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I. INTRODUCTION

In this technical report, we provide a detailed proof for some of the theorems on the clan-

destine throughput in [1]. In the paper, we define the clandestine throughput as the maximum

(asymptotic) fraction of matched packets in a given pair of stochastic transmission schedules. If

each transmission has a fixed duration (called fixed “packet length”), then the schedules can be

modeled as point processes, and i.i.d. renewal processes are considered in the analysis. Under the

strict delay constraint, we have proposed an optimal flow-embedding algorithm “Strict Greedy

Match” (SGM) to compute the clandestine throughput. Analysis is performed through modeling

the packet delay in each iteration of SGM by a Markov processY
∆
=(Yj)

∞

j=0 (Y0 ≡ 0), where

Yj =



















Yj−1 + Vj if Yj−1 < l

Yj−1 − Uj if Yj−1 > ∆

Yj−1 + Vj − Uj o.w.

(1)

with Uj , Vj being the interarrival times in the incoming processS1 and the outgoing processS2,

respectively. In the sequel, we will analyze the asymptoticproperties ofY in detail to support

the claims in the paper.

II. CLANDESTINE THROUGHPUT UNDER THESTRICT DELAY CONSTRAINT

We have the following exact expression for the clandestine throughput under the strict delay

constraint (l is the packet length and∆ the maximum delay).

Theorem 2.1 ( [1]): If S1 and S2 are i.i.d. renewal processes with interarrivalprobability

density function (pdf) f(x) (f(x) ≡ 0 for x < l), then the fraction of packets matched by SGM

converges a.s., and the limit (i.e., the clandestine throughput under the strict delay constraint) is

Cd(∆)
∆
=C(S1, S2; ∆) =

2 − 2q

2 − q
, (2)

whereq
∆
= lim

j→∞

Pr{Yj 6∈ [l, ∆]} can be computed by1 +H(l) −H(∆), whereH(x) (x ∈ R) is

the invariantcumulative distribution function (cdf) of Y. Furthermore,H(x) is the solution to

H(x) = L(x) +

l
∫

−∞

H(y)f(x− y)dy +

∆
∫

l

H(y)g(x− y)dy +

∞
∫

∆

H(y)f(y − x)dy, (3)

whereg(x) is the convolution off(x) andf(−x), defined asg(x)
∆
=

∞
∫

0

f(y)f(y − x)dy, and

L(x)
∆
= [F (x− l) −G(x− l)]H(l) + [G(x− ∆) + F (∆ − x) − 1]H(∆) (4)
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with F (x), G(x) being the cdf’s off(x), g(x), respectively.

Proof: We first justify the covert capacity formula (2). AssumeY has the property that

the frequency forYj to fall outside the interval[l, ∆] converges a.s. to a constant, defined asq.

Then since eachYj outside[l, ∆] represents a chaff packet whereas eachYj inside the interval

represents a pair of information packets, we see that SGM converges a.s., and the covert capacity,

which is the limiting fraction of information packets, is given by2(1 − q)/(2 − q).

Next, we show the calculation ofq. If H(x) is the limiting cdf of Y, then by definition,

q = lim
j→∞

(Pr{Yj < l} + 1 − Pr{Yj ≤ ∆}) = H(l) + 1 − H(∆). Now that H(x) should be

invariant under the transition in (1), we have the recursion

H(x) =

l
∫

−∞

F (x− y)dH(y) +

∆
∫

l

G(x− y)dH(y) +

∞
∫

∆

[1 − F (y − x)]dH(y), (5)

whereF (x), G(x), and1 − F (−x) are the cdf’s of the steps ofY when the chain starts from

(−∞, l), [l, ∆], and(∆, ∞), respectively. Integrating (5) by parts yields (3).

The remaining proof is to show the convergence ofY. Let a setX ⊆ R denote the states

reachable from0. Without loss of generality, assume that[l, ∆] ⊂ X and[l, ∆] is a.s. accessible

from all x ∈ X (otherwise, the clandestine throughput is trivially1 or 0). By Theorem 17.1.7 in

[2], if Y is positive Harris with invariant cdfH(x), then for the indicator function2 I[l, ∆]c(x),

lim
n→∞

1
n

n
∑

j=0

I[l, ∆]c(Yj) exists a.s., i.e., the asymptotic frequency forYj ’s to fall outside [l, ∆]

converges a.s. to a constant, which we have defined asq. It remains to prove the property of

positive Harris recurrence.

First, we show thatY is ψ-irreducible (all the sets mentioned in the sequel are Borel). Let

ϕ be the Lebesgue measure constrained to[l, ∆], i.e., ϕ(A) = µ(A ∩ [l, ∆]), whereµ is the

Lebesgue measure, andU, V i.i.d. random variables with pdff(x). There must existǫ0 > 0

such thatf(x) > 0 for all x within some interval[t, t+ ǫ0], and thus

Pr{|U − V | ∈ [ǫ1, ǫ2]} > 0, ∀0 ≤ ǫ1 < ǫ2 ≤ ǫ0.

Thus, for anyA ⊆ [l, ∆] with µ(A) > 0, ∃m ≥ 1 such thatA is uniformly accessible from[l, ∆]

using sampling distributionδm, i.e., ∃δ > 0 such that inf
x∈[l, ∆]

Pm(x, A) > δ, wherePm(x, A)

is them-step transition kernel ofY. Since by assumption,[l, ∆] is accessible from allx ∈ X,

2An indicator functionIA(x) is defined as1 if x ∈ A and0 otherwise.
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any nontrivial subset of[l, ∆] is accessible from allx ∈ X, implying thatY is ϕ-irreducible

and henceψ-irreducible for a maximal irreducibility measureψ.

Second, we show thatY is Harris recurrent. SinceY is ψ-irreducible and[l, ∆] is accessible

from X, by Theorem 5.2.2 in [2], there exists a nontrivial measureνn and a nontrivial set

C1 ⊆ [l, ∆] such thatC1 is νn-petite. Since we have shown thatC1 is uniformly accessible from

[l, ∆], by Proposition 5.5.4 in [2],[l, ∆] is δνn-petite for someδ > 0. By Proposition 9.1.7 in

[2], the fact that petite set[l, ∆] is a.s. accessible fromX implies Harris recurrence. Note that

Y is also aperiodic.

Finally, we show its positivity by drift analysis. Define function V (x)
∆
=2λ inf{|x− y| : y ∈

[l, ∆]}, where1/λ is the mean interarrival time, and setC2
∆
=[l− x0, ∆ + x0] for x0 sufficiently

large such that
x0
∫

l

f(y)ydy −
∞
∫

2x0+∆−l

f(y)ydy ≥ 1/(2λ). Then for anyx > ∆ + x0, the mean

drift satisfies

∆V (x) = −2λ





x−∆
∫

l

f(y)ydy+

x−l
∫

x−∆

f(y)(x− ∆)dy +

∞
∫

x−l

f(y)(2x− l − ∆ − y)dy





≤ −2λ





x0
∫

l

f(y)ydy −

∞
∫

2x0+∆−l

f(y)ydy





≤ −1. (6)

The same holds forx < l−x0. It is easy to see that∆V (x) is bounded forx ∈ C2. Furthermore,

since petite set[l,∆] is uniformly accessible fromC2, C2 is also petite. The drift condition holds.

Therefore, by Theorem 13.0.1 in [2], we conclude thatY is positive Harris.
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