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Abstract

We introduce a general model of the rewritable stor-
age channel in which rewriting can be used to improve
storage capacity at the cost of encoding time. We then
focus on a particular rewritable storage channel and
show that if the average number of writes increases by
a factor of c, storage capacity increases by an addi-
tional log c bits; we conjecture that capacity gains due
to iterations for other scenarios will follow a similar
trend. We will also discuss a number of open problems
with practical significance in the context of rewritable
storage channels.

1. Introduction

What limits the information storage capacity of a
memory that can take on analog values? It may be
that reading the memory with great accuracy is very
difficult. It may also be that after writing with high
precision a value to a memory, its contents degrade over
time, either as a result of external effects or due to the
nature of the physical medium itself. Or perhaps, inter-
symbol interference prevents an encoder from writing
arbitrary values to nearby locations. Alternatively, it
is possible that the writing mechanisms available in a
memory have uncertainties that place limits on how
well one may approach a desired analog level. In the
latter, such uncertainties may be related to the fact
that the input/output physical behavior of the medium
may possess fundamentally random properties. Even if
such behavior is deterministic, it may be governed by
parameters that are unknown to the writing mecha-
nism.

In a rewritable memory, the ability to read and pos-
sibly rewrite immediately creates a very flexible feed-
back path that one may exploit in order to improve
storage capacities in those technologies which suffer
from write mechanisms with some degree of uncertainty
in their outcome. This kind of feedback is different
from the classical notion of feedback introduced by

Shannon [1] in the context of communication systems,
since overwritten data never reaches an external read
request.

Practitioners in the storage field have long recog-
nized the advantage of “rewrites”. For example, er-
ror correction protected memory is sometimes periodi-
cally read, decoded, and written back (a process called
scrubbing) in order to avoid the buildup of errors in
the memory. An example with a different flavor and
much closer to the model we study can be found in
Flash memory in which “write-and-verify” techniques
are employed for attaining reliable multibit cell stor-
age [2]. In these techniques a target level is approached
through a number of write steps with intervening reads
that provide feedback on the state of the Flash cell after
the last write. Such feedback allows the device to get
an improved control over the final analog level reached
and also diminish potential dependencies on Flash cell
variability.

The theoretical study of memories has a long distin-
guished tradition in information theory and computer
science. As examples, we point to the original work of
Kuznetsov and Tsybakov on memories with defective
cells [3] and Rivest and Shamir’s work on Write Once
Memories [4]. The memory models in these ground-
breaking articles have been studied in more depth, gen-
eralized, and also modified to adapt to other relevant
settings. Examples of these developments can be found
in Heegard and El Gamal [5], Fiat and Shamir [6], Wolf,
Wyner, Ziv and Körner [7], Heegard [8], Simonyi [9],
Kuznetsov and Vinck [10], Ahlswede and Zhang [11],
Fu and Vinck [12] and Fu and Yeung [13].

A common thread in these works is the idea that
the existing contents on a memory can either restrict
or assign a cost to what can be written next. The prob-
lem we consider in this work is of an entirely different
nature, as the focus in our model is a write mechanism
that is inherently unreliable. The goal for this article is
to draw to the reader’s attention the role that informa-
tion theory can play in understanding how the ability
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Figure 1: Schematic of a model for the rewritable stor-
age channel.

of rewriting in a memory may impact its ultimate stor-
age capabilities. In order to sharpen our exposition, we
focus on the scenario where a single message is trans-
ferred to the memory, leaving the treatment of multiple
write requests for future work.

The remaining material in this paper is organized
as follows: in Section 2 we introduce a general model
for the rewritable channel which is intended to con-
vey to the reader the richness of this relevant problem
space. In Section 3, we will present upper and lower
bounds on rewritable storage channel capacity of an
interesting problem instance. In Section 4 we discuss
this result along with numerical results for the Gaus-
sian rewritable channel model. Acknowledgements are
found in Section 5; the Appendix (Section 6) contains
the mathematical details needed to complete the proofs
in Section 3.

2. General problem setup

We propose a model of a memory that consists of
discrete memory parts which we call cells. In response
to a stimulus, a cell takes on a new internal state in a
manner dependent on its current state and according to
a statistical relation Q

S|X,Ŝ
(s|x, ŝ; θ), which we call the

write channel, where x ∈ X denotes the write stimulus
(or input) to the cell, s ∈ S denotes its final state
after the write stimulus is applied, ŝ ∈ S denotes the
state at the time x is applied and θ denotes a vector of
potentially unknown parameters for the cell.

The read channel is modeled as QY,S|Ŝ(y, s|ŝ; θ),
where y ∈ Y , which allows for possible state changes
as a result of the read operation. These changes are
generally an undesired side effect of the act of read-
ing. We assume that the state of a cell is observable
only through Y in the read channel defined above. The
alphabets X , S and Y will be subsets of the real line
in the particular examples examined in detail in this
article, but of course can be modified to fit particular
storage medium characteristics. These concepts are il-

lustrated in Figure 1, where the read and write channels
are placed in the context of a write process managed by
a write controller that in general operates on multiple
cells.

We shall be interested in storing information into a
group of n cells. The role of the write controller is to
accept a message W ∈ {1, · · · , 2nR}, where R ∈ (0, 1]
is a rate parameter, to be encoded in the memory and
to provide input signals to be applied to the memory so
that a future requestor can retrieve the intended mes-
sage with very high probability. The write controller
plays a role similar to that of channel encoder in tra-
ditional transmission schemes. Nonetheless, an extra
degree of freedom is allowed: the write controller may
read after writing and decide to write again an arbi-
trary subset of the n cells. Physically this increases
the time for writing and also increases the amount of
energy spent for encoding. For memories that degrade
after a large number of write/read cycles, the lifetime
of the memory may also be affected. Nonetheless, a
write controller may find advantageous to exercise the
rewrite ability in order to increase the storage capacity
and/or reduce decoding error rates for the underlying
memory system. The set of rules that the write con-
troller uses to coordinate its actions is termed a write
policy. This policy in general can be adaptive - fu-
ture write actions may be determined not only by the
message one is attempting to encode, but also by the
results of previous write attempts.

After the write process, the state of a cell may
change with time. This is modeled with a channel
QSt|Ŝ

(st|ŝ; t, θ), as shown in Figure 1, which is para-
metrized by the amount of time t elapsed between the
finish of the write process and its first subsequent read.

We assume that each individual cell can have a pa-
rameter vector θi, i ∈ {1, · · · , n}, although some of
these parameters may be common to all n cells. The
cells are statistically independent. In order to address
this and related concepts it will be useful to introduce
some notation. We denote vectors with n entries with
capital bold letters. Individual entries in a vector are
denoted using the same letter without the bold font and
with a subscript denoting the index within the vector.
Suppose that QA|B is a conditional density for random
variables taking on an alphabet A where the condition-
ing random variable is in an alphabet B. The notation

A
QA|B
←− B defines A to be a random vector with n en-

tries, each entry obtained by passing the corresponding
entry in B through the channel QA|B in a stochastically
independent manner. Also, the notation QA|B ◦ QB|C

is the channel QA|C(a|c) =
∑

b QA|B(a|b)QB|C(b|c).

A write process is associated with a cost, generally
related to the number of iterations required to finish it.



We may wish to place a limit on the maximum number
iterations since in some settings the time for encoding
a message into the n cells is dominated by the worst
time across all cells. We may also place a limit on
the average number of iterations since one expects it is
related to energy consumption during a write process.

Formally, a write controller is given by

1. a sequence of stimuli generator functions

f i(w,y1 · · ·yi−1) : {1, ..., 2nR} × Yn × · · · × Yn → Xn

where i is the iteration count,

2. a stopping set for each cell j ∈ {1, · · · , n} on each
iteration i called Di

j(w) ⊂ Y .

The first argument in f i (the only argument to Di
j)

is the message we wish to encode in the memory. The
notation yi−1 denotes the read contents of the n cells at
the time prior to applying the ith write iteration. We
assume that every write is followed by a read. The first
write, indexed by 1, is a special case as it could be aided
by a previous read or not. Accordingly, the f 1 function
may or may not have a dependence on a preliminary
read y0; in this article we assume that there is no such
dependence, and hence no read prior to the first write.
One may also consider policies in which a final write is
not followed by a “confirming” read operation. We do
not consider this type of policies in this work.

Let S0 be the state of the n cells prior to the first
write; this random variable is distributed according to
a law PS0 . We assume that the message W to encoded
in the memory is uniformly distributed over the range
{1, · · · , 2nR}. The write process is defined by

Xi = f i(W,Y1 · · ·Yi−1)

(Yi,Si)
QY,S|Ŝ◦QS|X,Ŝ

←− (Xi,Si−1)

for i = 1, 2, · · · . The stopping set Di
j(W ) is used to

determine when it is that a cell has an acceptable con-
tent, after the ith write is applied and the resulting
contents are observed through a read operation. De-
fine the stopping time for the jth cell as Lj = min{i ≥
1 : Y i

j ∈ Di
j(W )}.

Physically, once a cell has met its stopping condi-
tion, the write controller will cease writing or read-
ing to that cell. In a situation in which all cells are
written at the same time, the write controller finishes
the entire write operation at time max1≤j≤n Lj . The
state of the cells after the write process is given by
(SL1

1 , · · ·SLn
n ). If the memory is then accessed at time

t for retrieval of the stored data, the resulting obser-

vations are given by Vt

QY |S◦QSt|Ŝ←− (SL1

1 , · · ·SLn
n ). As-

suming that each write attempt has cost equal to one,

the average cost associated with this write controller is
given by 1

n

∑n

j=1 ELj . In this article we will wish to
place an upper constraint on this average cost and we
shall use the letter κ to denote this constraint. As we
discussed earlier, other cost metrics may be employed;
we choose the one above in the basis of simplicity. The
reading mechanism in the memory is given by a decod-
ing function g : Yn → {1, · · · , 2nR}.

The probability of error of this write controller and
decoding function for reading at time t is given by
P (g(Vt) 6= W ). We say that the rate R is achiev-
able at cost κ with initial state distribution PS0 and
reading time t if for every ε > 0 there is a write con-
troller {f i}i≥1 and read mechanism g with rate R for
a sufficiently large number of cells n, such that

P (g(Vt) 6= W ) ≤ ε,
1

n

n
∑

j=1

ELj ≤ κ.

The largest such R for a fixed cost κ is the capacity of
this rewritable storage channel and we use the notation
C(κ, PS0 , t) to denote it. If this capacity does not de-
pend on PS0 nor t, as in the main contribution of this
paper, we will use the simpler notation C(κ) instead.
The dependence of capacity on the initial distribution
PS0 will allow future work to study several important
notions of capacity. For example, one may consider
writing different messages to a memory repeatedly, the
writing of a message determining the initial state for
the writing of the next message. In this case it is sen-
sible to relate PS0 to a stationary behavior of the write
controller (assuming such behavior exists). Or one may
possess a mechanism for initializing the cells to a known
state in which case it is interesting to study capacity
when the intial state distribution places unit mass on
this known state.

3. Analysis of a simple model

In the following we will focus on a model of a rewri-
table storage channel that although simple, captures
the essence of this article’s view of the role of rewriting
in memories.

3.1. A model with uniform noise

We shall assume that the state of the cell is directly
observable by a read, without any noise and without
effecting any new state changes on the cell. We shall
also assume that there are no dependencies with re-
spect to the current state of the cell ŝ when we obtain
a next state s due to an input x (Q

S|X,Ŝ
= QS|X). We

shall also assume that there are no state changes due to
the passage of time after the write process is finished.



Within these constraints, the basic building block is a
channel QY |X : Y × X → [0, 1] that describes the sta-
tistical relation between the input and the output of an
individual cell. We assume that Y = [−a/2, 1 + a/2]
and that X = [0, 1], where a is a real number whose
role will be evident shortly. We assume that QY |X is
such that Y = x + N where N is a random variable
uniformly distributed in the interval [−a/2, a/2]. Thus
if 1+a

a
is an integer, then it is clear that one can store

log 1+a
a

bits in a single cell with no coding and zero
probability of error; more generally for any a ≤ 1 there
is a simple strategy for encoding logb 1+a

a
c bits.

3.2. The result and its proof

In our capacity result for this channel model we
further limit the class of stimuli generator functions
to depend solely on the message w. Thus for every
iteration i, f i(w) : {1, · · · , 2nR} → Xn.

Within this restriction, our main result is as follows:

Theorem 1

log

⌊

1 + a

a
κ

⌋

≤ C(κ) ≤ log

(

1 + a

a
κ

)

. (1)

3.2.1. Proof of the lower bound

The basic idea is to use rewrites for shaping the
noise to be uniformly distributed with a smaller range.
To this end, let 0 < b < a. We construct from Y
disjoint open intervals each of length b. Then one can
obtain a cell storage capacity of logb 1+a

b
c bits by select-

ing as input the center of any of the b 1+a
b
c intervals1,

and then attempting as many writes as necessary in or-
der to fall within the desired interval of length b. The
average number of iterations is then a/b.

3.2.2. Proof of the upper bound

Define ∆i
j = Di

j ∩ [X i
j − a/2, X i

j + a/2]. The signif-

icance of ∆i
j is that it is the effective stopping set for

cell j at iteration i, since given an input X i
j , one may

only reach values in the interval [X i
j − a/2, X i

j + a/2].
If A ⊂ Y , let |A| denote the total length of the subset;
formally if 1A denotes the indicator function for set A,
|A| =

∫

1A(x)dx where dx is the Lebesgue measure.
Thus for example |∆i

j | ≤ |D
i
j |. During this proof, we

shall make use of the following facts, the proof of which
can be found in the Appendix:

Lemma 1 For any j ∈ {1, · · · , n},

1An adjustment to this description is needed at the borders.

1. h(Y
Lj

j |D
Lj

j , X
Lj

j ) = E log |∆
Lj

j |,

2. (Y L1

1 · · ·Y
Lj−1

j−1 , W )→ (X
Lj

j , D
Lj

j )→ Y
Lj

j ,

3. E

[

a

|∆
Lj

j |

]

= ELj .

The proof starts with a variant of the familiar argument
based on Fano’s inequality:

nR = H(W )

= I(W ; Y L1

1 · · ·Y Ln
n ) + H(W |Y L1

1 · · ·Y Ln
n )

≤ I(W ; Y L1

1 · · ·Y Ln
n ) + 1 + nRε.

We continue the proof as follows:

I(W ; Y L1

1 · · ·Y Ln
n )

= h(Y L1

1 · · ·Y Ln
n )− h(Y L1

1 · · ·Y Ln
n |W )

(a)

≤ n log(1 + a)− h(Y L1

1 · · ·Y Ln
n |W )

= n log(1 + a)−

n
∑

j=1

h(Y
Lj

j |Y
L1

1 · · ·Y
Lj−1

j−1 , W )

(b)

≤ n log(1 + a)

−

n
∑

j=1

h(Y
Lj

j |D
Lj

j , X
Lj

j , Y L1

1 · · ·Y
Lj−1

j−1 , W )

(c)
= n log(1 + a)−

n
∑

j=1

h(Y
Lj

j |D
Lj

j , X
Lj

j )

where (a) follows from the fact that the maximum dif-
ferential entropy distribution with support [−a/2, 1 +
a/2] is log(1 + a), (b) follows from the fact that con-
ditioning does not increase differential entropy and (c)
follows from Lemma 1. We then write

I(W ; Y L1

1 · · ·Y Ln
n )

(d)

≤ n log(1 + a)−
n

∑

j=1

E log |∆
Lj

j |

= n log
1 + a

a
+

n
∑

j=1

E log
a

|∆
Lj

j |

(e)

≤ n log
1 + a

a
+

n
∑

j=1

log E
a

|∆
Lj

j |

(f)
= n log

1 + a

a
+ n

n
∑

j=1

1

n
log ELj

(g)

≤ n log
1 + a

a
+ n log





1

n

n
∑

j=1

ELj





= n log

(

1 + a

a
κ

)
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where (d), (f) follow from Lemma 1 and (e), (g) follow
from Jensen’s inequality.

4. Discussion and Concluding Remarks

The additive logaritmic increase with the average
number of iterations is illustrated in Figure 2, in which
the solid line is the capacity upper bound in (1), the
square dots correspond to the points in which the lower
bound and the upper bound touch. The dotted line
represents an upper bound on capacity when in addition
to an average number of iterations, a constraint on the
maximum number of iterations is specified (max = 30
in this case); we expect these type of bounds to be
more relevant in practice. The dashed line is a lower
bound to the capacity of an additive white Gaussian
write noise channel, with writing signal constrained to
be in the interval [0, 1] and impaired by a zero mean
Gaussian write noise with standard deviation σ = 0.2.

The qualitative behavior of storage capacity as a
function of the average number of iterations, in the case
with arbitrary write noise models, is an open problem,
although numerical evidence suggests that the logarith-
mic behavior is likely to be common. Determining the
fundamental tradeoff between write cost and storage
capacity in presence of unknown, possibly random pa-
rameters, is also an open problem that we are currently
addressing.

We believe that in the long term, development of
the simple ideas presented in this paper can have signif-
icant implications in the design of real memory/storage
systems.
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6. Appendix: Proof of Lemma 1.

To prove item 1, we omit the dependence of the
various random variables on j to simplify the notation.
Write

h(Y L|DL, XL) =

∫

h(Y L|DL = d, XL = x)dµ(x, d)

where µ is the probability law governing (DL, XL).
The insight is that Y L, under the conditioning above,
is uniformly distributed over d∩ [x−a/2, x+a/2]. The
proof is as follows:

P (Y L ≤ y|DL = d, XL = x)

=
∑

i≥1

P (Y L ≤ y, L = i|DL = d, XL = x)

=
∑

i≥1

P (L = i|DL = d, XL = x)×

P (Y i ≤ y|DL = d, XL = x, L = i)

and note that by definition of L and the assumption on
the probability law governing (D1, Y 1, D2, Y 2, · · · ),

P (Y i ≤ y|Di = d, X i = x, L = i)

= P (Y i ≤ y|Di = d, Xj = x, Y 1 /∈ D1, · · ·

Y i−1 /∈ Di−1, Y i ∈ Di)

= P (Y i ≤ y|X i = x, Y i ∈ d).

From this it is easy to see that Y i, conditioned on X i =
x, Y i ∈ d, is uniformly distributed over d∩ [x−a/2, x+
a/2], which is also ∆i under the same conditioning.
The proof follows immediately. To demonstrate the
second item, let

I =
{

i ≥ 1 : P (Lj = i, D
Lj

j = d, X
Lj

j = x, Y L1

1 = y1

, · · ·Y
Lj−1

j−1 = yj−1, W = w) > 0
}

and let d, x, y1, · · · , yj−1, w be any choice for which the



set above is nonempty. Now write

P (Y
Lj

j ≤ y|D
Lj

j = d, X
Lj

j = x, Y L1

1 = y1, · · ·

Y
Lj−1

j−1 = yj−1, W = w)

=
∑

i∈I

P (Y
Lj

j ≤ y, Lj = i|D
Lj

j = d,

X
Lj

j = x, Y L1

1 = y1, · · ·Y
Lj−1

j−1 = yj−1, W = w)

=
∑

i∈I

P (Y i
j ≤ y|Lj = i, Di

j = d, X i
j = x)×

P (Lj = i|D
Lj

j = d, X
Lj

j = x, Y L1

1 = y1

, · · ·Y
Lj−1

j−1 = yj−1, W = w).

From the proof of item 1, we know that P (Y i
j ≤ y|Lj =

i, Di
j = d, X i

j = x) = P (Y i
j ≤ y|Y i

j ∈ d, X i
j = x).

Note that the latter has the same value for all iterations
i ∈ I. Pick an i∗ ∈ I, then

P (Y
Lj

j ≤ y|D
Lj

j = d, X
Lj

j = x, Y L1

1 = y1, · · ·

Y
Lj−1

j−1 = yj−1, W = w)

= P (Y i∗

j ≤ y|Y i∗

j ∈ d, X i∗

j = x).

The latter has no dependence on y1, · · · , yi−1 nor w,
which proves the desired Markov chain property.

To prove the third item, we shall condition on W
and focus on the conditioned terms:

E

[

a

|∆
Lj

j |

]

=
∑

w

P (W = w)E

[

a

|∆
Lj

j |
|W = w

]

ELj =
∑

w

P (W = w)E[Lj |W = w].

Define pi = P (Y i
j ∈ Di

j |Y
1
j /∈ D1

j , · · ·Y
i−1
j /∈ Di−1

j , W =
w) so that P (Lj = i|W = w) = (1−p1) · · · (1−pi−1)pi.

Note that pi =
|∆i

j(w)|

a
because conditioned on W , both

X i
j and Di

j are fully known. One then writes

E

[

a

|∆
Lj

j |
|W = w

]

=
∑

i≥1

(1− p1) · · · (1− pi−1)
api

|∆i
j(w)|

=
∑

i≥1

(1− p1) · · · (1− pi−1) =
∑

i≥1

P (Lj ≥ i|W = w)

= E[Lj |W = w]

where the last step is a standard equality for nonnega-
tive integer valued random variables. This finishes the
proof of the Lemma.
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