
RC24644 (C0809-010) September 19, 2008
Electrical Engineering

IBM Research Report

High Performance Viterbi Decoder on Cell/B.E.

Junjie Lai
Department of Electronic Engineering

Tsinghua University
Beijing

P.R. China

Jianwen Chen
China Research Laboratory

 Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100094
P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

High Performance Viterbi Decoder on Cell/B.E.

Junjie Lai
Department of Electronic Engineering

Tsinghua University
Beijing, China

laijj02@mails.tsinghua.edu.cn

Jianwen Chen
IBM China Research Laboratory

IBM
Beijing, China

jianwenc@cn.ibm.com

Abstract—Viterbi decoding is widely used in many radio systems.
Because of the large computation complexity, it is usually
implemented with ASIC chips, FPGA, or optimized hardware
accelerators. With the rapid development of the multicore
technology, the multicore platforms become a reasonable choice
for the software radio (SR) systems. The Cell Broadband Engine
processor is a state-of-art multi-core platform designed by Sony,
Toshiba, and IBM. In this paper, we present a 64-state soft input
viterbi decoder for WiMAX SR Baseband system based on the
Cell processor. With one SPE running at 3.2GHz, the viterbi
decoder can achieve the throughput up to 30Mb/s to decode the
tail-biting convolutional code. The performance demonstrates
that the proposed Viterbi decoding implementation is very
efficient. Moreover, the viterbi decoder can be easily integrated
to the SR system and can provide a highly integrated SR solution.
The optimization methodology in this module design can be
extended to other modules on CELL platform

Keywords- Viterbi decoding, WiMAX, Tail-biting, Cell, Multi-
core

I. INTRODUCTION
To meet both the performance and the adaptability

requirements of the evolving wireless systems, software radio
(SR) is introduced. The infrastructures of the traditional
wireless baseband systems are also required to adapt to the
emerging SR techniques. At the same time, the multicore
technology is developing rapidly. The multicore systems can
provide high computation capacity and huge throughput, which
suits the wireless baseband system well. Obviously, if the
whole wireless baseband system can be integrated on one
multicore platform with software, the cost for development and
management will be reduced greatly. Moreover, it is easy to
support multiple wireless standards.

WiMAX, short for Worldwide Interoperability for
Microwave Access, is a metropolitan wireless standard ratified
by the IEEE, the Institute of Electrical and Electronics
Engineers, under the name IEEE-802.16. It can be used in
many applications, including the “last mile” broadband
connections and offering the mobile client machines with the
internet connections, and WiMAX has been approved as a 3G
standard today by ITU.

Based on the concept of software radio, we have
implemented a WiMAX SR Baseband system on the Cell
processor. The block diagram of the BS physical layer
baseband transceiver (OFDMA mode) is illustrated in Fig.1.

Fig. 1 WiMAX Physical Layer System Structure

The downlink of the system consists of randomization,
channel coding, interleaving, modulation, map constellation,
space-frequency block coding (SFBC), IFFT, cyclic prefix(CP)
insertion and duplex framing; the uplink consists of deframing,
timing frequency correction, CP remove, FFT, channel
estimation, space-frequency block decoding, demodulation,
deinterleaving, channel decoding, derandomization. We use
SPU decrementers to evaluate the computation complexity of
each module. And the decrementers performance of each
module is provided in Table I.

TABLE I
WIMAX MODULES COMPUTATION COMPLEXITY

Component Decrementers

Channel coding 666
Interleave 1225

IFFT 1551
Channel Estimation 783

SFBC 1484
De-Interleaving 1287

Viterbi Decoding 3204
From Table I, it can be noticed that the Viterbi decoding is

the most computation intensive module in the whole SR
baseband system. In the conventional radio system, Viterbi
decoding is usually implemented with ASIC chips, FPGA or
optimized hardware accelerators. However, under the concept
of software radio, this module is preferred to be implemented
with software and it is the most challenging part in the SR
baseband system. On the other hand, only when Viterbi
decoding can support the system requirement for throughput,
the baseband processing can totally handled with software and
a highly integrated SR system solution can be achieved.

In this paper, we will study the Viterbi decoding algorithm
for WiMAX Baseband System. The computation complexity of
Viterbi decoding is analyzed in detail for an efficient
implementation on Cell/B.E. At the same time, we will
emphasis on the optimization methodology for Viterbi
decoding on CELL/B.E., which can also be used as references
for other modules optimization on CELL platform.

Viterbi algorithm is the optimal solution for Convolutional
Encoding. The tail-biting convolutional encoding method can
eliminate the transfer data rate loss by the extra tail bits
introduced by the conventional convolutional code. And tail-
biting convolutional encoding, which has the rate of 1/2, a
constraint length of 7, is the mandatory channel coding scheme
used in WiMAX systems [1]. Two generator polynomials
codes are specified as, G1=171 (OCT) and G2=133 (OCT) .

The Cell Broadband Engine processor is the result of
collaboration between Sony, Toshiba, and IBM known as STI
[2]. As depicted in Fig.2, the Cell BE Processor is a
heterogeneous processor with one PowerPC Processor Element
(PPE) and eight Synergistic Processor Elements (SPEs). The
PPE which contains a 64-bit PowerPC Architecture core runs
the operating system and is mainly responsible for controlling
the behavior of all the SPEs. The eight SPEs are in-order
single-instruction, multiple-data (SIMD) processor elements
optimized for compute-intensive work. Each SPE has 256KB
local memory for instructions and data, and 128 128-bit register
file. Each SPE has two pipelines and can issue and complete up
to two instructions each cycle. At 3.2GHz each SPE can give a
theoretical 25.6 GFLOPS of single precision performance. All
these processor elements are connected by the element
interconnect bus (EIB). The EIB transfers data between these
processor elements, the main memory and the IO interface. At
3.2GHz it could offer a theoretical peak bandwidth up to 204.8
GB/s.

Fig. 2 Block Diagram of Cell Processor

Data transactions between the SPE’s local memory and the
main memory are via DMA operations. The DMA operation
supports aligned transfer size of 1, 2, 4, 8, and 16 bytes and
multiple of 16 bytes and can move up to 16KB at a time. With
the double-buffer techniques, the DMA transfer latency could
be covered by the application execution.

The rest of this paper is organized as follows. Section II
will briefly introduce the algorithm for the tail-biting
convolutional codes. Section III will describe our
considerations and techniques to achieve the peak performance
of the viterbi decoding algorithm on the Cell processor. In
section IV, the BER and other performance information is
provided. Section V presents the conclusions.

II. DECODING ALGORITHM FOR THE TAIL-BITING
CONVOLUTIONAL CODES

Tail-biting convolutional encoding can avoid transferring
additional data bits, but slightly increased the decoding
complexity. There are many ways to decode the tail-biting
convolutional codes. Some methods have iterative structures
which cannot guarantee a fixed delay. The basic algorithm used
here is introduced by Wonjin Sung and In-Kyung Kim, called a
fixed delay decoding scheme for tail-biting convolutional codes
[3].

The decoding algorithm, which we have changed a little to
suite the architecture of the system, is illustrated in Fig.3.

Get the proper start state Start from
arbitrary

state

Fig. 3 Tail-biting code Viterbi Decoding

The data block which need to be decoded is separated into
smaller blocks, as Block 0, Block 1, ..., Block N.

Firstly, Block 0 and Block 1are attached at the end of Block
N and we get a new data vector VN.

Secondly, decode VN using the conventional viterbi
algorithm and find the minimum path metric at the end of VN.

Finally, trace from the end of VN back to the original Block
1 by the path with the best path metric. At this procedure,
discard the decoded bits of the Block 1 on the tail, and
reorganize the bits decoded from the attached Block 0 to the
beginning.

To get a negligible degration from maximum likelihood
decoding, the size of the block should be greater than 4K,
where K is the constraint length [3]. In our system, the value 72
is selected as the constraint length.

III. PARALLELIZE THE DECODING ALGORITHM ON THE
CELL PROCESSOR

Viterbi Decoding is the bottleneck of the uplink WiMAX
system. To get the best throughput performance, we handily
tune highly parallel code.

A. General Considerations of Using One SPE
In order to get the best performance, the application code

needs to comply with the architecture and features of the SPE.

Firstly, SPE’s natural operand type is 128-bit quadword or
vector. A vector is an instruction operand containing a set of
data elements packed into a one-dimensional array [4]. SPE’s
scalar operation performance is very poor because in order to
accomplish a scalar operation, the SPE has to pack the scalar
data into a vector, and after the operation, unpack the vector
data to get the final scalar result. Therefore we need to use
vector data type if possible, and sometimes we even need to

This block is just for
training, Ignore the

output data
Output the decoding

data TB1

Ignore the
output data

TB0

TB0 TB1 TB2 TBN TB0

Output the decoding
data TB0

TB1

change the algorithm or the data memory layout to use vector
operations.

Secondly, SPE is an in-order processor element, and SPE
issues all instructions in program order. If there is dependency
between two adjacent instructions, the later one has to wait to
be issued until the former one completes. And this could lead to
a huge performance loss. Thus we need to diminish the branch
operations and decrease the dependency among the nearby
instructions.

Thirdly, each SPE has two dual-issue execution pipelines,
referred to as even pipeline and odd pipeline. Each of SPE’s six
execution units belongs to one of the two pipelines. A
doubleword-aligned instruction pair called a fetch group. A
fetch group can have one or two valid instructions. The SPU
processes fetch groups one at a time [4]. So the SPE can
complete up to two instructions per cycle. If the first instruction
of a fetch group can be issued while the second one cannot, the
first instruction is issued to the proper execution pipeline and
the second instruction is held. We need to put instructions
issuable to different pipelines together, then after compiling,
they could be dual issued.

B. Computation Data Type Choice
The SPU hardware supports the following data types:

• Byte—8 bits

• Halfword—16 bits

• Word—32 bits

• Doubleword—64 bits

• Quadword—128 bits

The SPE can finish one vector operation per instruction.
Since one vector comprises 4 word type elements, we can
finish four word type data operations per instruction. Similarly,
we can handle 8 halfword type data operations or 16 byte type
data operations per instruction.

The main calculation in the viterbi algorithm is the ACS
operation. Comparing the decoder input with the recreated
encoder output, we have the number of disagreements, as the
branch metric. Then we accumulate the branch metrics as path
metrics, and make decisions to select the most likely state
transition sequence.

The input of the viterbi decoder is 3 or 4 bits, so every
branch metric is 4 or 5 bits long in a 1/2 encoding rate. Thus
we could represent the branch metrics and the path metrics with
one byte. However, after the accumulation operations, there
could be overflows. So we need overflow control scheme in the
implementation as described in part F.

The theoretical peak byte operations per second could be
3.2G*16*2=102.4G due to the simdization and the dual
pipelines.

C. Data Memroy Layout and Vectorization
In get the decoder output, we need to trace the best path

back to the beginning. The best path is decided by choosing the
final state which has the least path metrics. Then obtain the
input sequence by placing a 0 at the decoder output each time
we choose an upper transition, and a 1 output each time we
choose the lower transition.

So during the ACS operations, the decisions at every
transition and the final path metrics need to be stored. With a
constraint length of 7, we have 64 different encoding register
states. Then the dimension of the decision matrix is 64*L,
where L is the length of the length of the ACS input sequence.
The dimension of the input is 2*L and the branch table which
contains the recreated encoding output is 2*32, due to the 1/2
encoding rate.

The 64 decision in each stage can be stored in 4 vectors.
We need 4 vectors to store the branch table and need to splat
the input scalar data pair to form 4 vectors to compare with the
recreated encoding output vector to get the branch metric. The
data of the branch table and the decision matrix should be 128-
bit aligned. Otherwise segmentation fault will occur while
loading the data in local memory to the registers.

After the data arrangement described, all the ACS
operations can be achieved in vector format except the loop
control and the overflow control, and high data level
parallelism can be obtained.

D. Butterfly operations
The butterfly operations, as depicted in Fig.4, can change

the relative memory positions of those variables which store
the path metrics and the transfer decisions. In order to have the
uniform processing pattern, we have to rearrange the data each
time that we have processed one decoder input pair.

Fig. 4 Butterfly operation in viterbi decoding

The reorganizing operations can easily be implemented by
the shuffle operations of the SPE. The shuffle operations select
bytes from two source registers and place selected bytes in a
target register, and the byte selection operations are controlled
by a third source register [5].

Therefore, the reorganizing in the viterbi butterfly
operations can be implemented with two types of shuffle
operations and total 8 instructions each stage for both the path
metrics and the decisions reorganizing.

E. Loop-unrolling and Overflow Control
Loop-unrolling is an effective way to decrease the jumping

operations and the dependency between instructions and gives
the compiler more chance to optimize the code. Because the
SPE is in-order processor element, the effect of loop-unrolling
is more obvious than other out-of-order processors.

Since the path metric is stored in one byte and each branch
metric could be 3 or 4 bits, we need to add overflow control to
prevent the path metric values from saturation. The method of
the overflow control used here is to check the path metric of
state 0, and if the metric exceeds a threshold, we check all the
64 path metrics and find the minimum metric, and then subtract
the minimum metric from all the path metrics. Similarly, all the
overflow control operations here are implemented with vector
instructions except the exceeding judgment.

However, to use the loop-unrolling optimization method
can affect the choice of the exceeding threshold. After the
experimental test, we finally choose 128 for 4-bit soft input
with 2 times of unrolling and 128 for 3-bit soft input with 4
times of unrolling as the thresholds

F. Considerations of Using the Resource of a Full Cell Chip
As described above, the Cell BE processor has 8 SPEs and

1 PPE. Use each SPE to perform part of the process necessary
for WiMAX system, with only one SPE core actually running
the tail-biting viterbi decoding. This is a type of multi-core
operation on Cell platform to implement the WiMAX baseband
system. The advantage of this approach is that each SPE has
part of the processing codes and there are more memory left on
the local store for the data buffer. The disadvantage is that we
need to do some more work to achieve a better load balance on
8 SPEs.

Another type of multi-core operation could be that each
SPE perform a whole processing task of one frame and PPE is
in charge of distributing the data frames to different SPEs. The
advantage of this approach is that the load on every SPE is
symmetrical and the disadvantage is that code size of each SPE
program could be very large.

IV. PERFORMANCE SUMMARY
The BER performance is illustrated in Fig.5 for 3-bit and 4-

bit soft input separately. And the peak throughput with 3-bit
soft input is 32.5 Mbps and 31Mbps for 4-bit soft input on a
single SPE. Additionally, the throughput of the viterbi decoder
can increase linearly with the increase of the SPU number.

V. CONCLUSION
This paper presented a 64-state soft input viterbi decoder

for WiMAX SR Baseband system on the emerging
heterogeneous multicore Cell platform. We focused on the
parallelization and optimization for Viterbi decoding on
CELL/B.E. The performance shows that with one SPE, the
decoding throughput of tail-biting convolutional code can reach
up to 30Mb/s. It can be easily integrated to the SR system and
provide a highly integrated SR system solution. The design

considerations and optimization methodology can also be
extended to other SR modules on CELL platform.

0 1 2 3 4 5 6
10

-6

10
-5

10-4

10
-3

10
-2

10-1

10
0

Eb/N0 (dB)

B
E

R
 p

er
fo

rm
ac

e

4-bit
3-bit

Fig. 5 BER performance for the Viterbi Decoding

VI. FUTURE WORK
For the channel coding of WiMAX physical layer, the
convolutional encoding is the mandatory, the Turbo Code
encoding is the optional. But in the practical WiMAX CBEs
and basestaions, Turbo Code is always supported. So we have
realized the initially optimized turbo code on Cell platform.
And in the near future, we will try to improve it for an accepted
performance. Besides, we also plan to realize high efficient
modules for LDPC encoding and decoding on Cell platform.
All of these modules will be packaged to an open channel
coding library for SR systems on Cell platform.

REFERENCES

[1] IEEE Std 802.16-2004 “Part 16: Air Interface for Fixed Broadband
Wireless Access Systems”, June.2004

[2] IBM Cell Broadband Engine resource center website
(http://www.ibm.com/developerworks/power/cell/)

[3] Wonjin Sung; In-Kyung Kim, “Performance of a fixed delay decoding
scheme for tail biting convolutional codes,” Signals, Systems and
Computers, 1996. 1996 Conference Record of the Thirtieth Asilomar
Conference on Volume 1, Issue , 3-6 Nov 1996 Page(s):704 - 708 vol.1

[4] IBM, “Cell Broadband Engine Programming Handbook,” Version 1.1,
April.2007

[5] IBM, “C/C++ Language Extensions for Cell Broadband Engine
Architecture,” Version 2.5, Feb.2008

.

	I. introduction
	II. decoding algorithm for the tail-biting convolutional codes
	III. parallelize the decoding algorithm on the cell processor
	A. General Considerations of Using One SPE
	B. Computation Data Type Choice
	C. Data Memroy Layout and Vectorization
	D. Butterfly operations
	E. Loop-unrolling and Overflow Control
	F. Considerations of Using the Resource of a Full Cell Chip

	IV. performance summary
	V. conclusion
	VI. future Work
	references

