
RC24643 (C0809-009) September 19, 2008
Electrical Engineering

IBM Research Report

SPU Based Network Module for Software Radio System on
Cell Multicore Platform

Jianwen Chen
China Research Laboratory

 Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100094
P.R.China

Shuwei Bai, Qingguo Zhou
Distributed and Embedded System Lab

Eng. Res. Ctr. of Open Source Software and Real-time Syst. Ministry of Education
Lanzhou University

Lan Zhou
P. R. China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 SPU based Network Module for Software Radio
System on Cell Multicore Platform

Jianwen Chen1, Shuwei Bai2, Qingguo Zhou3

Abstract — Wireless baseband processing is characterized
by high computation complexity and high data throughput,
which is regarded as the most challenging issue for software
radio (SR) systems. Recently, with the rapid development of
multicore technology, the multicore platforms can provide
high computation capacity and high data throughput, which
suit the SR systems well. We have presented a SR system on
the Cell multicore platform. However, it is observed that the
data communication between the baseband processing module
and the RF module consumes a mass of system resources. The
data I/O communication becomes the bottleneck for the SR
system on multicore platform. To resolve this problem, in this
paper, an efficient SPU based network module is presented.
With the proposed module, all the network packets parsing
and packaging is handled by the SPU, the PPU resources are
released and the system performance will be improved
greatly1.

Index Terms — Multicore Architecture, Software Radio, Cell,
I/O communication

I. INTRODUCTION
Wireless broadband data communication is experiencing a

rapid expansion. In the last few decades, many wireless
broadband data communication techniques are proposed and
widely used. To achieve a broadband wireless communication
system with high mobility requirement, sophisticate baseband
signal processing techniques, such as orthogonal frequency
division multiple access (OFDMA), multi-input multi-output
(MIMO) and space-time block coding (STBC) are proposed in
the transceiver design for the mobile version of WiMAX [1]
(802.16e). Following the proposals in this standard, two
critical issues should be considered in the system design:
complexity and adaptability. Firstly, when the requirement of
data rate is increased, the baseband signal processing
architecture of the transceivers becomes more and more
complicated. This causes a lot of implementation challenges
due to the complexity, especially for the base station (BS) side,
since the BS has to handle synchronization and detection for
all users. Secondly, the wireless standards are evolving and
new algorithms are proposed occasionally. That means the
designed system should have a good adaptability to catch up

1 Jianwen Chen, IBM China Research Laboratory, Beijing, China,
jianwenc@cn.ibm.com

2. Shuwei Bai, Distributed & Embedded System Lab (DSLab), Engineering
Research Center of Open Source Software and Real-time Systems Ministry of
Education,Lanzhou Univ., Lan Zhou, China, baishuwei@dslab.lzu.edu.cn

3. Qingguo Zhou, Distributed & Embedded System Lab (DSLab),
Engineering Research Center of Open Source Software and Real-time Systems
Ministry of Education, Lanzhou Univ., Lan Zhou, China, zhouqg@lzu.edu.cn

with the revision of the standards and new algorithms.
However, it is very difficult to achieve this by using
application-specific integrated circuit (ASIC), which is the
current design methodology.

In order to meet both the performance and the adaptability
requirements, software radio (SR) [2] is introduced to fixed
functional hardware based systems. The programmable
devices, such as DSP or general purpose processor, are used
to accommodate various standards and protocols by updating
the software. Generally, most of the complex algorithms such
as synchronization, channel estimation and channel decoding
are handled in physical layer, which is the most computation
intensive layer in the wireless systems.

To mitigate the implementation challenge caused by high
computation complexity of physical layer, novel hardware is
needed. Compared with the single-core processor, the
multicore chips do not run that fast, but they promise a higher
overall performance by handling more work in parallel. Thus
the multicore platforms become more prevalent in vendor’s
solutions. Many system and semiconductor companies are
developing platforms involving several cores (MCU, DSP, IP,
and etc) on a single chip. STI Cell [3] is the latest state-of-the-
art multicore processor designed by the joint adventure of
Sony, Toshiba and IBM (STI). With the support of SIMD
(Single Instruction Multiple Data) instructions and the
powerful synergistic processor elements (SPEs), Cell
processor can provide significantly high computation capacity,
which is appropriate for SR systems. Based on the concept of
software radio, we have tried to implement a WiMAX SR
baseband system on the Cell processor [4]. The block diagram
of the BS physical layer baseband transceiver (OFDMA mode)
is illustrated in Fig.1.

Fig. 1 WiMAX Physical Layer System Structure

However, for Software Radio system, the data
communication between the Baseband processing board and
the RF module is characterized by high throughput. The

system needs to ensure that the I/O interfaces can support the
required throughputs. For example, in the WiMAX PHY
system with 20Mbps throughput for both uplink and downlink,
if an 8 bit DAC is used, the output of downlink is about
658Mbps. For 3 sectors, the overall downlink throughput is
about 1.975Gbps. On the Cell platform, the PPU is a general
purpose processor and is not efficient on the network
protocols parsing and packets handling. It is observed that in
the implemented baseband system, the I/O data
communication between the baseband processing module and
the RF module consumes a mass of system resources for
receiving, parsing and sending packets and it becomes the
bottleneck for the SR system on Cell multicore platform.

In this paper, we present an efficient SPU based network
module on the Cell platform. With this module, all the
network packets parsing and packaging is handled by the SPU,
the PPU resources are released and the system performance
will be improved greatly.

The rest of this paper is organized as follows. Section II
will briefly describe the architecture of WiMAX BS physical
layer and the Cell multicore platform. Section III will
introduce the proposed SPU network module. The network
processing module design details are all discussed in this
section. In Section IV, the system performance and result
analysis are provided. Section V presents the conclusions and
the future work.

II. SYSTEM ARCHITECTURE
Cell Broadband Engine (CBE) is a heterogeneous multicore

microprocessor with 1 Power Processor Element (PPE) and 8
Synergistic Processor Elements (SPEs) [3]. PPE and SPE can
work at frequency up to 3.2GHz. The PPE is a general
purpose processor and the SPE is a special purpose processor
which consists of the Synergistic Processor Unit (SPU) with
256 Kbyte Local Store (LS) and the Memory Flow Controller
(MFC). The SPU and the MFC can work in parallel.
Additionally, SPE supports a variety of SIMD instructions,
high efficient (128-bit) memory access and high bandwidth
I/O interface. The architecture block diagram of Cell
processor is illustrated in Fig.2. In the proposed system, Cell
blade server QS21 which consists of 2 Cell processors is used.
16 SPEs and 2 PPEs can be used to handle all the computation
tasks.

The block diagram of the proposed BS baseband
transceiver (OFDMA mode) is illustrated in Fig.1. These
modules are the essential components for the physical layer of
the WiMAX communication systems. All these modules are
implemented on Cell SPEs. 2 SPEs are used to support 1
sector downlink data processing and 3 SPEs are used for 1
sector uplink data processing. The system framework is
illustrated in Fig.3. The PPU will handle all the
synchronization tasks and I/O data communication tasks.
Experimental results show that the I/O data communication
tasks consume almost 95% PPU resources and the system
performance can not meet the required throughput. In the next

session, we propose a novel network module on SPU, all the
I/O data communication tasks can be allocated on this module
without the interference of PPU. The high throughput I/O data
communication will not influence the whole system
performance.

Fig.2 Block Diagram of Cell Processor

Fig.3 Framework for WiMAX physical layer on Cell Platform

III. NETWORK MODULE DESIGN FOR CELL PLATFORM
 As described above, for Cell platform, although the
computation capacity is sufficient for the SR applications, the
network communication is not efficient to meet the huge
throughput requirements. In the network module prototype, to
improve the performance, the network operations are divided
into two parts. One part includes data encoding and package
sending functions and the other one is composed of package
receiving and data decoding functions. Two SPE are used to
handle the receiving and sending packets respectively.
Moreover, some special considerations should be taken into
account in the network module design.
 In the network communication, the data block size is about
1Kbytes, or smaller. SPE will parse packages of different size
frequently. Worse still, many branches are used in the package
parsing components. However, SPE is an in-order processor
element, and SPE issues all instructions in program order. If
there is dependency between two adjacent instructions, the
later one has to wait to be issued until the former one
completes. And this could lead to a huge performance loss. In
addition, correctly predicted branches execute in one cycle,
but a miss predicted branch incurs a penalty of approximately
18-19 cycles. Considering the typical SPU instruction latency
of two to seven cycles, mispredicted branches can seriously
degrade the packages parsing performance. So in the parsing
components of the prototype, three methods are adopted to
eliminate them to reduce the impact of branches, inlining,
unrolling and prediction [5].
 Inlining and unrolling both will increase the size of basic

blocks. In our experiment, the total size of network protocol
stack and the network driver used in some embedded system
is less than 15Kbytes. And in the SPE, the local store size is
about 256Kbytes, which is big enough to run the network card
deriver and protocol stack. SPU offers the select-bits
instruction which can be used to eliminating branches for
simple control –flow statements, such as if-then-else
constructs. In the system, a lot of intrinsic instructions also are
used to eliminate conditional branches, such as spu_cmpgt,
spu_add, and spu_sel.

In the conventional network communication architecture,
CPU should do all the work to handle the network packages,
writing data to socket, moving data from user space to the
kernel space by calling system call, encoding and dividing the
data packages in the different protocol levels, and writing the
data to the cable. The conventional network communication
architecture is showed in Fig.4. All the tasks are executed by
the same CPU, the network communication tasks and the
intensive computation tasks will interact in a very complex
way. In the single-core system, as the limitation of CPU
resource, the problem cannot be resolved. But on the
asymmetric multi-processor (AMP) platform, some special
components can be moved to single core, such as network
communication, which will improve the performance greatly.
Our work focuses on Cell, the typical AMP platform. The
design of the network communication system based on Cell
should consider the system architecture. Fig.5 illustrates the
network communication high-level architecture based on the
Cell system.

Fig.4 Conventional Communication Architecture

Fig.5 Communication System Architecture based on Cell

From Fig.5, it is noticed that we have modified three parts
on the general platform. 1) The libc is replaced by the tinylib.
As we know, the libc is offered by the Linux (the research
platform is Linux), and it is located between user application
and system call. In the conventional architecture, the user
application should call the routines supported by libc to access
the system call, and then entry the kernel space. In the new
architecture, the libc is replaced by the tinyLib for the
communication applications. The tinylib encapsules some low
level routines which are used to access SPU. And some
routines used to allocate memory are encapsuled in the tinylib
too. The tinylib can offer a serial interfaces to the application
programmers. Through those interfaces, the application sends
or writes data to or from the protocol stack transparently. 2)
The tinylib can access protocol stack directly. In the
conventional communication framework, the system calls
must be called. In the new framework, tinylib can
communicate with the protocol direct. And some function
offered by the system call is moved to SPU. 3) The third
change is the most important. The protocol stack and the
device driver is moved into SPU. In the communication
process, data encoding and decoding is the most time-
consuming job. Improve the performance of component is the
key to improve the communication performance.
 In the new architecture, the PPU is used for controlling and
synchronizing of multiple cores. The data communication task
is assigned to one SPU. This architecture does not only reduce
the workloads of PPU, but also improve the network data
communication throughput.

IV. PERFORMANCE AND ANALYSIS

We implement the network communication module on the
Cell multicore platform with the proposed architecture. In the
implemented prototype, a simple communication mechanism
is used for convenience.

For the communication protocol, the package head consists
of data size, frame number, CRC check parity, and destination
port as depicts in Fig.6. The protocol adopts the static package
size, which is 512B length. It is obvious that the data size is
480Bytes, which means, if the data size is larger than the
length, it will be partitioned by the protocol stack. And if the
data size is smaller than 480B, the padding segment data will
be added.

Fig. 6 Simple Protocol used in the Prototype

 Check parity: 32bits, the crc-32[6] value of the data
segment;

 Data size; 32 bits, the size of the data segment, and it
likes too long to specify the data size

 Frame number: 32bits, the serial number of the frame
and it’s exclusive in the communication process.

 Port: 16bits, used to identify the user application.
 Empty: 16bits, the padding bits for padding.
 Data segment: 480Bytes, the valid data in the part.

The prototype system is running on Cell blade QS21. In

order to find out which kind of environment will affect the
data transmission speed between the I/O device and SPU, the
benchmark program will run with different environment
configurations. The benchmark will also test the maximum
throughput that the SPU can reach to read/write data from/to
network I/O port.

At the same time, on the Cell platform, all the SPUs share
one EIB bus. To simulate the practical environment, numbers
of SPU is used to access the EIB bus in a time-sharing way.
These SPUs will occupy the EIB bus by moving data between
local store and main memory from time to time. Theoretically,
when the EIB bus is occupied by other SPUs, the
communication bandwidth between the network device and
the SPU based network module will be degraded. In our
experiment, we use different numbers of SPU to simulate the
processing tasks (PT) in a practical system. The performance
is provided in Fig.7. It is observed that the throughput of the
communication module is just slightly degraded with the
increase of processing SPU tasks. It is mainly because that the
shared EIB bus on Cell platform has a very high bandwidth
which can even reach up to 204.8GB/s.

Throughput of System(PT--Processing Task)

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
r
o
u
g
h
p
u
t
(
M
/
S
)

without PT

1SPU PT

2SPU PT

3SPU PT

4SPU PT

Fig 7 the bandwidth of communication system

It can be also noticed that the throughput of the network
communication module can even reach 14GB/s for the worst
case, which is sufficient for SR applications.

On the implemented SR system, the PPU is used for tasks
synchronization and management. The PPU resource usage is
very important for an efficient system. In Fig.8 (a), the PPU
usage status for the conventional communication framework
on Cell platform, in which all the network communication
operations are handled by PPU, is provided. In Fig.8 (b), the
PPU usage for the framework with the proposed SPU network
module is provided. Although when the system throughput
increases, the PPU usage of the two cases will also increase. It
can be observed that in the system with the proposed SPU

based network module, the PPU usage will just slightly
increase with the throughput. It is because that almost all the
receiving, parsing and sending operations are handled by the
SPU independently.

(a)

(b)

Fig 8 PPU usages of different communication framework

V. CONCLUSIONS
This paper presents a novel SPU based communication

module for SR physical layer on the heterogeneous Cell
multicore platform. A prototype of the communication module
has been implemented. The performance of the network I/O
communication framework is provided. The results show that
the PPU resources are released and the SR system
performance can be improved greatly with the new network
communication module.

REFERENCES
[1] IEEE Std 802.16e-2005. Part 16: Air Interface for Fixed, Mobile

Broadband Wireless Access Systems Amendment2:Physical, Medium
Access Control Layer for Combined Fixed, and Mobile Operation in
Licensed Bands.”, Feb. 2006.

[2] Joe Mitola. The software radio architecture. In IEEE Communications
Magazine, May 1995, 26-38.

[3] IBM Cell Broadband Engine Resource Center website
(http://www.128.ibm.com/developerworks/power/Cell/)

[4] Qing Wang, Da Fan, Yonghua Lin, Jianwen Chen, Zhenbo Zhu, “Design
of BS transceiver for IEEE 802.16E OFDMA mode”, Proc. IEEE
ICASSP, Mar. 2008.

[5] Software Development Kit for Multicore Acceleration Version 3.0,
Programming Tutorial, Book, 2005, 2007 @ Copyright International
Business Machines Corporation, Sony Computer Entertainment
Incorporated Toshiba Corporation

[6] Henriksson, T. Eriksson, H. Nordqvist, U. Larsson-Edefors, P. Liu,
D, VLSI implementation of CRC-32 for 10 Gigabit Ethernet, Electronics,
Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International
Conference, 2001, ISBN: 0-7803-7057-0

