1z̄1 +
n∑

k=2

(bk − bk−1)z̄k ≥ s̄ + b1z̄1 +
n∑

k=2

(bk − bk−1)(z̄1 + 1) = s̄ + bnz̄1 + bn − b1
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If z̄1 ≥ 0, then using s + b1z1 ≥ b1, we have

s̄ + bnz̄1 + bn − b1 ≥ s̄ + b1z̄1 + bn − b1 ≥ bn

and therefore (s̄, z̄) satisfies (1).

If, on the other hand, z̄1 ≤ 0, then using s + z1 ≥ b1, we have

s̄ + bnz̄1 + bn − b1 = s̄ + z̄1 − (1 − bn)z̄1 + bn − b1 ≥ s̄ + z̄1 + bn − b1 ≥ bn

and therefore (s̄, z̄) satisfies (1).

Case 2: Assume that (s̄, z̄) satisfies z2 > zk for some k ∈ {3, . . . , m}, and let t be the smallest
index in {3, . . . , m} for which this is true. Then z̄k > z̄t for k = 2, . . . , t − 1. This implies that

s̄ + b1z̄1 +
n∑

k=2

(bk − bk−1)z̄k ≥ s̄ + b1z̄1 + (bt − b1)z̄t +
n∑

k=t+1

(bk − bk−1)z̄k ≥ bn

as the second inequality follows from mix1{1,t,...,n}, which is satisfied by points in S[n−1].

We proved above that mix1{1,...,n} is a split cut, and therefore an MIR cut, for a set S′ defined by
the inequalities s ≥ 0, s+ z1 ≥ b1, s+ b1z1 ≥ b1, mix1{2,...,n} and mix1{1,k,...,n} for k = 3, . . . , n

and contained in S[n−1].

We note that there are alternative derivations of mix1{1,...,n} as a split cut for S[n−1]. For
example, one can replace inequalities mix1{1,k,...,n} for k = 3, . . . , n with mix1{1,...,k−1,k+1,...,n}
for k = 2, . . . , n − 1 in the definition of S′ above. (To see this, modify the previous proof by
assuming in Case 2 that z̄k > z̄k+1 for some k ∈ {2, . . . , n− 1}, and by assuming in Case 1 that
z̄2 ≤ . . . ≤ z̄n.) This derivation, however, leads to an exponential length MIR cutting plane
proof of mix1{1,...,n}, whereas, the first one leads to a polynomial length MIR cutting plane
proof (discussed in Section 5).

We next explicitly give the multipliers λ and show the derivation of mix1{1,...,n} as an MIR
inequality (8) from the inequalities defining S′ above. Towards this end, we convert the above
inequalities to equations by adding non-negative slack variables in the following manner:

s+ z1 − v1 = b1, (M1)

s + b1z1 − v2 = b1, (M2)

s + b1z1 + (bk − b1)zk +
n∑

i=k+1

(bi − bi−1)zi − vk = bn (k = 3, . . . , n), (Mk)

s + b2z2 +
n∑

i=3

(bi − bi−1)zi − vn+1 = bn. (Mn+1)

Note that (M1)-(Mn+1) involve n − 1 or fewer variables from z1, . . . , zn.
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We define a multiplier λk for inequality (Mk) for k = 1, . . . , n + 1 and use these multipliers to
obtain a base inequality (7) such that the MIR inequality (8) equals inequality (1). First, let

μk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b2 − b1)(
1

1 − b1
) if k = 1,

(b2 − b1)(
1

bn − b1
− 1

1 − b1
) if k = 2,

(b2 − b1)(
1

bk−1 − b1
− 1

bk − b1
) for k = 3, . . . , n,

−1 if k = n + 1,

and note that
p∑

k=3

μk = (b2 − b1)
p∑

k=3

(
1

bk−1 − b1
− 1

bk − b1
) = 1 − b2 − b1

bp − b1
.

Furthermore
n∑

k=1

μk =
b2 − b1

1 − b1
+ (b2 − b1)(

1
bn − b1

− 1
1 − b1

) + 1 − b2 − b1

bn − b1
= 1.

Now consider
∑n

k=1 μk(Mk) and denote it by

α0s +
n∑

k=1

αkzk −
n∑

k=1

μkvk = β. (9)

Note that α0 =
∑n

k=1 μk = 1, and α2 = 0. In addition,

α1 = μ1 + b1

n∑
k=2

μk = μ1(1 − b1) + b1

n∑
k=1

μk = (1 − b1)
b2 − b1

1 − b1
+ b1 = b2.

For k = 3, . . . , n

αk =
k−1∑
l=3

μl(bk − bk−1) + μk(bk − b1)

= (bk − bk−1)(1 − b2 − b1

bk−1 − b1
) + (b2 − b1)(

1
bk−1 − b1

− 1
bk − b1

)(bk − b1)

= (bk − bk−1) − (bk − bk−1)(b2 − b1)
bk−1 − b1

+
(b2 − b1)(bk − b1)

bk−1 − b1
− (b2 − b1)

= bk − bk−1.

Finally,

β = bn

n∑
k=3

μk + b1(μ1 + μ2) = bn(1 − b2 − b1

bn − b1
) + b1

b2 − b1

bn − b1
= bn − (b2 − b1)

and therefore equation (9) is the same as

s + b2z1 +
n∑

k=3

(bk − bk−1)zk −
n∑

k=1

μkvk = bn − (b2 − b1). (10)
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Further,
∑n+1

i=1 μkMk equals

b2(z1 − z2) + vn+1 −
n∑

k=1

μkvk = −(b2 − b1).

Therefore, if we define λk = μk/b2, and drop terms with negative coefficients for vk variables in∑n+1
i=1 λkMk we get

(z1 − z2) + vn+1/b2 ≥ −(b2 − b1)/b2.

If we let γ stand for the right-hand-side of the inequality above, then γ̂ = b1/b2. Applying the
basic mixed-integer inequality, we get (b1/b2)(z1 − z2) + vn+1/b2 ≥ 0 or

b1(z1 − z2) + vn+1 ≥ 0

as an MIR inequality for S. Substituting out vn+1 in the previous inequality using (Mn+1), we
get mix1{1,...,n}.

Notice that Theorem 2.1 also implies that inequality mix1I′ has MIR rank at most |I ′| for
proj[I′](S). Remember that proj[I′](S) = {s ∈ R+, z ∈ Z

|I′| : s + zk ≥ bk, k ∈ I ′}. As all
inequalities defining proj[I′](S) are present in the definition of S, we can make the following
observation.

Corollary 2.2 The |I ′|-term mixing inequality mix1I′ has MIR rank at most |I ′|.

We next show that the upper bound on rank can be tight for two-term mixing inequalities of
type I. Let

S2 =
{
s ∈ R+, z ∈ Z

2 : s + z1 ≥ b1; s + z2 ≥ b2

}
and remember that the 2-term mixing inequality for S2 is s + b1z1 + (b2 − b1)z2 ≥ b2.

Theorem 2.3 If 0 < b1 < b2 < 1/2, then the 2-term mixing inequality mix1{1,2} for S2 has
MIR rank 2.

Proof. We will construct a point (s∗, z∗) which satisfies all MIR cuts, but violates mix1{1,2}.
Choose δ > 0 such that b2 + 2δ < 1/2, and set z∗2 = 1 − δ and z∗1 = 1 − 2δ. For any s∗ ≥ 0,
(s∗, z∗) ∈ SLP

2 , the LP relaxation of S2. We will now choose s∗ such that the MIR inequalities
s + b1z1 ≥ b1 and s + b2z2 ≥ b2 are satisfied by (s∗, z∗), but it violates mix1{1,2}. Now

b2 − (b2 − b1)z∗2 − b1z
∗
1 = b2(1 − z∗1) + b1(z∗2 − z∗1) = b2δ + b1δ,

and b2δ + b1δ is greater than

b1(1 − z∗1) = b1(2δ) and b2(1 − z∗2) = b2δ.

We choose s∗ to be any number less than b2δ + b1δ and larger than max{b1(2δ), b2δ}. Then
(s∗, z∗) is violated by mix1{1,2}, and satisfies the MIR inequalities above.
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Assume that some other MIR inequality is violated by (s∗, z∗), and assume that this inequality
is derived using the multipliers λ = (λ1, λ2). Define v∗1 = s∗ + z∗1 − b1 and v∗2 = s∗ + z∗2 − b2.
Then, as b2 + 2δ < 1/2 implies that b2 + 1/2 < 1 − 2δ = z∗1 , it follows that v∗1 , v∗2 > 1/2.
Recall that λ ∈ Z

2, and λ+v∗ < 1. As the MIR inequality defined by λ is the same as the
MIR inequality defined by −λ, we can assume that the multiplier with maximum magnitude
is positive. The only nonzero λ values satisfying the conditions above and yielding distinct
inequalities are (1, 0), (0, 1), and (−1, 1). We constructed (s∗, z∗) so that it satisfied the MIR
inequalities obtained with the multiplier vectors (1, 0) and (0, 1). The vector (−1, 1) simply
yields inequality mix2{1,2} (as proved in Lemma 2.4) which is trivially satisfied by (s∗, z∗).

2.2 MIR rank of type II mixing inequalities

In this section we study the MIR rank of type II mixing inequalities and show that the rank of
the |I ′|-term mixing inequality (5) is at most |I ′|−1. As in Section 2.2, it is sufficient to analyze
the MIR rank of inequality (2). We start with studying the set S2 defined earlier.

Lemma 2.4 Inequality mix2{1,2} is an MIR inequality for S2.

Proof. We first convert the inequalities defining S2 to equations by adding nonnegative slacks
v1, v2 as follows:

s + z1 − v1 = b1, s + z2 − v2 = b2.

Subtracting the first equation from the second, and dropping the term −v2, we get z2−z1+v1 ≥
b2 − b1 as a valid inequality for S2. Applying (6), we obtain (b2 − b1)(z2 − z1) + v1 ≥ b2 − b1 as
an MIR inequality for S2; substituting out v1, we obtain mix2{1,2}.

Note that the derivation above does not use the nonnegativity of s and therefore mix2{1,2} is
valid for the relaxed mixing set

S2R =
{
(s, z) ∈ R × Z

2 : s + z1 ≥ b1; s + z2 ≥ b2

}
.

We will now prove a result on the rank of type II mixing inequalities. The proof will be similar
to the proof that mix1{1,...,n} is an MIR inequality for S[n−1] given after Theorem 2.1.

Theorem 2.5 Inequality mix2{1,...,n} is valid for S[n−1] and therefore it has MIR rank at most
n − 1.

Proof. We showed that this result is true for n = 2. Assume it is true for n−1; in other words,
assume all n−1 term mixing inequalities of type II are valid for S[n−2]. Consider inequality (M1)
(that is s + z1 − v1 = b1) together with the following (type II) mixing inequalities (expressed as
equations via slacks)

s + (b1 + 1 − bn)z1 + (bk − b1)zk +
n∑

i=k+1

(bi − bi−1)zi − vk = bn (M ′
k)
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for k = 3, . . . , n and the type II mixing inequality

s + (b2 + 1 − bn)z2 +
n∑

i=3

(bi − bi−1)zi − vn+1 = bn (M ′
n+1)

that are valid for S[n−2].

We next define multipliers λ′ to obtain a base inequality which yields inequality (2) as an MIR
inequality. Let

μ′
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b2 − b1)(
1

bn − b1
) if k = 1,

(b2 − b1)(
1

bk−1 − b1
− 1

bk − b1
) for k = 3, . . . , n

−1 if k = n + 1,

and note that μ′
1 +

∑n
k=3 μ′

k = 1 and
∑p

k=3 μ′
k = 1 − (b2 − b1)/(bp − b1) for p = 3, . . . , n.

Now consider μ′
1(M1)+

∑n
k=3 μ′

k(M ′
k) and denote it by

α0s +
n∑

k=1

αkzk −
n∑

k=1

μkvk = β. (11)

As before, β = bn − (b2 − b1), α0 = 1, α2 = 0, and αk = bk − bk−1 for k = 3, . . . , n. In addition,

α1 = μ′
1 + (b1 + 1 − bn)

n∑
k=3

μ′
k = μ′

1(bn − b1) + (b1 + 1 − bn)
n∑

k=1

μ′
k

=
b2 − b1

bn − b1
(bn − b1) + (b1 + 1 − bn) = b2 + 1 − bn.

Therefore equation 11 is the same as

s + (b2 + 1 − bn)z1 +
n∑

k=3

(bk − bk−1)zk −
n∑

k=1

μ′
kvk = bn − (b2 − b1), (12)

and
∑n+1

k=1 μ′
k(M ′

k) equals

(b2 + 1 − bn)(z1 − z2) + vn+1 −
n∑

k=1

μ′
kvk = −(b2 − b1).

Finally, setting λ′ = μ′/(b2 + 1 − bn), and dropping the variables vk with negative coefficients
in

∑n+1
k=1 λ′

k(M ′
k), we get

(z1 − z2) + vn+1/(b2 + 1 − bn) ≥ −(b2 − b1)/(b2 + 1 − bn) (13)

as a valid inequality for S[n−2]. Let γ stand for the right-hand-side of the above inequality.
Then γ̂ = (b1 + 1 − bn)/(b2 + 1 − bn). Applying the basic mixed-integer inequality we get
(b1 + 1 − bn)(z1 − z2) + vn+1 ≥ 0 as an MIR inequality for S[n−2]. Substituting out vn+1 from
the above expression, we obtain mix2{1,...,n}.

Using Theorem 2.5, we make the following observation.

Corollary 2.6 The |I ′|-term mixing inequality mix2I′ has MIR rank at most |I ′| − 1.
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3 Mixing inequalities for general mixed-integer sets

In this section we define mixing inequalities for a general mixed-integer set PI = P ∩Z(I) where

P = {x ∈ R
n : Ax ≥ b }, Z(I) = {x ∈ R

n : xi ∈ Z ∀i ∈ I},

I is a subset of N = {1, . . . , n} and A has m rows indexed by M = {1, . . . , m}. We assume that
if there are non-negativity constraints on some variables, they are included in Ax ≥ b.

Let Λ ∈ R
t×m and let λk denote the kth row of Λ for k ∈ K = {1, . . . , t}. We call Λ a good

mixing matrix for PI if it satisfies the following properties for all k ∈ K:

1. 0 < β1 < β2 < . . . < βt where βk = λkb − (
⌈
λkb

⌉ − 1),

2. (λkA)i ∈ Z for all i ∈ I,

3. (λkA)i = 0 for all i �∈ I.

If Λ is a good mixing matrix for PI , then the inequality∑
j∈M

(max
k∈K

{−λk
j })+(Ax − b)j +

∑
k∈K

(βk − βk−1)(λkAx − ⌈
λkb

⌉
+ 1) ≥ βt (14)

where β0 = 0 is called a mixing inequality of type I generated by Λ. We use (·)+ to denote
max{0, ·} and (Ax − b)j to denote the jth row of (Ax − b). Similarly, we define a mixing
inequality of type II generated by Λ to be∑

j∈M

(max
k∈K

{−λk
j })+(Ax − b)j + (β1 + 1 − βt)(λ1Ax − ⌈

λ1b
⌉

+ 1)

+
∑

k∈K\{1}
(βk − βk−1)(λkAx − ⌈

λkb
⌉

+ 1) ≥ βt. (15)

To see that mixing inequalities (14) and (15) are valid for PI , let v = Ax − b and note that
v ≥ 0 for all x ∈ P . For any matrix Λ ∈ R

t×m, clearly the equality system (ΛA)x − Λv = Λb

is satisfied by all x ∈ P . Dropping vj variables with negative coefficients from these equations,
one obtains the following valid inequalities

λkAx +
∑
j∈M

(−λk
j )+vj ≥ λkb (16)

for all k ∈ K. Further relaxing inequality (16) we obtain

λkAx +
∑
j∈M

max
k′∈K

{(−λk′
j )+}vj ≥ λkb (17)

as valid inequalities for P . Now letting s =
∑

j∈M maxk′∈K{(−λk′
j )+}vj , and zk = λkAx −

(
⌈
λkb

⌉ − 1) inequality (17) becomes s + zk ≥ βk. As Λ is a good mixing matrix for PI , for any
given x ∈ PI , we have the corresponding s ≥ 0 and zk ∈ Z for all k ∈ K. Furthermore, as
βk ∈ (0, 1] and is strictly increasing, any point x ∈ PI can be mapped to a point in S = {s ∈
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R+, z ∈ Z
n : s + zk ≥ βk ∀k ∈ K}. Writing the mixing inequalities (1) and (2) for S and

replacing the surrogate variables with the original ones, one obtains inequalities (14) and (15).

We next present bounds on the maximum violation of mixing inequalities and then formulate
the separation problem for mixing inequalities as an optimization problem.

3.1 Bounding the violation of mixing inequalities

Consider the mixing set S = {s ∈ R+, z ∈ Z
t : s + zk ≥ βk ∀k ∈ K} and let SLP denote

its continuous relaxation. For a given (s̄, z̄) ∈ SLP , let the violation of the mixing inequality
(1) be defined as, Δ1(s̄, z̄) = βt − s̄ − ∑t

k=1 δkz̄k where δ1 = β1 and δk = βk − βk−1 for
k = 2, . . . , t. Similarly, let the violation of the mixing inequality (2) be defined as, Δ2(s̄, z̄) =
βt − s̄ − ∑t

k=1 εkz̄k where ε1 = β1 + 1 − βt and εk = βk − βk−1 for k = 2, . . . , t.

Lemma 3.1 Let (s̄, z̄) ∈ SLP , then Δ1(s̄, z̄) ≤ 1
2 (1 − 1

t+1 ) and Δ2(s̄, z̄) ≤ 1
2 (1 − 1

t ).

Proof. As (s̄, z̄) satisfies s̄ + z̄k − βk ≥ 0 for all k ∈ K, we have

t∑
k=1

δks̄ +
t∑

k=1

δkz̄k −
t∑

k=1

δkβk ≥ 0 (18)

Define δt+1 = 1−βt so that (1−βk) =
∑t+1

j=k+1 δj for k ≥ 1. Adding (18) to Δ1(s̄, z̄), we obtain

Δ1(s̄, z̄) ≤ βt − (1 − βt)s̄ −
t∑

k=1

δkβk ≤
t∑

k=1

δk −
t∑

k=1

δkβk =
t∑

k=1

δk(1 − βk) =
t∑

k=1

t+1∑
j=k+1

δkδj .

Note that
∑t+1

k=1 δk = 1. We can now rewrite the last term in this expression using the following
observation

(
t+1∑
k=1

δk)2 =
t+1∑
k=1

δ2
k + 2

t∑
k=1

t+1∑
j=k+1

δkδj =⇒
t∑

k=1

t+1∑
j=k+1

δkδj =
1
2
(1 −

t+1∑
k=1

δ2
k). (19)

For q ≥ 1, define w(q) = min{∑q
k=1(δk)2 :

∑q
k=1 δk = 1} and note that w(q) = 1/q. Therefore

Δ1(s̄, z̄) ≤ 1
2
(1 −

t+1∑
k=1

δ2
k) ≤ 1

2
(1 − w(t + 1)) =

1
2
(1 − 1

t + 1
).

Similarly for Δ2(s̄, z̄) note that s̄+
∑t

k=1 εkz̄k −
∑t

k=1 εkβk ≥ 0 as (s̄, z̄) satisfies s̄+ z̄k −βk ≥ 0
for all k ∈ K and

∑t
k=1 εk = 1. Adding this expression to Δ2(s̄, z̄), we obtain

Δ2(s̄, z̄) ≤ βt −
t∑

k=1

εkβk =
t∑

k=1

εk(βt − βk) =
t−1∑
k=1

εk(βt − βk) =
t−1∑
k=1

t∑
j=k+1

εkεl.

11



Combining the fact that
∑t

k=1 εk = 1 with the observation (19) above,

Δ2(s̄, z̄) ≤ 1
2
(1 −

t∑
k=1

ε2k) ≤ 1
2
(1 − w(t)) =

1
2
(1 − 1

t
).

Using the fact that the validity of mixing inequalities (14) and (15) for the general mixed
integer set PI was shown by mapping points in PI to points in the mixing set S, we have the
following observation. We define the violation of an inequality to be the right-hand-side minus
the left-hand-side.

Corollary 3.2 For a given a point x̂ ∈ P the violation of any t-term mixing inequality (14)
is at most 1

2 (1 − 1
t+1 ). Similarly, the violation of any t-term mixing inequality (15) is at most

1
2 (1 − 1

t ).

Notice that for t = 1 this observation implies that the maximum violation of a type I mixing
inequality (14) is 1/4. This is same as the bound shown in [5] for the maximum violation
of an MIR inequality. In addition, when t = 1, the maximum violation of a type II mixing
inequality (14) is zero, as the inequality is implied by Ax ≥ b.

3.2 Separating violated mixing inequalities

For a given a point x̂ ∈ P , a most violated mixing inequality (14) generated by a good mixing
matrix that has up to t rows can be obtained by solving the following quadratic mixed-integer
program which we call Mix-Sep-I:

Maximize βt −
∑
j∈M

δj v̂j − β1z1 −
∑

k∈K\{1}
(βk− βk−1)zk

Subject to

αk = (λkA) k ∈ K,

αk
i = 0 ∀k ∈ K, i ∈ N \ I,

zk = (λkA)x̂ − θk ∀k ∈ K,

βk = (λkb) − θk ∀k ∈ K,

βk ≥ βk−1 ∀k ∈ K,

δ ≥ − λk ∀k ∈ K,

1 ≥ βt,

λk ∈ R
m, αk ∈ Z

n k ∈ K; θ ∈ Z
t, z ∈ R

t, β ∈ R
t
+, δ ∈ R

m
+ .

where v̂ ∈ R
m denotes Ax̂ − b. In this formulation, variable zk stands for (λkAx̂ − ⌈

λkb
⌉

+ 1)
and θk stands for

⌈
λkb

⌉ − 1 (if λkb is integral, then θk can take on the value λkb or λkb − 1).
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The objective function measures the violation of the mixing inequality (14), defined to be the
right-hand-side of the inequality minus the left-hand-side.

Lemma 3.3 For a given point x̂ ∈ P , an optimal solution of Mix-Sep-I corresponds to a most
violated mixing inequality of type I that can be generated by a good mixing matrix with t or fewer
rows.

Proof. Given a good mixing matrix Λ′ ∈ R
t′×m where t′ ≤ t, it is easy to construct a feasible

solution to Mix-Sep-I where the objective value is the same as the violation of the mixing
inequality generated by Λ′. This can simply be done by first appending t − t′ copies of the the
last row of Λ′ to obtain the matrix Λ ∈ R

t×m. Letting λk = kth row of Λ and αk = λkA for
k ∈ K, θ = Λb−1 and δj = (maxk∈K{−λk

j })+ for j ∈ M gives the desired solution to Mix-Sep-I.

On the other hand, given an optimal solution to Mix-Sep-I, let Λ ∈ R
t×m be the matrix with

kth row equal to the value of λk in the solution and note that Λ is not necessarily a good mixing
matrix as Mix-Sep-I does not guarantee that βk > βk−1 for k ∈ K \ {1}. Furthermore, the
βk values produced by Mix-Sep-I are guaranteed to be equal to λkb − (

⌈
λkb

⌉ − 1) only when
λkb �∈ Z. If λkb ∈ Z for some k ∈ K, it is possible that θk = λkb and βk = 0 in the optimal
solution. Let Λ′ be obtained from Λ by deleting rows λk such that βk = 0 or βk = βk−1 in
the optimal solution to Mix-Sep-I. Notice that Λ′ is a good mixing matrix with at most t rows.
Furthermore, the violation of the mixing inequality (14) generated by Λ′ equals the optimal
value of Mix-Sep-I.

Similarly, we define Mix-Sep-II to be the quadratic mixed-integer program obtained from Mix-
Sep-I by changing its objective function to

βt −
∑
j∈M

δj v̂j − (β1 + 1 − βt)z1 −
∑

k∈K\{1}
(βk − βk−1)zk.

Lemma 3.4 For a given point x̂ ∈ P , an optimal solution of Mix-Sep-II corresponds to a most
violated mixing inequality of type II that can be generated by a good mixing matrix with t or
fewer rows.

Proof. As in the proof of Lemma 3.3, for a given good mixing matrix Λ′ with at most t rows,
it is easy to construct a feasible solution to Mix-Sep-II with an objective value equal to the
violation of the mixing inequality (15) generated by Λ′.

Further, for a given optimal solution of Mix-Sep-II let Λ′ ∈ R
l×m be obtained by collecting

rows λk such that βk > βk−1 in the optimal solution. Let z∗ denote the objective value of this
solution. If β1 > 0 in the optimal solution, Λ′ is a good mixing matrix and gives a mixing
inequality (15) with violation at least z∗. On the other hand, if β1 = 0, Λ′ is not a good mixing
matrix, however, it is possible to obtain a new matrix Λ̄ by moving the first row of Λ′ to the
end. The matrix Λ̄ gives λ̄1b− (

⌈
λ̄1b

⌉−1) > 0 and λ̄lb− (
⌈
λ̄lb

⌉−1) = 1. If λ̄l−1b− (
⌈
λ̄l−1b

⌉−1)
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is also 1, then we further delete the last row of Λ̄ to obtain a good mixing matrix where the
violation of the associated mixing inequality (15) equals z∗.

4 Mixing closure of mixed-integer sets

We define the mixing closure of P with respect to I to be the set of points in P that satisfy all
mixing inequalities (14) and (15) that can be generated by good mixing matrices. Let clo(PI)
denote the mixing closure of P with respect to I. Our main result in this section is that clo(PI)
can be described using a bounded number of mixing inequalities each of which has a bounded
number of terms. In other words, it is sufficient to consider a bounded number of good mixing
matrices, each having a bounded number of rows. As we only consider rational data, without loss
of generality, we assume that (after scaling, if necessary) A ∈ Z

m×n and b ∈ Z
m in the definition

of P . Before presenting our main result, we first study a special case where all variables are
integral.

4.1 Mixing closure of pure integer sets

It is significantly easier to analyze clo(PI) when there are no continuous variables in the definition
of PI ; that is, when I = N . Let Λ ∈ R

t×m be a good mixing matrix for PN and consider the
mixing inequality of type I generated by Λ∑

j∈M

δjvj +
∑
k∈K

(βk − βk−1)(λkAx − ⌈
λkb

⌉
+ 1) ≥ βt (20)

where v = Ax − b and δj = (maxk∈K{−λk
j })+. We next observe that it is sufficient to consider

good mixing matrices with small entries.

Lemma 4.1 Let x̄ ∈ P and Λ ∈ R
t×m be a good mixing matrix for PN . If x̄ violates a

type I mixing inequality inequality (20) generated by Λ then there exists a good mixing matrix
Λ′ ∈ R

t×m for PN such that 1 > Λ′ > −1 and x̄ also violates the mixing inequality generated
by Λ′.

Proof. Assume that δj > 0 for some j ∈ M . In other words 0 > mink∈K{λk
j }. Consider Λ′

obtained by replacing λk
j with λk

j + �δj� for all k ∈ K. Clearly Λ′ is a good mixing matrix. The
left-hand-side of the mixing inequality generated by Λ′ is∑

j∈M

δj v̄j +
∑
k∈K

(βk − βk−1)(λkAx̄ − ⌈
λkb

⌉
+ 1) − �δj� v̄j +

∑
k∈K

(βk − βk−1) �δj� (aj x̄ − bj)

where v̄j = aj x̄ − bj ≥ 0 is the surplus variable associated with the jth row. Note that the
right-hand-side of the inequality is the same as the right-hand-side of inequality (20) as A and
b are integral. Using 1 ≥ βt =

∑t
k=1(βk − βk−1) and v̄j , �δj� ≥ 0 we have

−�δj� v̄j +
∑
k∈K

(βk − βk−1) �δj� (aj x̄ − bj) = −�δj� v̄j + βt �δj� v̄j ≤ −�δj� v̄j + �δj� v̄j = 0.
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Therefore, the mixing inequality generated by Λ′ is violated at least as much as the original
inequality (20). Without loss of generality, we can therefore assume that Λ′ > −1.

Now assume λk
j ≥ 1 for some j ∈ M and k ∈ K and consider Λ′ obtained by replacing λk

j with
λk

j −
⌊
λk

j

⌋
. Λ′ is a good mixing matrix and the left-hand-side of the mixing inequality generated

by Λ′ is ∑
j∈M

δj v̄j +
∑
k∈K

(βk − βk−1)(λkAx̄ − ⌈
λkb

⌉
+ 1) − (βk − βk−1)

⌊
λk

j

⌋
(aj x̄ − bj)

and the right-hand-side is the same as inequality (20) as the data is integral. Clearly the new
inequality is violated at least as much as the original inequality (20) as (βk − βk−1)

⌊
λk

j

⌋ ≥ 0
and aj x̄ ≥ bj . Therefore all λk

j ≥ 1, can be replaced with λk
j − ⌊

λk
j

⌋
to obtain a good mixing

matrix Λ′ < 1.

Based on this observation, we next show that there are a finite number of good mixing matrices
for PN and therefore the elementary closure of mixing inequalities of type I is polyhedral. Let
Δ ∈ Z+ denote the absolute value of the largest entry in [A, b] and let t∗ = (2mΔ)(n+1).

Lemma 4.2 If x̄ ∈ P violates a type I mixing inequality inequality (20) then it violates one
with at most t∗ terms.

Proof. By definition [A, b] ∈ [−Δ, Δ]m×(n+1). Using Lemma 4.1, and without loss of generality,
we can therefore assume that if x̄ ∈ P violates a mixing inequality with t terms, then it violates
one generated by a good mixing matrix that satisfies (ΛA, �Λb�) ∈ (−mΔ, mΔ)t×(n+1). There-
fore, in Mix-Sep-I it suffices to consider only κ = (2mΔ)t×(n+1) possible choices for variables
(α, θ).

In addition, note that for any x̄ ∈ P , it suffices to consider mixing inequalities with at most
t∗ terms as the term qk

def= λkAx̄ − ⌈
λkb

⌉
+ 1 in inequality (20) can be assumed to be strictly

increasing and there are only t∗ possible choices for (λkA,
⌈
λkb

⌉−1). Given any violated mixing
inequality, if qk ≥ qk+1 then one can throw away the term qk for k > 1 and replace the coefficient
of qk+1 with βk+1 − βk−1 to obtain a mixing inequality with fewer terms and at least as much
violation.

Let clo1(PI) denote the set of points in P that satisfy all mixing inequalities of type I that can
be generated by good mixing matrices . Define clo2(PI) similarly using mixing inequalities of
type II. We next observe that clo1(PI) is polyhedral.

Corollary 4.3 clo1(PN ) is a polyhedron.

Proof. Using Lemma 4.2, it suffices to consider at most κ∗ = (2mΔ)t∗×(n+1) possible choices
for (α, θ) in Mix-Sep-I to obtain a violated mixing inequality of type I. Notice that after fixing
(α, θ), the value of the z variables are implied and therefore, for each fixed value of (α, θ), the
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most violated inequality can be obtained by solving a linear program obtained from Mix-Sep-I
by fixing α, θ and z variables. As it is sufficient to consider the basic feasible solutions when
solving a linear program, and as there a finite number of such basic feasible solutions, say w∗,
one only needs to consider w∗κ∗ inequalities to obtain a violated one.

Note that for each good mixing matrix Λ it is possible to write a type I mixing inequality and
a type II mixing inequality. In other words, Mix-Sep-I and Mix-Sep-II have identical feasible
regions and only differ in their objective functions. Using this basic observation, it is possible
to adopt Lemmas 4.1 and 4.2 to mixing inequalities of type II and show that clo2(PN ) and
therefore clo(PN ) = clo1(PN ) ∩ clo2(PN ) is a polyhedron. As our results in the next section
subsume this result, we do not present it and avoid repetition.

4.2 Mixing closure of mixed-integer sets

In this section we show that clo(PI) is a polyhedron. Unlike the pure integer case (I = N),
we are not able to show that clo(PI) is given by good mixing matrices with small entries. We
instead argue that it suffices to consider good mixing matrices with “bounded fractionality”,
i.e., matrices whose entries are integer multiples of some rational number that depends on A

and b. We also argue that fractionality of the coefficients βi (i = 1, . . . , t) in a non-redundant
mixing inequality is also bounded and therefore it suffices to consider mixing inequalities with a
bounded number of terms. Using these observations, we then show that clo(PI) is a polyhedron.
This result is motivated by a similar result for non-redundant MIR cuts in [5], but the proof is
substantially more complicated.

Remember that, without loss of generality, A and b are assumed to be integral. Let g(A)
stand for the maximum subdeterminant of A, and let f(A) stand for the product of distinct
subdeterminants of A. Clearly, f(A) is a divisor of g(A)!.

One can obtain trivial upper bounds for g(A) and f(A) as follows. For a square t × t matrix
B with columns b1, . . . , bt, det(B) ≤ Πt

i=1||bi|| ≤ (
√

t maxi,j |Bij |)t. For positive integers k, q,
define h(k, q) = (

√
kq)k. Then g(A) ≤ h(min{m, n}, maxi,j |Aij |), and

f(A) is a divisor of h(min{m, n}, max
i,j

|Aij |)!.

Let Ω = h(m, (g(A) + 1)!)! and note that Ω only depends on the matrix A.

Theorem 4.4 Let x̄ ∈ P and assume it violates a type I mixing inequality (14). Then x̄ violates
a type I mixing inequality with at most Ωf(A)2 terms such that each βi is an integral multiple
of 1/Ωf(A)2.

Proof. Consider the collection of violated type I mixing inequalities for x̄ and from among them
let I be one that has fewest number of terms. Let Λ̄ ∈ R

t×m be a good mixing matrix that
generates I, with rows denoted as λ̄i, for i = 1, . . . , t. Let the violation of I be Δ > 0. Consider
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the family of type I mixing inequalities generated by Λ where ΛA = Λ̄A and �Λb	 =
⌈
Λ̄b

⌉
. Let

z̄ = Λ̄Ax̄ − ⌈
Λ̄b

⌉
+ 1 and v̄ = Ax̄ − b. Then every such inequality is a solution of the linear

program Mix-Sep-LP-I, defined as

Maximize βt −
m∑

i=1

δiv̄i−
t∑

i=1

(βi − βi−1)z̄i (21)

Subject to

λiA = λ̄iA (i = 1, . . . , t), (22)

λib − βi =
⌈
λ̄ib

⌉ − 1 (i = 1, . . . , t), (23)

λi + δ ≥ 0 (i = 1, . . . , t), (24)

βi − βi−1 ≥ 0 (i = 2, . . . , t), (25)

δ ≥ 0, 1 ≥ βi ≥ 0 (i = 1, . . . , t). (26)

Every optimal solution of Mix-Sep-LP-I gives a type I mixing inequality violated by at least Δ.

Let β = (β1, . . . , βt), and X = (λ1, . . . , λt, δ, β). Define

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

[Ab Im]
. . .

[Ab Im]
[01 02 Im] . . . [01 02 Im] Im

[03 −e1 04] . . . [03 −et 04] C It −It

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Here 01, 02, 03 and 04 are matrices with components equal to 0 and dimensions m × n, m × 1,
t×n and t×m respectively. Im and It are m×m and t× t identity matrices, respectively. Here
ei stands for the unit vector in R

t with a one in the ith row. C is a t × (t − 1) matrix where
the ith column equals −ei + ei+1 for i = 1, . . . , t − 1. The left-hand-side of Mix-Sep-LP-I can
be written as XA, and the nonzero entries of the right-hand-side are equal to a component of
Λ̄A or

⌈
Λ̄b

⌉ − 1 or are equal to 1. A has p = tm + m + t rows and has full row rank. Further,
I defines a feasible solution of Mix-Sep-LP-I with objective value Δ.

As A has full row rank, the lineality space associated with Mix-Sep-LP-I has dimension 0.
In other words, the feasible solutions of Mix-Sep-LP-I define a pointed polyhedron (having ver-
tices). Therefore any basic feasible solution of Mix-Sep-LP-I is defined by p linearly independent
constraints, and corresponds to a p× p submatrix of A, say B (which we refer to as a basis ma-
trix). For each column in B, the corresponding constraint is satisfied as an equation by the basic
feasible solution, and we will say that that constraint is present in B.

We will prove that a basic optimal solution of Mix-Sep-LP-I defines a mixing inequality with the
properties stated in the theorem. To prove this, we will show that all components of the inverse
of an optimal basis are integral multiples of 1/Ωf(A)2. This will imply that in a basic optimal
solution, the components of β and Λ are integral multiples of 1/Ωf(A)2, as the right-hand-side
of Mix-Sep-LP-I is integral.

Consider a basic optimal solution X ′ = (Λ′, β′, δ′) of Mix-Sep-LP-I with associated basis matrix
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B. It defines a mixing inequality, say I ′, with violation at least Δ. Further, it satisfies 0 <

β′
1 < β′

2 < . . . < β′
t ≤ 1, otherwise there exists a mixing inequality having fewer than t terms

and violation ≥ Δ, a contradiction to the minimality of I. Therefore, out of the last 3t − 1
columns of A, only the last one (corresponding to βt ≤ 1) can be present in B. If any of the
other 3t − 2 columns is present in B, then one of the following constraints is satisfied by β′ as
an equation: βi+1 − βi ≥ 0 for i = 1, . . . t− 1, or βi ≥ 0 for i = 1, . . . , t or βi ≤ 1 (or −βi ≥ −1)
for i = 1 . . . t − 1.

This implies that the columns corresponding to the constraints λib − βi =
⌈
λib

⌉ − 1 for i =
1, . . . , t−1 must be present in B: if any column (say the ith one) is absent, then the (tm+m+i)th
row of B does not have any nonzero entries and B does not have full row rank, a contradiction.
Finally, at least one of the constraints βt ≤ 1 and λtb − βt = �λtb	 − 1 is present in B. We now
assume that the constraints involving β present in B are permuted to the end of B.
Case 1: If only one of the constraints βt ≤ 1 and λtb− βt = �λtb	− 1 is present in B, it has the
form

B =

[
M B

05 −It

]
⇒ B−1 =

[
M−1 M−1B

05 −It

]
.

Here 05 is a t×(tm+m) matrix with zero entries, M is a nonsingular square matrix with tm+m

rows and B is a matrix with nonzero components drawn from the vector b (and thus has only
integral entries).
Case 2: If both the constraints βt ≤ 1 and λtb−βt = �λtb	− 1 are present in B, it has the form

B =

[
M ′ 06 B′

07 −et −It

]
,

where M ′ has tm + m rows but tm + m − 1 columns, 06 and 07 are matrices of appropriate
dimension with zero entries, the (tm + m)th column corresponds to βt ≤ 1, and subsequent
columns correspond to λib − βi =

⌈
λib

⌉ − 1 for i = 1, . . . , t. Let B′ be obtained from B by
subtracting the pth column from the (tm + m)th column. Then B′ = B × T , where T is a
p × p matrix with Tij = 1 if i = j, or Tij = −1 if (i, j) = (p, tm + m), and 0 otherwise.
Then B−1 = T (B′)−1. Notice that B′ has the same block upper triangular structure as B in
Case 1. We will therefore focus on analyzing the components of the inverse (especially their
denominators) of a basis matrix having the form in Case 1.

Let the columns of M corresponding to the constraints involving λi be Mi for i = 1, . . . , t. Let
Ni be the submatrix of Mi obtained by choosing the m rows corresponding to the variables λi;
clearly Ni is a submatrix of [AIm] for i = 1, . . . , t− 1, and a submatrix of [Ab Im] for i = t (the
vector b is present in Nt only in the matrix B′ in Case 2). Further, the only nonzeros in the
m rows of M corresponding to λi are contained in Ni; as these rows are linearly independent,
Ni has rank m, and at least m columns. Also, the columns of [Ab] present in Ni are linearly
independent, as the columns in Mi are linearly independent, for i = 1, . . . , t (see the depiction of
Mi below). We can combine the above facts to conclude that Ni contains a nonsingular m×m

submatrix Ai containing all columns from [Ab] present in Ni. Then the columns in Ni but not
in Ai (denote these by Ni \ Ai) are unit vectors, and correspond to constraints λi

j + δj ≥ 0 for
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different j. We depict Mi below, and its various submatrices which we refer to in this proof.
Assume Mi has m + l columns for some l ≥ 0, and Ai has k columns of A for some k ≤ m. Let
ai be the ith column of A, for i = 1, . . . , n, and let i1, . . . , ik be distinct integers in [1, n], and
let ik+1, . . . , im+l be distinct integers in [1, m]. Then Mi has the form below:

Mi →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m(i−1)×(m+l)[
Ai

ai1 . . . aik
eik+1 . . . eim

Ni\Ai

eim+1 . . . eim+l

]
Ni

0m(t−i)×(m+l)

0m×k eik+1 . . . eim︸ ︷︷ ︸
Bi

eim+1 . . . eim+l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

where ej stands for a unit vector in R
m with a one in the jth position and zeros elsewhere.

Let M(Ai) stand for the columns of Mi which intersect Ai and M(Ni\Ai) stand for the remaining
columns in Mi. Let the columns M(Ni \Ai) be arranged at the end of M , for i = 1, . . . , t. Then
M is a non-singular block arrow matrix having the following form:

M =

⎡
⎢⎢⎢⎣

A1 . . . 0 C1

. . .

0 . . . At Ct

B1 . . . Bt D

⎤
⎥⎥⎥⎦ .

Here M has (t + 1)2 blocks of m × m matrixes, where the diagonal blocks are A1, . . . , At, D

(we will describe D in a moment). The blocks in the last row (other than D) are B1, . . . , Bt.
Each block Bi is a square submatrix of M(Ai) with m rows corresponding to the variables
δi(i = 1, . . . , m); some of its columns are distinct unit vectors, and the remaining columns have
only zero entries (see the depiction of Mi above). Each block Ci is an m×m matrix and consists
of the columns of Ni \Ai along with columns with zero entries. As discussed above, the nonzero
columns of Ci are distinct unit vectors. Further, the columns of Ci and Cj for i �= j have
nonzeros in non-overlapping columns. We can conclude that at most m of the blocks Ci are
nonzero. Finally, each column of D is a unit vector; either it corresponds to a constraint δj ≥ 0
or λi

j + δj ≥ 0 for some j ∈ [1, m].

The inverse of M is not hard to compute. We start off with the LU decomposition of M :

LU = M =⇒ L =

⎡
⎢⎢⎢⎣

Im . . . 0 0
. . .

0 . . . Im 0
B1A

−1
1 . . . BtA

−1
t Im

⎤
⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎣

A1 . . . 0 C1

. . .

0 . . . At Ct

0 . . . 0 D̄

⎤
⎥⎥⎥⎦ ,

where D̄ = D − ∑t
i=1 BiA

−1
i Ci. The products BiA

−1
i Ci �= 0 for only m distinct values of i;

without loss of generality, we assume that D̄ = D−∑m
i=1 BiA

−1
i Ci. As M is non-singular, so is

D̄. Further, as the unit vectors in Ci and Cj for i �= j are in non-overlapping columns, and as
the nonzero rows of Bi are unit vectors, the nonzero entries in D̄−D are simply components of

19



A−1
i , and are thus ratios of subdeterminants of [Ab]. This implies that every entry of D̄ −D is

an integral multiple of 1/f(A). As the components of D are either zero or one, every component
of f(A)D̄ is integral and is bounded in magnitude by f(A) + f(A)g(A) = f(A)(1 + g(A)) which
is a divisor of (g(A) + 1)!. Therefore every component of (f(A)D̄)−1 is an integral multiple
of 1/f(f(A)D̄) which is an integral multiple of 1/Ω = 1/h(m, (g(A) + 1)!)!. Therefore every
component of D̄−1 = f(A)m(f(A)D̄)−1 is an integral multiple of 1/Ω.

Finally,

L−1 =

⎡
⎢⎢⎢⎣

Im . . . 0 0
. . .

0 . . . Im 0
−B1A

−1
1 . . . −BtA

−1
t Im

⎤
⎥⎥⎥⎦ , U−1 =

⎡
⎢⎢⎢⎣

A−1
1 . . . 0 −A−1

1 C1D̄
−1

. . .

0 . . . A−1
t −A−1

t CtD̄
−1

0 . . . 0 D̄−1

⎤
⎥⎥⎥⎦

Clearly every component of L−1 is an integral multiple of 1/f(A). Every component of U−1 is
an integral multiple of 1/Ωf(A). Therefore every component of M−1 = U−1L−1 is an integral
multiple of 1/Ωf(A)2. As the matrix B′ in B has integral entries, and because of the relationship
between B−1 and M−1, every entry in B−1 is an integral multiple of 1/Ωf(A)2 (this is also true
in Case 2 above).

As the right-hand-side of Mix-Sep-LP-I has integral components, it follows that the components
of X ′ = (Λ′, β′, δ′) are all integral multiples of 1/Ωf(A)2. Further, as the associated mixing
inequality I ′ has distinct values of βis contained in the interval (0, 1], it follows that I ′ has at
most Ωf(A)2 terms.

Corollary 4.5 Let x̄ ∈ P and assume it violates a type II mixing inequality (15). Then x̄

violates a type II mixing inequality with at most Ωf(A)2 terms such that each βi is an integral
multiple of 1/Ωf(A)2.

Proof. As in the proof of Theorem 4.4, consider the collection of violated type II mixing
inequalities for x̄ and from among them let J be one that has fewest number of terms. Let
the violation of J be Δ > 0 and assume that it is generated by the mixing matrix Λ̄ ∈ R

t×m.
Let z̄ = Λ̄Ax̄ − ⌈

Λ̄b
⌉

+ 1 and v̄ = Ax̄ − b. Let Mix-Sep-LP-II be the linear program defined by
optimizing

min
m∑

i=1

δiv̄i + (β1 + 1 − βt)z̄1 +
t∑

i=2

(βi − βi−1)z̄i − βt

subject to the constraints of Mix-Sep-LP-I, i.e., to (22) - (26). As J corresponds to a solution
of Mix-Sep-LP-II, an optimal solution of Mix-Sep-LP-II defines a violated mixing inequality of
type II with violation at least Δ.

Consider a basic optimal solution of Mix-Sep-LP-II, with associated mixing inequality J ′. If
it satisfies βi = βi+1 for 1 ≤ i ≤ t − 1, then there exists another violated mixing inequality of
type II with fewer terms than J , a contradiction. In addition, if β0 = 0 and βt = 1, then, as
discussed in the proof of Lemma 3.4, there exists a good mixing matrix, and a corresponding
type II mixing inequality with violation Δ and β0 > 0 and βt = βt−1 = 1, again a contradiction.
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Therefore, we can assume that any basic optimal solution satisfies β1 < β2 < . . . < βt and at
most one of β0 = 0 and βt = 1 holds. In the proof of Theorem 4.4 we showed that any such
basic feasible solution of Mix-Sep-LP-I has the property that β1, . . . , βt are integral multiples
of 1/Ωf(A)2. As the basic solution which yields J ′ is a basic feasible solution of Mix-Sep-LP-I
satisfying the above condition on the βis, we can conclude that the βi values in J ′ are integral
multiples of 1/Ωf(A)2.

To prove that clo(PI) is a polyhedron, we will use a proof technique similar to the one in [4]
used for showing that the MIR closure of P with respect to I is a polyhedron.

Theorem 4.6 The mixing closure of P with respect to I is a polyhedron.

Proof. Let q = Ωf(A)2. Define

C = {β ∈ R
q : 0 ≤ β1 ≤ . . . ≤ βq ≤ 1, βi is an integral multiple of 1/q, for i = 1, . . . , q}.

C is clearly a finite set. For some vector β̄ ∈ C, define Mix-Sep-I(β̄) to be the integer program
obtained by fixing the values of βi in Mix-Sep-I to β̄i; notice that the objective function of
Mix-Sep-I(β̄) is a linear function of the variables. The convex hull of solutions of this integer
program (call it the integer hull) has finitely many vertices. Define Mix-Sep-II(β̄) in a similar
manner.

Given a point x̄ ∈ P \clo(PI), Theorem 4.4 implies that there exists a violated mixing inequality
which defines a solution of Mix-Sep-I(β̄) or Mix-Sep-II(β̄) for some β̄ ∈ C. Therefore, there exists
a violated mixing inequality associated with a vertex of the integer hull of Mix-Sep-I(β̄); note
that Mix-Sep-II(β̄) has the same integer hull. This implies that clo(PI) is the set of points
satisfying the mixing inequalities associated with the vertices of the integer hull of Mix-Sep-I(β̄)
for all β̄ ∈ C. Therefore clo(PI) is a polyhedron.

5 Lengths of MIR proofs for mixing inequalities

Let cx ≥ d be a valid inequality for PI . An MIR cutting-plane proof (or MIR proof) of cx ≥ d

from P with respect to I is a sequence of inequalities aix ≥ di (i = 1, . . . , L) such that the last
inequality in the sequence is cx ≥ d, and for i = 1, . . . , L, the inequality aix ≥ di is an MIR
inequality derived from the previous inequalities in the sequence and the inequalities in Ax ≥ b.
The length of this proof is said to be L. Cutting plane proofs for Gomory-Chvátal cuts or
lift-and-project cuts are defined similarly where each inequality in the sequence is required to be
a Gomory-Chvátal or lift-and-project cut, respectively, obtained using the previous inequalities
in the sequence and Ax ≥ b, see [3, 9]. Cutting-plane proofs were introduced by Chvátal in [1].

Pudlák in [9] showed that that there are valid inequalities for a particular mixed-integer set PI

(arising from a graph problem) that cannot have a polynomial-length Gomory-Chvátal cutting-
plane proof. Later Dash [3] showed that the same inequalities cannot have a polynomial-length

21



MIR cutting-plane proof either. In other words, for these particular inequalities, any MIR
cutting-plane proof has exponential length.

In this section, we show that the same negative result holds for mixing inequalities. We define
a mixing cutting-plane proof the same way as above where each inequality in the cutting plane
proof is now derived from previous inequalities via mixing as in (14) and (15). We first show that
mixing inequalities (1) and (2) have an MIR proof of length O(n2) from SLP . An immediate
consequence of this result is that mixing inequalities (14) and (15) for PI with t terms have
O(t2) length MIR proofs from Ax ≥ b. These observations, when combined with results in [3],
imply that mixing proofs have exponential encoding size for Pudlák’s inequality system.

Theorem 5.1 The inequalities mix1{1,...,n} and mix2{1,...,n} have MIR proofs of length O(n2)
from the set S.

Proof. For 1 ≤ i < j ≤ n, let ineq(i, j) denote the mixing inequality mix1{i,j,j+1...,n}. In
Section 2.1 we showed that mix1{1,...,n} can be derived as an MIR inequality using inequalities
s + z1 ≥ b1, s + b1z1 ≥ b1, ineq(2, 3) and ineq(1, k) for k = 3, . . . , n. It is easy to see that
this also implies that any mixing inequality ineq(i, j) can be derived as an MIR inequality using
inequalities s+zi ≥ bi, s+bizi ≥ bi together with ineq(j, j+1) and ineq(i, k) for k = j+1, . . . , n.

Note that for any 1 ≤ i < j ≤ n, inequality ineq(i, j) has n− j +3 terms and it is derived using
mixing inequalities with fewer terms. Based on this observation, it is possible to produce a short
MIR cutting-plane proof as follows: First generate all simple MIR inequalities s + bizi ≥ bi for
i = 1, . . . , n. Next generate all mixing inequalities ineq(i, j) with 3 terms using base inequalities
s + zi ≥ bi and simple MIR inequalities s + bizi ≥ bi. Finally, for all k = 4, . . . , n generate
all k-term mixing inequalities ineq(i, j) using the base inequities, simple MIR inequalities and
mixing inequalities ineq(i, j) with k − 1 or fewer terms. Notice that all mixing inequalities
ineq(i, j) with k − 1 or fewer terms are generated before any mixing inequality ineq(i, j) with k

or more terms.

Clearly, this procedure produces n simple MIR inequalities and (n2 − n)/2 mixing inequalities
and therefore the MIR proof of mix1{1,...,n} has length at most O(n2).

An MIR proof of mix2{1,...,n} with length O(n2) is derived in a similar manner by defining
ineq′(i, j) to denote the mixing inequality mix2{i,j,j+1...,n}.

Corollary 5.2 Mixing proofs have exponential worst-case encoding size.

Proof. Given a mixing proof of cx ≥ d from Ax ≥ b of length L, assume the ith mixing
inequality in the proof has ti terms. It follows from Theorem 5.1 that there is an MIR proof
of cx ≥ d from Ax ≥ b with length O(

∑L
i=1 t2i ). Letting cx ≥ d and Ax ≥ b stand for the

appropriate inequality systems in Pudlák’s exponentiality result for Gomory-Chvátal cutting-
plane proofs, the results in Dash [3] imply that

∑L
i=1 t2i is exponential in the number of variables

and constraints in Ax ≥ b.
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