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Abstract 
 
The “base zone” in combat operations refers to an 

area that is secured against intrusion and attacks from 
insurgents. During any type of military operation, the 
number of sensor assets that are available for detecting 
intrusions are limited. Thus, the size of a base zone is 
limited by the number of available sensors, and how those 
sensors are deployed. Depending on the assumptions made 
in modeling the coverage properties and the terrain of area 
being covered, the size and shape of the base zone can 
vary widely. The base zone protection problem is the task 
of determining the largest area that can be protected given 
a limited number of sensors. The base zone protection 
problem is related to the problem of determining sensor 
coverage. In this paper, we look at the various variations 
of the base zone protection problem, with a range of 
difficulty in their solution. 

 
 

1. INTRODUCTION 
 
The green zone in Iraq is a secured area that was the 

center of the coalition provisional authority and currently 
remains the center of international presence in Iraq. If we 
make the reasonable hypothesis that a similar secured area 
will be needed in future coalition operations in the context 
of most asymmetric operations, we can extend the concept 
to that of the base zone -- an area needing protection that 
needs to be defended so that it is highly unlikely that an 
insurgent will be able to enter without detection. In other 
words, it is an area that is relatively well-protected in the 

context of any operation. It is the intention of this paper to 
introduce the concept of the base zone, and develop 
techniques for estimating the size of the base zone based 
on the number of available assets.  

 
We define the base zone as an area which is secured 

completely by a combination of Intelligence, Surveillance 
and Reconnaissance (ISR) assets as well as defensive 
firepower. In the context of an asymmetric operation, we 
assume that the defensive firepower is sufficient to 
neutralize any intruder who is detected as having 
penetrated the base zone. Despite the superiority in 
firepower in asymmetric operations, any coalition force 
only has access to a finite number of ISR assets. Thus, it 
needs to determine the best way in which those assets can 
be used. It would be useful in asymmetric operations for 
the coalition commander to determine the maximum size 
or value of a base zone permitted by the set of available 
sensors that would be placed around the periphery to 
protect the zone from intrusion attacks. The base zone 
protection problem is the task of determining the optimum 
size and shape of the base zone given a set of sensors. 
Depending on the assumptions made regarding sensor 
models, sensor mobility, terrain models, the impact of 
terrain on sensor performance, and the definition of value, 
different variations of the base zone definition problem 
can be formulated. These variations range from the simple 
ones to complex formulations whose solution would be 
NP-complete.  

 
Securing the base zone includes the task of detecting 

any potential incursions into the zone, as well as taking 



defensive actions against any such incursion. For the 
purpose of this paper, we assume that detection of 
incursion is sufficient to take defensive action and to 
protect against the incursion. This assumption is likely to 
be true in cases of asymmetric warfare. However, there 
may be a lag between the detection of an incursion and the 
initiation of the defensive action. If we assume that the lag 
is zero, then the task of maximizing the base zone reduces 
to that of determine the maximum (or most valuable) area 
that can be covered by the sensors available.  

 
With modern day weapons, it is possible to launch 

grenade or mortal attacks from a remote location into the 
base zone. For full protection, one would need to include 
ISR assets which can detect such intrusions from a remote 
area as well, e.g., an acoustic sensor which can detect 
remote launch of a mortar and take steps to neutralize that 
attack. The approaches we have discussed in this paper 
can be extended to cover the case of remote sensors, but 
we are restricting the scope of this paper to a discussion of 
ISR assets that detect intruders in a physical proximity 
area.  

 
Although related, the base zone definition problem is 

distinct from the sensor coverage planning problem, which 
has been extensively covered in current research literature. 
The sensor coverage planning problem can be 
characterized as follows: Given an area to be monitored 
and a set of sensors with various capabilities, determine 
the best locations for each sensor so that the area can be 
effectively monitored, usually defined as completely.  In 
contrast, the base zone definition problem tries to provide 
a secured area given a limited number of sensors by 
creating a boundary around the zone.  By covering the 
boundary, the area will be said to be covered.  

 
The sensor coverage planning problem has been 

studied in different formulations in a variety of ways. The 
Art Gallery Problem addresses the issue of determining 
the number of observers necessary to cover a space, like 
an art gallery with many rooms such that every point in 
every room is seen by at least one observer. It has found 
several applications in many domains such as for optimal 
antenna placement problems in wireless communication. It 
can be solved optimally in 2D and is known to be NP-hard 
in the 3D case (O’rourke 1992).  Marengoni et al. 1996 
have proposed heuristics for solving the 3D case using 
Delaunay triangulations.   

 
The treatment of the coverage problem has been well 

studied and varies from theoretical analysis (Megerian et. 
al. 2002) to pragmatic usage models (Meguerdichian et. al. 
2001). While several variations of the coverage problem 
examining aspects such as connectivity maintenance, 
mobility management, and query optimizations can be 
found in various papers (Liu et. al 2003, Huang et. al. 

2003, Gupta etl. al. 2003, Poduri et. al. 2004), there has 
been little work on incorporating terrain considerations.   
Wilson et. al. 2007 look at the real world problems of the 
difficulties of incorporating terrain and atmospheric 
environmental factors in acoustic and seismic sensors. The 
work by Dhillon and Chakrabarty 2003 attempted to 
model some of the location dependence by approximating 
the sensor field to a Manhattan grid. Dhillon and 
Chakrabarty approximated the sensor field by a grid and 
used an asymmetric probability matrix to model the 
terrain, and proposed two heuristics to address the 
problem – both using a greedy approach with one 
maximizing average coverage with each sensor and the 
other placing sensors at the point on the grid with least 
amount of coverage. Brown et. al. 2008 have tried to 
develop the impact of terrain on the coverage area of a 
sensor and simulated its impact on sensor coverage.  
Kumar et al. 2007 also examine the problem of 
determining a belt of coverage using sensors to protect a 
border (e.g., U.S/Mexico border) or an enclosed area using 
random placement of sensors. 

 
Since the sensor coverage planning problem provides 

the inverse solution to that of base zone, i.e., determining 
the number of sensors required to cover an area, iterative 
usage of the sensor coverage planning problem can be 
used to solve the base zone definition problem. However, 
such solutions may not always be the most efficient ones 
to use.  

 
In this paper, we provide several variations of the 

base zone protection problem and approaches to solve 
them. We also provide by a section discussing the 
adaptation of the sensor coverage planning algorithms to 
address the base zone definition problem.  The variations 
of the problems we consider range from simple ones 
which can be solved analytically to the ones which can be 
shown to be NP-complete, and the only possible approach 
is to design efficient heuristics for the problems.  

 
The first variation we consider is that of uniform 

sensors which have a constant coverage radius in any 
direction. We show that the optimal solution for 
monitoring a uniform terrain in this formulation is that of a 
circle with a radius dependent upon the number of 
available sensors. We then consider a variation where the 
value of securing different points of the terrain is different. 
We show that an analytical solution can obtained for cases 
where the value function is a smooth convex function of 
the distance from the base camp. We further obtain the 
properties of the optimal shape that contains the base zone 
with a differing value function. We examine the case of 
mobile sensors, and obtain the relationship between the 
size of the base zone and the speed of motion of the ISR 
assets. Mobility allows the size of the base zone to be 
expanded.  



 
Since real-world applications cannot be expected to 

have value functions that are smooth and analyzable, we 
examine some heuristics that will allow the base-zone 
problem to be solved in practical application scenarios. 
Finally, we present our conclusions and directions for 
future work.  

 
2. UNIFORM TERRAIN  

 
The first variation of the base zone protection problem 

provides a simple formulation that is easy to solve. It 
assumes that covering the perimeter of the base zone is 
sufficient to prevent intrusions, and that any preventive 
actions are immediate.  Furthermore, for this first 
formulation the terrain being modeled is uniform with the 
implication that the coverage area of each sensor is 
independent of its location amdthe sensors are all 
identical. Suppose there are K sensors, and each sensor 
can monitor a circular area of radius s. The goal is to find 
the largest area in a planar surface which can be covered 
completely by K such sensors.  The boundary must 
enclose an origin point (0,0) defined as the center of the 
base zone. We assume that the origin point contains the 
processing center for sensor information, and that all 
sensors are able to communicate with the origin point. In 
practice, this means that the maximum distance of each 
sensor from the origin is bounded by the range of its 
communication.   

 
Under this definition the problem can be seen as the 

task of determining the closed shape with the largest area, 
where the perimeter of the shape is covered completely by 
all the sensors together. Therefore, the base zone 
definition problem in this case devolves to that of finding 
the shape with largest area given a fixed perimeter.  Such a 
shape in a plane is a circle.   

 
If the zone to be covered is much larger than s, than a 

good approximation to the maximum size of the perimeter 
would be 2Ks. (If the zone to be covered were not 
significantly larger, the mathematics is still easy, but the 
formulas look more complicated as the arc of the coverage 
zone and the boundary conditions would need to be 
included in the calculations.)  

s

Ks/π

 
Fig. 1. The base zone for uniform terrain and uniform sensors.  

 

Looking at Figure 1, we can conclude that the base 
zone in a uniform terrain given K sensors covering a 
radius of s each is a circle of radius Ks/π, augmented by 
the semi-circles of additional coverage beyond this range. 
The total area of the base zone is K2s2/π + Κπs2/2.  

 
However the boundary does have a point of 

vulnerability.  If an intruder were to traverse the boundary 
at any of the K points where two sensors meet and travel 
along a ray, there is only one point of sensing that can 
detect this intrusion and furthermore this point is on the 
extreme range of the two sensors.  Thus, the solution 
above is valid only if the lag between detection and 
defensive action is zero.  

 
There are advantages to placing sensors closer than 

just meeting at a point on the circumference.  One 
advantage is that this creates an annulus of coverage rather 
than a minimum coverage of a single point. This can be 
useful for the problem mentioned above or secondarily by 
providing redundancy it allows some degree of  non-exact 
placement of the sensors. The annulus provides for a finite 
lag to exist between detection and defensive action, such 
lag being the time it takes for an intruder to cross the span 
of the annulus.  

d
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Fig. 2. Overlap among sensor coverage areas to create an annulus.  

 
One possible way to create such an overlap is to 

inscribe a regular hexagon within the circle. Adjacent 
sensors overlap so that the adjacent inscribed hexagons are 
abutting as shown in Figure 2. In order to create an 
annulus of depth d, two adjacent sensors need to be moved 
closer together, creating an isosceles triangle with base 
length of  d and equal sides being of length s. The 
separation between the centers of two adjacent sensors in 

this case equals 22 )
2

(2 ds − . Thus, the perimeter of 

the circular base zone is 22 )
2

(2 dsK −  and the 

maximum radius of the circular base zone is going to be:  
 

22 )
2

(dsK
−

π .  
 
 
In both of the cases above, it might be acceptable to 

have a small probability ε of undetected intrusion. If we 



assume that the probability of intrusion is same as the 
fraction of the perimeter that is not covered, then the 
perimeter of the base zone without any overlap would be  

)1(

)
2

(2 22

ε−

−
dsK

 
 
and the corresponding base zone will be a radius of 

size 

22 )
2

(
)1(

dsK
−

− πε  
For the case of no overlap,  the corresponding 

perimeter is 2Ks/(1-ε) And the corresponding radius would 
be Ks/π (1-ε). 

3. NON UNIFORM TERRAIN – SIMILAR 
SENSORS 

 
In the next variation of the base zone protection 

problem, certain parts a region are more likely to 
encounter human intruders than others because of the 
accessibility of the terrain.  Even when the sensor 
performance, i.e., detection range, it not affected by the 
terrain, the best placement of the sensors must take into 
account the likely routes where a security compromise can 
occur.  To this end, the security value of any point on the 
ground will be proportional to its accessibility.  
Furthermore, one should expect the security value to 
decrease as the distance from the base increases. 

.  

 
Fig 3. Terrain with different monitoring values 

 
An example of such an environment is shown in 

Figure 3. The terrain consists of four roads that intersect at 
the origin point. It is more important to monitor the access 
points of the road rather than monitoring the access points 
that are not along the road. If there are only four sensors 
available, then they ought to be used for monitoring the 
access points rather than monitoring other locations. 
Assuming that the sensor coverage area can span the width 
of the entire road, the sensor ought to be located at the 
maximum range of their communication limit to maximize 
the base zone.   

 

In a generalized version of the problem, we can 
associate a value V(r,θ) with each point (r,θ) which is the 
value derived from having the specific point protected. 
The Value function V for a point would depend on its 
location such as being on an accessible route for an attack, 
distance from the known installations of the enemy forces, 
position (there is more value in monitoring points towards 
enemy forces), and the impact to an attack occurring at 
that point. We make the pragmatic assumption that the 
value function V is continuous and does not increase as 
one moves away from the origin, i.e. the value of rV ∂∂ /  
is non-positive. The problem of defining the base zone 
now becomes that of  finding the area over which the 
surface integral of the value function is maximized with 
the constraint the that the total perimeter of the area is 
bounded. If we look at an incremental area covered around 
the point (r,θ) with a  wedge of δr and δθ ,  this area can be 
approximated as a rectangle of area r δθ  and δr.  The total 
value function across the rectangle is r V(r,θ) and the total 
enclosed by any closed curve l=l(θ) can be obtained by 
integrating the value across the curve, which results in the 

total enclosed value as  ∫ ∫
=
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Given the constraints of K sensors, each capable of 

monitoring a circular area of radius s, and the central 
processing lying at the origin, the problem is to find a 

closed line r = l (θ) such that ∫ ∫
=
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maximized subject to the constraint that 
Ksdddrr 2))/((

2

0

2/122 ≤+∫
=

=

πθ

θ
θθ . In words we are 

looking to maximize rV(r,θ)  that are on closed contours 
less than or equal to 2Ks.  

 
We can prove the following two properties about the 

shape of the optimal base zone.  
 
 
Theorem 1: If V is never negative then there is an optimal 
base-zone that has a convex shape.  
 

A convex shape is a shape such that any straight line 
connecting two points on its perimeter always lies 
completely within the shape. To prove this theorem, let us 
consider a counter-example, i.e. consider an optimal base-
zone which has a shape where there are two points such 
that the line connecting them does not lie completely 
within the shape. Without loss of generality, let us assume 
that the line and two points lie completely in the right half 
of the Cartesian plane. In that case, there are some 
portions of the perimeter of the base zone that lie to the 
left of the line. Now, one can reflect the perimeter along 



the line while maintaining the same perimeter of the 
shape. See Figure 4(a) and 4(b) for an illustration. This 
results in a shape that is closer to a convex  shape which 
has the same perimeter as of the original shape, but covers 
a larger area, and thus a larger value (which is always non-
negative). But that results in a better base-zone such that 
the specific line remains completely within the shape. If 
any such line still remains (as it does here), the process 
can be repeated. The resulting shape has the same 
perimeter as the original shape, but any line connecting 
any points in the perimeter lies completely within the 
shape. If the resulting value increases, then there is a 
contradiction with the assumption that the original shape 
was optimal. If it is the same value, we have a optimal 
base-zone that is convex. Thus, there is at least one 
optimal base-zone which is convex.  

(a) (b)

 
Fig 4. Removing  Concavity 

 
Theorem 2: If the value function is V(r,θ), and V is twice 
differentiable at all points at least two times, then the 
optimal base zone is defined by the equation  rV(r,θ) = c,  
where c is a constant selected such that total perimeter of 
the shape will be less than or equal to 2Ks.  
 
Proof: According to the Calculus of Variations (see Fox, 
1950, p65), the extremal points of a function 
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and x’ is the derivative of x with respect to t is given by 
the solutions to the following two equations, where λ is a 
constant.  
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Let us make the following substitutions:  

x = r(θ), 
y = θ, 

ϕ(r, θ, r’, θ’) = r(θ)  
 

G(r, θ, r’, θ’) ∫
=

=

=
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0
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θ

θ
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Since G and ϕ do not depend on the derivatives of r 
or  θ, their derivatives with respect to r’ is zero.  Using 
this relationship, we get the simplified conditions that  
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Since ϕ = r(θ), both these equations are equivalent.  

 
Plugging the values into the equation, we get that  
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or λθ =),(rrV  

Substituting the value of c as a constant instead of λ gives 
us the desired result.  
 

As an example, let us consider the value function 
defined by  

))cos(1(
1),( 2 θε

θ
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This value function can be seen as one which decays 

inversely according to the square of the distance from the 
base camp, and is highest along θ =π and high  along  
θ =π/2  and θ = 3π/2, which is a vertical line passing 
through the origin. This value function could be a 
representation of the importance of monitoring a zone 
which is has a single entry road or also traversed by a 
straight line depending on the value of ε   

 
The base zone will be defined by an expression of the 

nature:  
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If we now express the constant c as product of two 

other constants, a and (1-ε2), we get the expression that  
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, 
which is the equation of an ellipse in polar coordinates. 
Thus, with the above value expression, the base zone will 
be an ellipse with one focus at the origin and the 
eccentricity as defined by the parameter ε. Thus, if a base 
zone is traversed by one major road, the best way to 
deploy a limited number of sensors is by arranging them in 
an elliptical manner around the periphery of the road.  

 
If the value function V is can be expressed as the 

product of two independent functions of r and θ, then the 
determination of the base zone can be made readily. Let us 
assume that  

)().(1),( θθ grf
r

rV = , 

then the shape of the base-zone is defined by the 
relationship  

))(/()( 1 θθ gCfr −= , 
  

where C is a constant selected so that the perimeter of the 
shape is less than or equal to 2Ks.  

 
4. MOBILE SENSORS 

 
As an extension of the case of uniform terrain with 

similar sensors described in Section I, consider the case of 
mobile sensors. In the case of mobile sensors, each sensor 
has the ability to move about its central point to a limited 
extent. Due to the ability of the sensors to move about, the 
sensors can be spread out to cover a larger distance and 
define a bigger base zone.  

 
Consider the case where all the sensors are arranged 

in a circular manner as discussed in Section II, and are 
moving around the circle at a uniform rate. By exploiting 
the fact that each point will be covered by each sensor at 
some point in time as they rotate in the circle, the size of 
the base zone can be extended.  

 

R
2πR/K
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Fig. 5. Sensors in uniform rotational motion. 

 
Suppose that the sensors are moving with a velocity 

of vs along a circle of radius R. Each point is covered 

directly by a sensor when the sensor is within a distance of 
s from that point, which is s/πR fraction of the total time in 
one period of rotation T=2πR/ vs. With K sensors, each 
point is covered for  Ks/πR fraction of time per period of 
rotation. If the sensors are equally spaced along the 
circumference of their circular path, then the maximum 
contiguous time period when a point is not covered by any 
sensors is given by (2πR-Ks)/ vs. Since any intruder has to 
cover a distance of 2s in that block of contiguous time to 
avoid detection, the intruder will need to have a velocity 
toward the center of at least vsKs/(πR-Ks) if the intruder’s 
angular velocity is zero.   

 
If follows from the previous analysis that if we 

wanted to maintain a base zone with unit probability of 
detection against intruders with the maximum velocity of 
vi, and we have K sensors with coverage radius of s 
moving along the perimeter of a circular base zone with a 
sensor velocity of vs, then the maximum size of the base 
zone will be given by a circular area of radius Ks/π (1 + vs 
/vi).  

 
If the intruders are relatively slow in their movement, 

then the radius can be made significantly larger. On the 
other hand, if the intruders can move faster than the 
sensors, then the size of the base zone reduces to a circle 
with static sensors. Figure 6 shows the relative increase in 
the size of the base zone that can be attained as a function 
of the relative speeds between the intruders and the sensor.  
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Fig. 6. Base Zone Radius 

 
 
The analysis is valid for motion of sensors which are 

other  than that of rotating around the perimeter of the 
base zone. As an example, the sensors may move in an 
oscillatory motion around the perimeter. Each sensor 
maintains their distance among each other, but reverse 
direction after traveling a fixed distance in either side. 
Almost any kind of motion in which the sensors move 
around the perimeter with a fixed distance among their 
positions would result in a similar characteristic for the 
base zone.  

 
If we consider the case of non-uniform terrain, then a 

similar analysis of mobile sensors can be used to 
determine the expansion in the perimeter of the optimal 
base zone. The different sensors would need to move 



along the perimeter of the optimal base-zone as defined by 
Theorem 2.  

5. APPLICATION IN PRACTICE 
 
The results of the analysis provided in previous 

sections can be applied in practical sensor planning tools. 
One can take an area where the base zone needs to be 
established, establish a value function reflecting the terrain 
characteristics, examine the finite set of sensor assets that 
are available, and try to determine the size of the base 
zone that maximizes the value of the protected area. 
However, the value functions that one obtains in practice 
are not likely to have the smooth behavior (continuity and 
differentiability) that are required to have the theorems in 
section 3 to hold true.  

 
In order to deal with real-life value functions, we 

would need to develop heuristics that draw upon the 
observations that are valid about the different value 
functions. Three such heuristics are provided below. Each 
heuristic assumes that the value function is largest at the 
center or origin which must be protected, and then tries to 
cover the area that maximizes the value enclosed.  

 
Greedy Heuristic: We start from the origin, and grow the 
shape in the direction of the highest value of V, with the 
expansion ending when the convex hull of the area equals 
the bound on the perimeter of the base-zone. 
 
Circular Heuristic: A circle covers the maximum area 
among any shape. The logic behind the circular heuristic is 
that the shape that maximizes the area covered by the set 
of sensors will provide the optimal base zone. The 
limitation of the circular heuristic is the fact that it does 
not take into account the differences in the values of 
different points.  
 
Greedy Ratio: Motivated by the theoretical solution, a 
Greedy Ratio heuristic was created. The greedy ratio 
mimics the greedy heuristic but instead of using V in 
comparisons it uses V/rα  for a fixed α.   

 
When the value function is a smooth shape that obeys the 
constraints described in section 3, a theoretical heuristic 
should provide the best possible base-zone. We found that 
that it does not work well for not well behaved functions. 
If the function decreases much more slowly in a few 
directions, a heuristic based on the theoretical concepts 
will result in an elongated area. The Greedy ratio 
algorithm because it has a bias for closer points results in a 
more rotund area. 

 
The performance of the three different heuristics in 

the cases where the theoretical assumptions are not 
satisfied can be useful in obtaining an efficient technique 

to determine the optimal base-zone and are consequently 
important when the properties are not satisfied.  

 
Let us consider a base zone protection problem which 

consists of a base-camp with a single road running out of 
it. Let us assume that the value of protecting the base-
camp is very large, while the value of protecting areas 
along the road is V, while the value of protecting the areas 
elsewhere is smaller. Figure 7 shows the layout of the area 
that needs to be protected.  

y Road - medium V
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Fig. 7. Base Camp with a single access Road 
 
The result of running each of the three heuristics on 

this shape is shown in Figure 8. The circular heuristic 
moves the circle upward until it reaches the area where the 
base-camp is just touching the circle. The greedy heuristic 
produces an oval shaped base-zone that is elongated along 
the road. The shape is oval in order to maintain the 
convexity of the resulting figure. The greedy ratio  
heuristic also produces an oval or tear-drop shape that is 
slightly better than the greedy in performance.  
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Fig. 8. Base-camps with different heuristics 

 
It is also instructive to observe the behavior of the 

three heuristics where the value of V on the road is 
increased. The results of that heuristic are shown in Figure 
9.  The starting values are 3 for the required area, 2 for the 
road and 1 for the area surrounding the road. 

 
The x-axis shows the value of V which was used on 

the road, while the y-axis shows the area of the base-camp 
that was covered. At small values of the V function on the 
road, the circle heuristic performed better than the other 
two heuristics, as its additional area of the zone more than 
compensated for the higher V values included in the other 
two heuristics, while at higher values of V, the greedy 
heuristics performed much better than the circle (fixed-
shape) heuristic. The greedy ratio heuristic had the 
characteristics of the circle heuristic at small values of V, 
while having those of the greedy heuristic at larger values 
of V. Thus, the greedy ratio heuristic provided a good 
model that worked at various different values of V.   



X = value of the road terrain

8765432

AR
EA

 C
O

VE
R

ED

8000

7000

6000

5000

4000

3000

2000

CIRCLE

GREEDY

RATIO

 
Fig. 9. Comparison of the different heuristics.  

 
 

6. CONCLUSION AND FUTURE WORK 
 

In this paper, we have presented several variations of 
the base zone protection   problem, looking at approaches 
to determine the maximum size of a protected region with 
a limited number of proximity sensors. We have provided 
analytically tractable solutions for some simple cases, and 
proposed heuristics to address the problem in the case of 
more realistic scenario where values are arbitrarily 
defined.  

 
Our current formulation makes the assumption that 

detection implies protection and there is no lag between 
detection and a defensive action. In future work, we intend 
to incorporate the concept of a finite lag between detection 
and defensive action and study the impact of such lag on 
the size of the base zone.  Another future extension that 
we want to investigate is the relax the assumption 
regarding proximity sensors, and solve the base zone 
protection problem to protect against remote threats such 
as mortar attacks using non-proximity sensors. We also 
want to evolve the simulation tool we have into a tool that 
can be used for base-zone planning problems in real-world 
environments.  
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