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Abstract—Viterbi decoding is widely used in many radio systems. 
Because of the large computation complexity, it is usually 
implemented with ASIC chips, FPGA, or optimized hardware 
accelerators. With the rapid development of the multicore 
technology, the multicore platforms become a reasonable choice 
for the software radio (SR) systems. The Cell Broadband Engine 
processor is a state-of-art multi-core platform designed by Sony, 
Toshiba, and IBM. In this paper, we present a 64-state soft input 
viterbi decoder for WiMAX SR Baseband system based on the 
Cell processor. With one SPE running at 3.2GHz, the viterbi 
decoder can achieve the throughput up to 30Mb/s to decode the 
tail-biting convolutional code. The performance demonstrates 
that the proposed Viterbi decoding implementation is very 
efficient. Moreover, the viterbi decoder can be easily integrated 
to the SR system and can provide a highly integrated SR solution. 
The optimization methodology in this module design can be 
extended to other modules on CELL platform 

Keywords- Viterbi decoding, WiMAX, Tail-biting, Cell, Multi-
core 

I.  INTRODUCTION 
To meet both the performance and the adaptability 

requirements of the evolving wireless systems, software radio 
(SR) is introduced. The infrastructures of the traditional 
wireless baseband systems are also required to adapt to the 
emerging SR techniques. At the same time, the multicore 
technology is developing rapidly. The multicore systems can 
provide high computation capacity and huge throughput, which 
suits the wireless baseband system well. Obviously, if the 
whole wireless baseband system can be integrated on one 
multicore platform with software, the cost for development and 
management will be reduced greatly. Moreover, it is easy to 
support multiple wireless standards.  

WiMAX, short for Worldwide Interoperability for 
Microwave Access, is a metropolitan wireless standard ratified 
by the IEEE, the Institute of Electrical and Electronics 
Engineers, under the name IEEE-802.16. It can be used in 
many applications, including the “last mile” broadband 
connections and offering the mobile client machines with the 
internet connections, and WiMAX has been approved as a 3G 
standard today by ITU.  

Based on the concept of software radio, we have 
implemented a WiMAX SR Baseband system on the Cell 
processor. The block diagram of the BS physical layer 
baseband transceiver (OFDMA mode) is illustrated in Fig.1. 

  
Fig. 1 WiMAX Physical Layer System Structure 

The downlink of the system consists of randomization, 
channel coding, interleaving, modulation, map constellation, 
space-frequency block coding (SFBC), IFFT, cyclic prefix(CP) 
insertion and duplex framing; the uplink consists of deframing,  
timing frequency correction, CP remove, FFT, channel 
estimation,  space-frequency block decoding, demodulation, 
deinterleaving, channel decoding, derandomization. We use 
SPU decrementers to evaluate the computation complexity of 
each module. And the decrementers performance of each 
module is provided in Table I. 

TABLE I 
WIMAX MODULES COMPUTATION COMPLEXITY 

Component Decrementers

Channel coding  666 
Interleave 1225 

IFFT 1551 
Channel Estimation 783 

SFBC 1484 
De-Interleaving 1287 

Viterbi Decoding 3204 
From Table I, it can be noticed that the Viterbi decoding is 

the most computation intensive module in the whole SR 
baseband system. In the conventional radio system, Viterbi 
decoding is usually implemented with ASIC chips, FPGA or 
optimized hardware accelerators. However, under the concept 
of software radio, this module is preferred to be implemented 
with software and it is the most challenging part in the SR 
baseband system.  On the other hand, only when Viterbi 
decoding can support the system requirement for throughput, 
the baseband processing can totally handled with software and 
a highly integrated SR system solution can be achieved. 



In this paper, we will study the Viterbi decoding algorithm 
for WiMAX Baseband System. The computation complexity of 
Viterbi decoding is analyzed in detail for an efficient 
implementation on Cell/B.E.  At the same time, we will 
emphasis on the optimization methodology for Viterbi 
decoding on CELL/B.E., which can also be used as references 
for other modules optimization on CELL platform.  

Viterbi algorithm is the optimal solution for Convolutional 
Encoding. The tail-biting convolutional encoding method can 
eliminate the transfer data rate loss by the extra tail bits 
introduced by the conventional convolutional code. And tail-
biting convolutional encoding, which has the rate of 1/2, a 
constraint length of 7, is the mandatory channel coding scheme 
used in WiMAX systems [1]. Two generator polynomials 
codes are specified as, G1=171 (OCT) and G2=133 (OCT) . 

The Cell Broadband Engine processor is the result of 
collaboration between Sony, Toshiba, and IBM known as STI 
[2]. As depicted in Fig.2, the Cell BE Processor is a 
heterogeneous processor with one PowerPC Processor Element 
(PPE) and eight Synergistic Processor Elements (SPEs). The 
PPE which contains a 64-bit PowerPC Architecture core runs 
the operating system and is mainly responsible for controlling 
the behavior of all the SPEs. The eight SPEs are in-order 
single-instruction, multiple-data (SIMD) processor elements 
optimized for compute-intensive work. Each SPE has 256KB 
local memory for instructions and data, and 128 128-bit register 
file. Each SPE has two pipelines and can issue and complete up 
to two instructions each cycle. At 3.2GHz each SPE can give a 
theoretical 25.6 GFLOPS of single precision performance. All 
these processor elements are connected by the element 
interconnect bus (EIB). The EIB transfers data between these 
processor elements, the main memory and the IO interface. At 
3.2GHz it could offer a theoretical peak bandwidth up to 204.8 
GB/s. 

 
Fig. 2 Block Diagram of Cell Processor 

Data transactions between the SPE’s local memory and the 
main memory are via DMA operations. The DMA operation 
supports aligned transfer size of 1, 2, 4, 8, and 16 bytes and 
multiple of 16 bytes and can move up to 16KB at a time. With 
the double-buffer techniques, the DMA transfer latency could 
be covered by the application execution.  

The rest of this paper is organized as follows. Section II 
will briefly introduce the algorithm for the tail-biting 
convolutional codes. Section III will describe our 
considerations and techniques to achieve the peak performance 
of the viterbi decoding algorithm on the Cell processor. In 
section IV, the BER and other performance information is 
provided. Section V presents the conclusions. 

II. DECODING ALGORITHM FOR THE TAIL-BITING 
CONVOLUTIONAL CODES 

Tail-biting convolutional encoding can avoid transferring 
additional data bits, but slightly increased the decoding 
complexity. There are many ways to decode the tail-biting 
convolutional codes. Some methods have iterative structures 
which cannot guarantee a fixed delay. The basic algorithm used 
here is introduced by Wonjin Sung and In-Kyung Kim, called a 
fixed delay decoding scheme for tail-biting convolutional codes 
[3].  

The decoding algorithm, which we have changed a little to 
suite the architecture of the system, is illustrated in Fig.3.  

Get the proper start state Start from 
arbitrary 
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Fig. 3 Tail-biting code Viterbi Decoding 

The data block which need to be decoded is separated into 
smaller blocks, as Block 0, Block 1, ..., Block N.  

Firstly, Block 0 and Block 1are attached at the end of Block 
N and we get a new data vector VN.  

Secondly, decode VN using the conventional viterbi 
algorithm and find the minimum path metric at the end of VN. 

Finally, trace from the end of VN back to the original Block 
1 by the path with the best path metric. At this procedure, 
discard the decoded bits of the Block 1 on the tail, and 
reorganize the bits decoded from the attached Block 0 to the 
beginning. 

To get a negligible degration from maximum likelihood 
decoding, the size of the block should be greater than 4K, 
where K is the constraint length [3]. In our system, the value 72 
is selected as the constraint length. 

 

III. PARALLELIZE THE DECODING ALGORITHM ON THE 
CELL PROCESSOR 

Viterbi Decoding is the bottleneck of the uplink WiMAX 
system. To get the best throughput performance, we handily 
tune highly parallel code. 

A. General Considerations of Using One SPE 
In order to get the best performance, the application code 

needs to comply with the architecture and features of the SPE. 

Firstly, SPE’s natural operand type is 128-bit quadword or 
vector. A vector is an instruction operand containing a set of 
data elements packed into a one-dimensional array [4]. SPE’s 
scalar operation performance is very poor because in order to 
accomplish a scalar operation, the SPE has to pack the scalar 
data into a vector, and after the operation, unpack the vector 
data to get the final scalar result. Therefore we need to use 
vector data type if possible, and sometimes we even need to 
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change the algorithm or the data memory layout to use vector 
operations. 

Secondly, SPE is an in-order processor element, and SPE 
issues all instructions in program order. If there is dependency 
between two adjacent instructions, the later one has to wait to 
be issued until the former one completes. And this could lead to 
a huge performance loss. Thus we need to diminish the branch 
operations and decrease the dependency among the nearby 
instructions. 

Thirdly, each SPE has two dual-issue execution pipelines, 
referred to as even pipeline and odd pipeline. Each of SPE’s six 
execution units belongs to one of the two pipelines. A 
doubleword-aligned instruction pair called a fetch group. A 
fetch group can have one or two valid instructions. The SPU 
processes fetch groups one at a time [4]. So the SPE can 
complete up to two instructions per cycle. If the first instruction 
of a fetch group can be issued while the second one cannot, the 
first instruction is issued to the proper execution pipeline and 
the second instruction is held. We need to put instructions 
issuable to different pipelines together, then after compiling, 
they could be dual issued. 

 

B. Computation Data Type Choice 
The SPU hardware supports the following data types: 

• Byte—8 bits 

• Halfword—16 bits 

• Word—32 bits 

• Doubleword—64 bits 

• Quadword—128 bits 

The SPE can finish one vector operation per instruction. 
Since one vector comprises 4 word type elements, we can 
finish four word type data operations per instruction. Similarly, 
we can handle 8 halfword type data operations or 16 byte type 
data operations per instruction.  

The main calculation in the viterbi algorithm is the ACS 
operation. Comparing the decoder input with the recreated 
encoder output, we have the number of disagreements, as the 
branch metric. Then we accumulate the branch metrics as path 
metrics, and make decisions to select the most likely state 
transition sequence. 

The input of the viterbi decoder is 3 or 4 bits, so every 
branch metric is 4 or 5 bits long in a 1/2 encoding rate. Thus 
we could represent the branch metrics and the path metrics with 
one byte. However, after the accumulation operations, there 
could be overflows. So we need overflow control scheme in the 
implementation as described in part F. 

The theoretical peak byte operations per second could be 
3.2G*16*2=102.4G due to the simdization and the dual 
pipelines.  

 

C. Data Memroy Layout and Vectorization 
In get the decoder output, we need to trace the best path 

back to the beginning. The best path is decided by choosing the 
final state which has the least path metrics. Then obtain the 
input sequence by placing a 0 at the decoder output each time 
we choose an upper transition, and a 1 output each time we 
choose the lower transition. 

So during the ACS operations, the decisions at every 
transition and the final path metrics need to be stored. With a 
constraint length of 7, we have 64 different encoding register 
states. Then the dimension of the decision matrix is 64*L, 
where L is the length of the length of the ACS input sequence. 
The dimension of the input is 2*L and the branch table which 
contains the recreated encoding output is 2*32, due to the 1/2 
encoding rate. 

The 64 decision in each stage can be stored in 4 vectors. 
We need 4 vectors to store the branch table and need to splat 
the input scalar data pair to form 4 vectors to compare with the 
recreated encoding output vector to get the branch metric. The 
data of the branch table and the decision matrix should be 128-
bit aligned. Otherwise segmentation fault will occur while 
loading the data in local memory to the registers. 

After the data arrangement described, all the ACS 
operations can be achieved in vector format except the loop 
control and the overflow control, and high data level 
parallelism can be obtained. 

 

D. Butterfly operations 
The butterfly operations, as depicted in Fig.4, can change 

the relative memory positions of those variables which store 
the path metrics and the transfer decisions. In order to have the 
uniform processing pattern, we have to rearrange the data each 
time that we have processed one decoder input pair. 

 
Fig. 4 Butterfly operation in viterbi decoding 

The reorganizing operations can easily be implemented by 
the shuffle operations of the SPE. The shuffle operations select 
bytes from two source registers and place selected bytes in a 
target register, and the byte selection operations are controlled 
by a third source register [5].  

Therefore, the reorganizing in the viterbi butterfly 
operations can be implemented with two types of shuffle 
operations and total 8 instructions each stage for both the path 
metrics and the decisions reorganizing. 

E. Loop-unrolling and Overflow Control 
Loop-unrolling is an effective way to decrease the jumping 

operations and the dependency between instructions and gives 
the compiler more chance to optimize the code. Because the 
SPE is in-order processor element, the effect of loop-unrolling 
is more obvious than other out-of-order processors. 



Since the path metric is stored in one byte and each branch 
metric could be 3 or 4 bits, we need to add overflow control to 
prevent the path metric values from saturation. The method of 
the overflow control used here is to check the path metric of 
state 0, and if the metric exceeds a threshold, we check all the 
64 path metrics and find the minimum metric, and then subtract 
the minimum metric from all the path metrics. Similarly, all the 
overflow control operations here are implemented with vector 
instructions except the exceeding judgment. 

However, to use the loop-unrolling optimization method 
can affect the choice of the exceeding threshold. After the 
experimental test, we finally choose 128 for 4-bit soft input 
with 2 times of unrolling and 128 for 3-bit soft input with 4 
times of unrolling as the thresholds  

 

F. Considerations of Using the Resource of a Full Cell Chip 
As described above, the Cell BE processor has 8 SPEs and 

1 PPE. Use each SPE to perform part of the process necessary 
for WiMAX system, with only one SPE core actually running 
the tail-biting viterbi decoding. This is a type of multi-core 
operation on Cell platform to implement the WiMAX baseband 
system. The advantage of this approach is that each SPE has 
part of the processing codes and there are more memory left on 
the local store for the data buffer. The disadvantage is that we 
need to do some more work to achieve a better load balance on 
8 SPEs. 

Another type of multi-core operation could be that each 
SPE perform a whole processing task of one frame and PPE is 
in charge of distributing the data frames to different SPEs. The 
advantage of this approach is that the load on every SPE is 
symmetrical and the disadvantage is that code size of each SPE 
program could be very large. 

 

IV. PERFORMANCE SUMMARY 
The BER performance is illustrated in Fig.5 for 3-bit and 4-

bit soft input separately. And the peak throughput with 3-bit 
soft input is 32.5 Mbps and 31Mbps for 4-bit soft input on a 
single SPE. Additionally, the throughput of the viterbi decoder 
can increase linearly with the increase of the SPU number.  
 

V. CONCLUSION 
This paper presented a 64-state soft input viterbi decoder 

for WiMAX SR Baseband system on the emerging 
heterogeneous multicore Cell platform. We focused on the 
parallelization and optimization for Viterbi decoding on 
CELL/B.E. The performance shows that with one SPE, the 
decoding throughput of tail-biting convolutional code can reach 
up to 30Mb/s. It can be easily integrated to the SR system and 
provide a highly integrated SR system solution. The design 

considerations and optimization methodology can also be 
extended to other SR modules on CELL platform. 
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Fig. 5 BER performance for the Viterbi Decoding  

  

VI. FUTURE WORK 
For the channel coding of WiMAX physical layer, the 
convolutional encoding is the mandatory, the Turbo Code 
encoding is the optional. But in the practical WiMAX CBEs 
and  basestaions, Turbo Code  is always supported. So we have 
realized the initially optimized turbo code on Cell platform. 
And in the near future, we will try to improve it for an accepted 
performance. Besides, we also plan to realize high efficient  
modules for LDPC encoding and decoding on Cell platform.  
All of these modules will be packaged to an open channel 
coding library for SR systems on Cell platform. 
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