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. INTRODUCTION

In this technical report, we provide a detailed proof for soaf the theorems on the clan-
destine throughput in [1]. In the paper, we define the clatmedhroughput as the maximum
(asymptotic) fraction of matched packets in a given pairtotisastic transmission schedules. If
each transmission has a fixed duration (called fixed “packegth”), then the schedules can be
modeled as point processes, and i.i.d. renewal processesasidered in the analysis. Under the
strict delay constraint, we have proposed an optimal floveeniding algorithm “Strict Greedy
Match” (SGM) to compute the clandestine throughput. Analys performed through modeling
the packet delay in each iteration of SGM by a Markov proCEsA@(Yj);?‘;O (Yy = 0), where

Y1 +V; if Y, <l
Yi=4 Y- U if Y1 >A (1)
Y1 +V;=U; ow.
with U;, V; being the interarrival times in the incoming proc&sand the outgoing process,
respectively. In the sequel, we will analyze the asymptptaperties ofY in detail to support

the claims in the paper.

[I. CLANDESTINE THROUGHPUT UNDER THESTRICT DELAY CONSTRAINT

We have the following exact expression for the clandestmeughput under the strict delay
constraint { is the packet length and the maximum delay).

Theorem 2.1 ( [1]): If S; and S, are i.i.d. renewal processes with interarriyabbability
density function (pdf) f(z) (f(x) =0 for x < l), then the fraction of packets matched by SGM

converges a.s., and the limit (i.e., the clandestine thrpuggunder the strict delay constraint) is

2—2q
2
= 2)

whereg2 lim Pr{Y; ¢ [, A]} can be computed by + H(l) — H(A), where H (z) (z € R) is
Jj—00

the invariantcumulative distribution function (cdf) of Y. Furthermore H(x) is the solution to

(jd(ZX)éécj(Sl, SQ; Z&)ZZ

l
+/H(y) x—y dy+/H glx —y dy+/H (y —x)dy, (3)
whereg(x) is the convolution off (x) and f(—xz), defined agj(x é Tf — x)dy, and
0
Lx)2 [Fz—1) - Gz — D] H(l) + [G(z — A) + F(A — z) — 1] H(A) (4)
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with F'(z), G(x) being the cdf’s off(x), g(x), respectively.

Proof: We first justify the covert capacity formula (2). Assuriye has the property that
the frequency folY; to fall outside the intervall, A] converges a.s. to a constant, defined.as
Then since eacly; outside[l, A] represents a chalff packet whereas eHcinside the interval
represents a pair of information packets, we see that SGMetges a.s., and the covert capacity,
which is the limiting fraction of information packets, isvgh by2(1 — ¢)/(2 — q).

Next, we show the calculation of. If H(x) is the limiting cdf of Y, then by definition,
q = jh—>n;3 (Pr{Y; <1} +1—-Pr{Y; <A}) = H(l) + 1 — H(A). Now that H(x) should be

invariant under the transition in (1), we have the recursion
l

H(z) = / Fz— y)dH(y) + / Gl — y)dH(y) + / 1-F(y—o)dH@y),  (5)

where F'(x), G(x), and1 — F'(—x) are the cdf’s of the steps & when the chain starts from
(—o0, 1), [I, A], and (A, o), respectively. Integrating (5) by parts yields (3).

The remaining proof is to show the convergenceYafLet a setX C R denote the states
reachable front). Without loss of generality, assume thatA] C X and[l, A] is a.s. accessible
from all x € X (otherwise, the clandestine throughput is triviallpr 0). By Theorem 17.1.7 in
[2], if Y is positive Harris with invariant cdf{(z), then for the indicator functicn; j(z),
lim %i‘ I ne(Y;) exists a.s., i.e., the asymptotic frequency igfs to fall outside[l, A
Zo;Overjgeos a.s. to a constant, which we have definegl #sremains to prove the property of
positive Harris recurrence.

First, we show thaly is v-irreducible (all the sets mentioned in the sequel are Botedt
¢ be the Lebesgue measure constrainedi ta\], i.e., o(A) = p(A N[, A]), wherey is the
Lebesgue measure, ad V' i.i.d. random variables with pdf(z). There must exist, > 0

such thatf(z) > 0 for all = within some intervalt, ¢ + ¢}, and thus
Pr{|]U—-V| € [e1, €]} >0, V0 <¢ < e < 6.
Thus, for anyA C [I, A] with pu(A) > 0, 3m > 1 such thatA is uniformly accessible froni, A

using sampling distribution,,, i.e., 36 > 0 such that inf P™(z, A) > J, where P™(x, A)

z€e(l, Al
is the m-step transition kernel o¥. Since by assumptiori], A] is accessible from alt € X,

2An indicator functionla(z) is defined adl if z € A and0 otherwise.
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any nontrivial subset ofl, A] is accessible from alt € X, implying thatY is ¢-irreducible
and hence/-irreducible for a maximal irreducibility measute

Second, we show tha& is Harris recurrent. Sinc¥ is ¢-irreducible and!l, A] is accessible
from X, by Theorem 5.2.2 in [2], there exists a nontrivial measyreand a nontrivial set
Cy C [, A] such that” is v,-petite. Since we have shown th@t is uniformly accessible from
[, A], by Proposition 5.5.4 in [2]|l, A] is év,-petite for some) > 0. By Proposition 9.1.7 in
[2], the fact that petite sdf, A] is a.s. accessible frolX implies Harris recurrence. Note that
Y is also aperiodic.

Finally, we show its positivity by drift analysis. Define fction V(x)é2)\inf{|x —yl: y €
[, Al}, wherel/\ is the mean interarrival time, and s(éié[l — x, A+ xp) for x, sufficiently
large such that?of(y)ydy - T f(y)ydy > 1/(2X). Then for anyz > A + z,, the mean

l

. Lo 2x0 +A—1
drift satisfies

\8

AV(z) = —2A / f(y)ydy + / fW) (@ —=A)dy+ | fly)2r—1—A—y)dy

—

Tr—

< =20 | [ fy)ydy — f(y)ydy
_/ 2xoﬂé—l
< -1 (6)

The same holds far < [ —z,. It is easy to see thakV' (z) is bounded forr € C5. Furthermore,
since petite seft, A] is uniformly accessible from,, C; is also petite. The drift condition holds.

Therefore, by Theorem 13.0.1 in [2], we conclude tiats positive Harris. [ ]
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