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Abstract

We present a new classification algorithm for high dimensional problems. The algorithm uses a
Markov random field for modeling meaningful interactions within the training data set. The model
parameters are efficiently estimated using the Kalman filter algorithm and adapted to fit the test
data using a recursive matrix formulation of the extended Baum-Welch algorithm. A spatially like-
lihood test procedure is then used for classifying the data. The performance of the new algorithm is
demonstrated in fMRI classification.



Problem Formulation

Let the data set X ∈ R
m (of which m is very large) be associated with some response Y ∈ Y

where Y is some real-valued discrete space (i.e., classes). We are aimed at predicting Y , the class
associated with X . For simplicity, we assume here only two classes Y = {0, 1}. The extension of the
algorithm to arbitrary number of classes is straightforward. The assumption underlying the following
derivations is that both X and Y are real-valued random variables of which the joint probability
density function (pdf) p(X, Y ) exists.

Dimensionality Reduction

In what follows we derive a feature 1 extraction mechanization for reducing the computational com-
plexity of the algorithm. We find a subset X̄ ∈ R

n of X where n << m by excluding all data
points which are insignificant in terms of forming the response Y . This is accomplished by either
approximating the cross correlation (CCR) or the mutual information (MI) of X and Y .

CCR Mapping

The CCR of the ith element Xi ∈ X and Y is given by

ρXi,Y =
E{(Xi − µXi

)(Y − µY )}

(E{Xi}2 − µ2
Xi

)1/2(E{Y }2 − µ2
Y )1/2

(1)

Given k training samples Xtrain = {X(1), ...X(k)} with known responses Ytrain = {Y (1), ...Y (k)},
Eq. (1) is approximated by

ρ̂Xi,Y =
k

∑k
j=1 Xi(j)Y (j) −

∑k
j=1 Xi(j)

∑k
j=1 Y (j)

(k
∑

j Xi(j)2 − (
∑

j Xi(j))2)1/2(k
∑

j Y (j)2 − (
∑

j Y (j))2)1/2
(2)

The reduced set X̄ is then obtained as

X̄ = {Xi | ρ̂Xi,Y ≥ ρTh} (3)

where ρTh > 0 is some predetermined threshold value.
The CCR method is usually inadequate for representing non-linear relations. This shortcoming

can be alleviated by resorting to MI-based method.

MI Mapping

The MI of Xi and Y is given as

I(Xi, Y ) =
∑

Y

∑

Xi∈Xtrain

p(Xi, Y ) log

[

p(Xi, Y )

p(Xi)p(Y )

]

=
∑

Y

∑

Xi∈Xtrain

p(Xi | Y )p(Y ) log

[

p(Xi | Y )

p(Xi)

]

=
∑

Y =0,1

p(Y )
∑

Xi∈Xtrain

p(Xi | Y ) log

[

p(Xi | Y )

p(Xi)

]

(4)

Assuming p(Y = 0) = p(Y = 1) = 1/2 (i.e., balanced training set), and

p(Xi | Y ) = N
(

Xi − µXi|Y , σ2
Xi|Y

)

(5a)

p(Xi) = N
(

Xi − µXi
, σ2

Xi

)

(5b)

The statistics of the Gaussian pdfs above can be approximated using the training data samples as

µXi|Y =
1

kY

kY
∑

j=1

XY
i (j) (6a)

1Feature refers to a single data point
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σ2
Xi|Y

=
1

kY − 1

kY
∑

j=1

(XY
i (j) − µXi|Y )2 (6b)

µXi
=

1

2
µXi|Y =0 +

1

2
µXi|Y =1 (6c)

σ2
Xi

=
k0 − 1

k − 1
σ2

Xi|Y =0 +
k1 − 1

k − 1
σ2

Xi|Y =1 (6d)

where
Xa

i (j) = {Xi ∈ X(j) ∩ Y (j) = a} (7)

and kY denotes the number of training samples of class Y . Substituting the above in Eq. (4) yields

I(Xi, Y ) =
1

2

∑

θ=0,1

k
∑

j=1

Ci
θ exp

{

−
1

2

(Xi(j) − µXi|Y =θ)
2

σ2
Xi|Y =θ

}

×

[

log Ci
θ −

1

2

(Xi(j) − µXi|Y =θ)
2

σ2
Xi|Y =θ

− log C̄i +
1

2

(Xi(j) − µXi
)2

σ2
Xi

]

(8)

where Ci
θ and C̄i are normalization constants

Ci
θ =





k
∑

j=1

exp

{

−1/2
(Xi(j) − µXi|Y =θ)

2

σ2
Xi|Y =θ

}





−1

(9a)

C̄i =





k
∑

j=1

exp

{

−1/2
(Xi(j) − µXi

)2

σ2
Xi

}





−1

(9b)

The reduced set X̄ is then obtained as

X̄ = {Xi | I(Xi, Y ) ≥ ITh} (10)

where ITh > 0 is some predetermined threshold value.

Connectivity Modeling

In this section we derive the pattern recognition algorithm which forms the core of the classification
method. The algorithm is based on modeling statistical connections within the reduced data set X̄ .

Let G(X, e) be an undirected graph, where e is an edge representing statistical dependency. Let
us assume that G(X, e) is fully connected, i.e., Xi ∈ X̄ is connected to his neighbors Gi = {X̄}/{Xi}.
For every class Y = θ we define a parametric functional relation of the form

ϕθ(Xi, Gi, Wi) = 0 (11)

where Wi ∼ pWi
(·) is a noise random variable representing uncertainty. Now, suppose that we can

express the following relation
Wi = ϕ−1

θ (Xi, Gi) (12)

then it easily follows that

p(Xi | Gi, θ) = pWi
(ϕ−1

θ (Xi, Gi)) det
(

∇Xi
ϕ−1

θ (Xi, Gi)
)

(13)

is the pdf describing statistical relation between Xi and Gi for a given class Y = θ. The above
formulation describes a Markov random field (MRF) of which the joint pdf is given by

p(X̄ | Y = θ) =
1

Zθ

n
∏

i=1

p(Xi | Gi, θ), Xi ∈ X̄ (14)

where n denotes the total number of nodes in X̄. The normalizing constant Zθ is given as

Zθ =
∑

X̄∈Ω

n
∏

i=1(Xi∈X̄)

p(Xi | Gi, θ) (15)
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The Estimated Class

The predicted class is taken as the one with the highest probability p(X̄test | Y = θ), where Xtest

denotes the test data set. In the binary case, one has to compare

p(X̄test | Y = 0) >
< p(X̄test | Y = 1) (16)

or equivalently
p(X̄test | Y = 0)

p(X̄test | Y = 1)
>
< 1 (17)

Further defining

l :=

n
∏

i=1

p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
(18)

and

c := log
Z0

Z1
(19)

yields an equivalent test to (16)

log l =

n
∑

i=1

log
p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
>
< c (20)

where the constant c (which rarely can be computed straightforwardly) can be tuned using either
training or development data sets (see appendix). Using Eq. (20), the predicted class is obtained as

Ŷ =

{

0, log l > c
1, log l < c

(21)

Ergodic Sums

If the following conditions hold

• The uncertainty random variables Wi, ∀i are independent and identically distributed (iid).

• The Jacobian ∇Xi
ϕ−1

θ (Xi, Gi) is independent of θ.

then

l =

n
∏

i=1

pW (ϕ−1
θ=0(Xi, Gi))

pW (ϕ−1
θ=1(Xi, Gi))

>
< exp{c} (22)

can be interpreted as a “spatial” likelihood ratio test where nodes act as samples. It can be shown
(using the strong ergodic theorem or the strong law of large numbers) that in this case

lim
n→∞

l =

{

+∞, if θ = 0 is the true class
0, if θ = 1 is the true class

(23)

The above argumentation implies that regardless of the value of c the test yields the correct class for
some n > n′, the number of nodes in the MRF model.

Convergence to a True Class

It has been pointed out that the accuracy (i.e., convergence to the correct class) depends on the value
of c and the number of nodes n. Under the conditions previously mentioned the strong law of large
numbers (SLLN) yields

lim
n→∞

1

n
log l = lim

n→∞

1

n

n
∑

i=1

log
p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
= α (24)

where

α :=

{

−KL {p(· | ·, θ = 0) ‖ (p(· | ·, θ = 1)} , if θ = 0 is the true class
KL {p(· | ·, θ = 1) ‖ (p(· | ·, θ = 0)} , if θ = 1 is the true class

(25)
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and KL{p1 ‖ p2} denotes the Kullback-Leibler divergence between the pdfs p1 and p2. Note that the
definition (25) implies α < 0 if the true class is θ = 0 and α > 0 if the true class is θ = 1. According
to the central limit theorem

ζ = (
1

n
log l − α) ∼ N (0, O(1/n)) (26)

assuming large enough n. Thus,

1

n
log l = α + ζ, ζ = O(1/n1/2) (27)

or, equivalently
l = exp{nα} exp{O(1/n1/2)} (28)

Eqs. (22) and (28) imply
exp(nα) exp(O(1/n1/2)) >

< exp(c) (29)

yielding
exp(nα)>

< exp(c − O(1/n1/2) (30)

and
α>

<

c

n
− O(1/n3/2) (31)

The above clearly shows that the effect of c diminishes as n → ∞. Moreover, the accuracy depends
on c, n and α, the expected discrimination information of one class over the other.

The Linear Gaussian Case

In this work we assume linear connections of the form

Xi =
(

βθ
i

)T
Gi + Wi, Xi ∈ X̄ (32)

where Gi ∈ Rn−1 and βθ
i ∈ Rn−1, i ∈ [1, n]. Following this, the conditional pdf p(Xi | Gi, θ) can be

expressed by means of the pdf of Wi as

p(Xi | Gi, θ) = pWi

(

Xi −
(

βθ
i

)T
Gi

)

(33)

In practice, the random parameter vector associated with the class θ, βθ
i , is estimated using the

training data set. Let β̂θ
i be an estimator of βθ

i , then

βθ
i = β̂θ

i + β̃θ
i (34)

where β̃θ
i is the estimation error. Substituting (34) into (32) gives

Xi =
(

β̂θ
i + β̃θ

i

)T

Gi + Wi (35)

Further defining

ζθ
i :=

(

β̃θ
i

)T

Gi + Wi (36)

yields

Xi =
(

β̂θ
i

)T

Gi + ζθ
i (37)

which is similar to (32) with the only difference of βθ
i replaced by its estimate. The conditional pdf

p(Xi | Gi, θ) can now be expressed in terms of β̂θ
i instead of the unknown βθ

i , that is

p(Xi | Gi, θ) = pζθ

i

(

Xi −
(

β̂θ
i

)T

Gi

)

(38)

In what follows we shall see that ζθ
i represents the innovation noise in the Kalman filtering

formulation. This sequence has some well-known statistical properties which are described in.
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MRF Training via Kalman Filtering

In this work we use the Kalman filter (KF) algorithm for training the MRF models of every class in a
computationally efficient manner. The KF estimates the parameters βθ

i , i ∈ [1, n] sequentially using
the training samples thereby allowing significant reduction of computational load.

Suppose that there are kθ training samples for class Y = θ, and let Xθ
train :=

{

X̄(1), . . . , X̄(kθ)
}

be the set of these samples. The KF is the best linear estimator in the minimum mean square error
(MMSE) sense [1], that is

β̂θ
i = arg min

β̂θ

i

E

{

(

βθ
i − β̂θ

i

)T (

βθ
i − β̂θ

i

)

}

(39)

which coincides with the general solution, β̂θ
i = E

{

βθ
i |X

θ
train

}

, in the linear Gaussian case (i.e., linear
Gaussian connections).

Taking (32) as the measurement equation while assuming Wi ∼ N (0, I) yields the following KF
recursion which is identical to the recursive least-squares algorithm.

Initialization:
P0 = γ−1I,

(

β̂θ
i

)

0
= 0, γ << 1 (40)

Measurement update:

Kk = PkGi(k)
[

Gi(k)PkGi(k)T + I
]−1

(41a)
(

β̂θ
i

)

k+1
=

(

β̂θ
i

)

k
+ Kk

[

Xi(k) − Gi(k)T
(

β̂θ
i

)

k

]

(41b)

Pk+1 =
(

I − KkGi(k)T
)

Pk (41c)

It should be noted that the KF is used here for parameter estimation rather than state estimation.
However, if the training samples are obtained from time-series then the conventional KF algorithm,
which includes a time-propagation stage, may be more adequate. In its form above, the KF is aimed
at minimizing the following objective function

β̂θ
i = arg min

β̂θ

i

kθ
∑

j=1

‖ Xi(j) −
(

β̂θ
i

)T

Gi(j) ‖2 (42)

The next stage consists of computing the conditionals p(Xi | Gi, θ) forming the MRF model
associated with class θ. For that purpose we need to know the statistics of ζθ

i , the innovation. It is
well known from KF theory that (ζθ

i )k is a zero-mean white Gaussian sequence 2

(ζθ
i )k ∼ N

(

0, Gi(k)T PkGi(k) + I
)

(43)

In this work we compute the sample covariance of ζθ
i as

Σθ
i =

1

kθ − 1

kθ
∑

j=1

[

Xi(j) −
(

β̂θ
i

)T

kθ

Gi(j)

] [

Xi(j) −
(

β̂θ
i

)T

kθ

Gi(j)

]T

(44)

which in turn yields

p(Xi | Gi, θ) = N

(

Xi −
(

β̂θ
i

)T

kθ

Gi, Σ
θ
i

)

(45)

Generalization of The KF Formulation

The linear connections (32) can be generalized as follows. Consider two sets of nodes Gi ∈ Rr and
Gj ∈ Rm satisfying the relation

Gi = βθ
ijGj + Wij (46)

where βθ
ij ∈ Rr×m.

In order to implement the previously described KF scheme for estimating the matrices βθ
ij we

rewrite the above equation as follows

Gi = (GT
j ⊗ Ir×r)β̄

θ
ij + Wij (47)

2The innovations process is non-stationary.
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where
β̄θ

ij := Vec
(

βθ
ij

)

(48)

is the vectorized form of βθ
ij and ⊗ is Kronecker product. The KF can now be applied for estimating

β̄θ
ij using (47).

Adaptation

Given the test data set X̄test = {X̄(1), . . . , X̄(ktest)}, we adapt the MRF models of every class using
extended Baum-Welch (EBW) iterations as follows (see [2–4])

(

β̂θ
i

)

j+1
=

[

I − DjGi(j)
T
]

(

β̂θ
i

)

j
+ DjXi(j) (49)

where Dj is some tuning matrix which can be set as the Kalman gain matrix, Kj (where j denotes
the test sample index), to ensure convergence. Finally, the sample covariance of ζθ

i is updated as

(

Σθ
i

)

new
=

kθ − 1

kθ + ktest − 1

(

Σθ
i

)

old
+

1

kθ + ktest − 1

ktest
∑

j=1

[

Xi(j) −
(

β̂θ
i

)T

ktest+1
Gi(j)

] [

Xi(j) −
(

β̂θ
i

)T

ktest+1
Gi(j)

]T

(50)

Application to fMRI Analysis

The new classification algorithm is applied to fMRI analysis. The data X is a vector consisting of
14, 043 elements (voxels). The testing scenario and the fMRI datasets are the ones used in [5]. The
total number of samples is 84. In this case Y represents the stimuli response which can take either of
the two classes −1 or +1 (there are exactly 42 samples of each class). The training and testing data
sets are obtained using cross validation, that is, at every run two testing samples (one of each class)
is taken out of the original set, leaving 82 training samples. This procedure is repeated 84 times. The
classification algorithm is tested using Monte Carlo runs in which the original data set, consisting of
84 samples, is randomly permuted. The number of runs varies between 10 to 20.

Figure 1 shows various fMRI scans of different brain sections. The corresponding CCR maps of
these sections are shown in Fig. 2.

Figure 3 demonstrates the role of the adaptation scheme. In this case, the MRF model consists
of only 100 nodes (taken as those with the highest MI) andtThe classification algorithm is tested
with and without the adaptation stage. The distributions of the accuracy (the number of correct
predictions out of 84 samples) based on 20 Monte Carlo runs of both the adaptive and non-adaptive
algorithms are shown in the right and left panels of this figure, respectively. From this figure, it can
be clearly recognized that the adaptation stage significantly increases the prediction accuracy.

The performance of the algorithm with 307 nodes (taken as those with the highest MI) based
on 10 Monte Carlo runs is shown in figures 4 and 5. The tuning constant c is taken as 0 in Fig. 4
yielding mean accuracy of approximately 91 percent. Setting c to its optimal value in this case (see
Appendix) increases the mean accuracy to 93 percent.
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Figure 1. fMRI scans.
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Figure 2. Correlation maps.
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Figure 3. The effect of adaptation. MRF consists of 100 nodes. 20 Monte Carlo runs.
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Figure 4. Distribution of prediction accuracy for c = 0. MRF consists of 307 nodes. 10
Monte Carlo runs.
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Figure 5. Distribution of prediction accuracy for optimal c∗ = −71. MRF consists of 307
nodes. 10 Monte Carlo runs.
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Appendix A

Optimal Tuning of c

The constant c in (20) can be taken as the one maximizing the accuracy of prediction based on some
development dataset. Let Xθ

dev = {Xθ(1), . . . , Xθ(kθ)} be a dataset associated with the class Y = θ,
and let also

dθ(j) := log p(X̄θ(j) | Y = 0) − log p(X̄θ(j) | Y = 1) (A.1)

We are aimed at minimizing the following objective function

c∗ = arg max
c



η1

k1
∑

j=1

1 (dθ=1(j) ≤ c) + η0

k0
∑

j=1

1 (dθ=0(j) ≥ c)



 (A.2)

where 1(a ∈ A) is the indicator function of the event a ∈ A (i.e., a function which takes the value 1
if a ∈ A, and takes the value 0 otherwise). The constants η0 and η1 are the relative counts of both
classes, that is, η0 := k0/(k0 + k1) and η1 := k1/(k0 + k1).
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