
RC24658 (W0810-014) October 2, 2008
Computer Science

IBM Research Report

Highly Concurrent B-Trees Using Atomic Blocks

Rajesh Bordawekar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Highly Concurrent B-Trees Using Atomic Blocks
Rajesh Bordawekar

IBM T. J. Watson Research Center
Hawthorne, NY 10532
bordaw@us.ibm.com

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
moss@cs.umass.edu

Abstract— We present a new highly-concurrent Blink-tree
algorithm and discuss our implementation of it. Our design is
novel in that it supports high concurrency while using atomic
blocks in the implementation. Atomic blocks impose a discipline
of static declaration of regions in which the system enforces
atomicity of accesses. However, their static structure precludes
lock coupling down through the levels of the tree, the usual
method for traversing concurrent B-trees. We consider atomic
blocks because of their software engineering advantages over
unstructured use of locks. For example, it is easy to see that our
design is deadlock-free.

In our approach, structure modifying operations (SMOs),
such as B-tree node splits, occur as separate deferred, even
asynchronous, operations at each affected level. This increases
concurrency and leads to interesting data structure invariants
and traversal algorithms. Our fine-grained concurrency approach
locks as few nodes as possible at a time, most commonly just
one node, but sometimes two or three. We also present coarser-
grained strategies, which trade off locking overhead versus
maximum concurrency. Our design further supports cursors,
which avoid traversing the tree as much when a series of
operations has locality. In sum, our design contributions consist
in: using atomic blocks, deferred structure modifying operations,
fine-grained locking, adjustable lock granularity, and support for
cursors. We further include some informal arguments on the
correctness of our design.

I. I NTRODUCTION

B-trees [1] are a fundamental data structure, taught in most
courses on data structures, and significant because of their
O(logn) behavior for lookup, insert, delete, find next higher
key, etc. They are also of great commercial importance for
indexing in database systems [2], [3], which raise the question
of their use in a concurrent environment.

The emergence of commodity parallelism makes concurrent
B-trees of interest for a variety of other software. Concurrent
use of a B-tree requires that one control access to nodes,
typically using locks. One proceeds from the root of the tree
toward the leaves, locking individual nodes along the way. To
gain a more stable view of the tree and stronger invariants,
the favored locking protocol islock coupling[1], [4]. In this
protocol, to move from an already locked nodeA to a child
nodeB, one first locksB and only then releases the lock on
A. This has the effect of preserving operation order along any
given path in the tree and is deadlock-free because it always
locks parent before child. However, one cannot implement lock
coupling using atomic blocks, because the periods of timeA
andB are locked are neither independent nor properly nested.
In our protocol, we release the lock onA before acquiring the

one onB, which substantially relaxes what we can assume
about the state of the world when we arrive atB.

We use atomic blocks because of their software engineering
advantage of clearly delimiting the scope of protected access
to a node. They match well with thesynchronized blocks of
Java [5], for example, though we support both shared (S)
and exclusive (X) modes of access, for additional concur-
rency. While our atomic blocks designate a particular object
(generally a B-tree node) to lock, they are quite similar to
atomic blocks used for transactions [6] supported by software
or hardware transactional memory (TM) [7], [8]. (In future
work we hope to compare the present design to one using
TM.) Atomic blocks make it somewhat easier to check that
our code is deadlock-free. In particular, whenever we nest the
blocks, we lock only nodes at the same level of the tree, and
only in left-to-right order.

A concern that all highly concurrent implementations face
is how long a given node may be locked. Typical descriptions
of B-tree algorithms use an elegant recursive style, not only
for searching but also for handling node splits and deletions,
etc. In this style, if a node might possibly split (or become
under-full, etc.), one must lock it for the duration of operating
on the subtree under the node. This can seriously restrict
parallelism. Hence, following the lead of others [9], [10],we
deferstructure modifying operations (SMOs). For concurrency
and to avoid deadlock, we run them asseparate operations,
occurring after the primary operation that the user requested.
We can perform SMOssynchronously, i.e., by the user thread
at the end of the user operation (before returning to the
application), orasynchronously, by some extra worker thread
at an arbitrary later time.

As is the case when searching without lock coupling, here
the world also can have changed significantly between the time
we request an SMO and the time it occurs. For example, if a
node splits, the proper parent-level node into which to insert
the new node may not be the parent that we encountered on
our way down the tree. Also, since the new node may exist
for some time at its level before it will appear at the parent
level, searching and other operations must work without exact
information from the parent level. We have found it helpful to
think of the interior of the tree as a helpful cache to get you
near the desired leaf, rather than a definitive index (though in
an idle tree it will be definitive).

We further recognize that user code often requests a series
of accesses that have locality in the B-tree, notably sequential

scans. Therefore we supportcursors, which cache information
about nodes encountered on a previous search and reduce the
need to search from the root each time. The general pattern
of access via a cursor involves accessing a leaf node, then
nodes at succeedingly higher levels until finding one whose
range includes the search key, and proceeding back down
the tree from there. This could lead to deadlock in classical
implementations, but because we access each level separately,
there is no problem.

We summarize our contributions as follows: a B-tree de-
sign that (1) offers a very high degree of concurrency; (2)
controls concurrency with atomic blocks; (3) supports various
granularities of locking; (4) supports cursors; and (5) allows
asynchronous processing of deferred structure updates. We
next describe related work and some preliminaries, and then
present our design, followed by some correctness arguments.
We describe our prototype implementation, then conclude.

II. RELATED WORK

Over the past 30 years concurrency control of B-trees has
been studied extensively, and the literature contains a wide
variety of concurrent algorithms for them [2]. We broadly
classify concurrent B-tree algorithms by the underlying lock-
ing schemes and structural enhancements to the basic B-tree
data structure [11]. One can characterize the locking schemes
by lock access type (shared, exclusive, and their intentional
versions), duration (locks or latches), direction (top-down vs.
bottom-up), scope (hierarchical vs. single node), and policy
(pessimistic, optimistic, and two-phase locking [12]).

Bayer and Schkolnick [13] discussed the basic class of lock-
based concurrent B-tree algorithms. The first improvement
over locking the entire tree for every operation was to lock tree
nodes via top-down pessimisticlock-coupling, i.e., lock a child
of a node before releasing the lock on its parent. The optimistic
descent algorithm improved on the basic design by allowing
insert and delete operations to useS locks on internal nodes.
If the leaf operation leads to restructuring, the process restarts
and locks all participating nodes inX mode. Other general-
izations of the optimistic descent algorithm include optimistic
descent with variable critical level and with intention-exclusive
locks. The ARIES family of concurrency and recovery algo-
rithms [14] uses a variation of the optimistic descent algorithm
with shared and exclusive modes, and their intention versions.
The Mond-Raz algorithm [15] usesX locks via lock-coupling
for insert and delete operations. However, the algorithm never
holds more than two locks at a time, which requires top-down
restructuring of the tree. Graefe [16] proposed improvements
to the traditional B-tree locking schemes via hierarchicalkey-
range locks and locks on separator keys. Graefe’s proposal
also enables automatic derivation of lock modes for key-range
locks and dynamic locking hierarchies for separator locks.

Most structurally-enhanced concurrent algorithms use the
Blink-tree structure proposed by Lehman and Yao [17]. The
Blink-tree enhances the basic data structure by allowing each
node (other than the right-most node of a level) to refer to
its right neighbor. All operations place sharedS locks from

the root to the parent of the leaf nodes. Search operations
lock the leaf in S mode, while insert and delete lock the
leaf in X mode. If the leaf is going to split, the algorithm
creates a new sibling leaf, connects it in the linked list, and
moves half the keys from the original leaf to its new sibling.
It then releases theX lock on the leaf and upgrades the parent
lock to X mode. After that it updates the parent to include
the pointer to the newly inserted child. If the parent is full,
the process continues. All operations lock at most one node
at a time inX mode sincephysical updates to a node may
occur in any order [9]. Sagiv [9] described a Blink-tree based
algorithm that supports concurrent compression. However,in
the presence of this concurrent compression, the algorithm
associates aset of locks with each node, and even a search
must lock at least two nodes via lock coupling. The alternative
solution requires restarting some processes. Analytical and
experimental performance evaluations of concurrent B-tree
algorithms have demonstrated that implementations that use
Blink-trees exhibit higher concurrency [18], [19].

Sagiv’s enhancements to the Blink-tree enable implemen-
tation of search and update operations using a sequence of
atomic actions [9]. Eswaren et al. [20] introduced the notion
of atomic action in the context of database operations, which
Lomet expanded [21]. Lomet and Salzberg later used atomic
actions to improve concurrency and recovery of index tree
structures [22]. Recently, Lomet [10] proposed using atomic
actions to implement deferred execution of structured mod-
ifying operations caused by deleting Blink-tree nodes. Our
algorithm builds on these ideas. In particular, we use data
structures similar to Lomet’stodo queues to order deferred
SMOs. We differ from prior work in: using atomic actions for
all operations; giving details for ordering SMOs; supporting
cursors; and offering several lock granularities.

III. PRELIMINARIES

It is convenient to offer a brief review of B-trees, for clarity of
concepts and terminology. We also describe the assumptions
we use concerning atomicity of accesses to B-tree nodes, etc.

A. B-Trees

B-trees are a familiar structure, but possess several variants.
The particular organization we use has two basic features: (a)
all user key-value pairs are stored in the leaves, with keys
and values in interior nodes serving only an indexing function
(this is called a B+-tree), and (b) every node has a pointer
to its right sibling (this is called a Blink tree). Property (a)
facilitates insertion and deletion in that one is not presented
with the case of deleting a separator key in an interior node,
etc. Property (b) helps with sequential access in the leaves; we
apply it to good effect at all levels, to assist navigation inthe
face of asynchronous updates to different levels of the tree.

We consider a B-tree used as a general index, which may
permit storing multiple values associated with the same key.
(One can easily restrict any given tree to permit only single
values.) This leads to the following set of basic operations:

Create(), which creates a new, empty B-tree

Fetch(key, value), which searches for the key-value pair; it
returns the pair if it is present, ornull otherwise;value may
be −∞, which requests the lowest pair for that key, or+∞,
which requests the highest;key may be−∞, which requests
the lowest key in the tree, or+∞, which requests the highest;

FetchNext(key, value), which finds the next higher key-value
pair and returns it, ornull if there isn’t a higher pair;value
may be−∞ to find the lowest pair with a key at least as high
as the argument key, and may be+∞ to find the lowest pair
for the next higher key;

Insert(key, value), which inserts the key-value pair; and
Delete(key, value), which deletes the key-value pair;value

may be−∞ to delete the lowest pair for the given key
Obviously one can develop a number of minor variations

concerning what happens if one attempts to insert a key that
is present, to delete a key that is absent, etc. One can also
implement reverse scanning (FetchPrevious), though it is not
strictly symmetrical to implement because we link nodes in
only one direction. Linking in one direction reduces the num-
ber of nodes affected by structural changes (node insertionand
deletion), so is generally preferable to bi-directional linking.

In our scheme each B-tree node includes the following data:
n – the number of key-value pairs in the node
pairi – the ith key-value pair, for 1≤ i ≤ n; the pairs are

in increasing lexicographic order; note that since we support
multiple values associated with the same key, we need both
keys and values in interior nodes, so that we can split long
runs of values associated with the same key.

min, max – pairs that define the range of pairs allowed in
the node; for each pairpi , min≤ pi < max. Also, a node’s
max equals its right sibling’smin. The min of the leftmost
node of a level is〈−∞,−∞〉; themaxof the rightmost node is
〈+∞,+∞〉. Neithermin nor maxneed be a pair present in the
tree. We interpretpair0 as meaningmin andpairn+1 asmax.

childi – present in interior nodes only, theith child of this
node, for 0≤ i ≤ n; normally every pairp in the child’s subtree
obeyspairi ≤ p< pairi+1; we later relax that property to allow
deferred updates of interior nodes.

next – pointer to the right sibling;null if at right end
level– the level of the node, 0 for leaves, 1 for their parents,

etc.; while not strictly necessary, this field is convenient
state– the state of node; any of several values (beingAdded,

present, beingDeleted, deleted, unlinked, andderooted), which
indicate the stage of adding or deleting node

Later we will add more fields related to handling concur-
rency and supporting cursors. Notice that there are no back
pointers from child nodes to their parents. Figure 1 illustrates
the primary fields of a node.

n+1

min max

level nextn
P 1

....................P n

c1 c

Fig. 1. A Blink tree node

The B-tree itself consists only of a pointer cell referring to
the root node of the tree. We update this cell only when the
tree changes in height. For a tree of orderk, normally each
node except for the root will contain at least⌈k/2⌉ pairs, and
can never contain more thank pairs. The root node can contain
as few as 0 pairs (for an empty tree).

B. Atomic Access

We desire to specify atomic access according toregions of
code, similar to synchronized methods or synchronized blocks
in Java, or atomic blocks as proposed elsewhere [21], [23],
[8]. Our intention is to describe our algorithm’s use of these
regions so that one can easily generate an implementation
based either on locks or, in the future, on transactional
memory. To facilitate this, a region specifies an object and
a locking mode. The modes areS (shared) andX (exclusive).

Locking semantics:When entering an atomic region, one
acquiresthe designated object in the designated mode. Only
one thread at a time may acquire a given object inX mode;
multiple threads may acquire an object inS mode, but not at
the same time as any thread inX mode. When a thread has
acquired an object inX mode, it may read and write fields
of the object; inS mode it is limited to reading fields of the
object. To avoid deadlock, we do not allow a thread toupgrade
its lock on a given object by nesting anX mode region within
an S mode region for that object. One may nest anS region
in an X region, but it does not downgrade the lock. Exiting
a region (by completing execution, returning from within it,
throwing an exception, etc.)releasesthe corresponding lock
on the acquired object, reverting the acquisition state to what
it was before entering the region (which may be no different).
For a given nest of regions, all writes must occur logically
after the first acquisition inX mode and before the lastX
mode release, and all reads must occur logically after the
first acquisition (in any mode) and before the last release.
Further, execution must be consistent with a single total order
of execution of regions, and with the order of execution of
regions by each thread.

Our coarse- and medium-grained schemes lockone object
to gainS or X mode access to any or all of a clearly specified
set of objects. In particular they lock the B-tree object (not
the root node, but the cell referring to it, since the root node
may change) to gainS or X mode access to levels of the tree
above a statically determined threshold. One uses fine-grained
access for levels below the threshold.

IV. T HE B-TREE DESIGN

Section III-A introduced the operations and basic structure
of our B-tree design. We now begin to address making them
highly concurrent. As taught in a data structures course or
presented in a textbook, B-tree operations are usually im-
plemented so as to recurse down the tree. This is simple,
natural, and elegant, but becomes problematic in the face of
concurrency. Either you effectively lock all nodes from the
root to the leaf, sometimes drastically reducing concurrency,
or you end up with a very complex recursion that somehow

resynchronizes if things change under its feet. One property of
the textbook approach is that it wraps all the changes triggered
by a given operation (e.g., all the possible splits caused by
an insertion into a full leaf) into one large operation. This
operation is supposedly atomic, maintaining strong structural
invariants on the tree. Following others [22], we break the large
operation down into smaller steps, weakening the structural
invariants of the tree in order to improve concurrency.

Invariants still maintained:We maintain a strong invariant
for each level of the tree. The nodes of a level exactly partition
the key-value space from〈−∞,−∞〉 to 〈+∞,+∞〉, with the
maxof each node equaling themin of its right neighbor. The
pairs of each node lie within the node’s range and are stored
in order. We always maintain thenext links. Any update to a
node preserves these invariants.

Invariants not maintained:We relax those invariants that
connect levels. In particular, a child pointer may refer to a
node whosemin is lower than what the parent has recorded
as the child’smin (and likewise formax). Thus, search must
sometimes proceed to theright at the same level, as opposed to
down towards the leaves. This relaxed parent-child invariant
matches with our uni-directional links at each level, which
allow immediate access from each node to the same-level node
with the next higher set of keys/values. Figure 2 shows one
example situation: here, searching for key 7 will proceeddown
from nodeP to nodeA, and thenright from A to B. The search
is perceiving the state between the split ofA at the leaf level
and the insertion ofB at the parent level.

........

P Q

B

A C

D

0 0

0 0

1 1

0 20 20

0 5

5 10

10 20

20

10

Fig. 2. A Blink tree with a split in progress

New invariants:A new invariant we introduce is that once a
node becomes empty, it remains empty. (This does not apply
to a leaf node whose range includes all keys, i.e., the node
representing a one-level tree.) The purpose of this invariant
will become clear when we discuss our deletion procedure.

A. Procedure for Searching from the Root

We now offer pseudo-code for searching for a given key-
value pair at a given level of the tree. The special keys/values
−∞ and +∞ are readily handled by the within-node search
procedures, which we need not detail here.

Node Search (int level, Pair pr): // assumes level>= 0
Node curr;
Node next = root;
Node result = null;
while (result == null)

curr = next;

atomic (curr, S)
if (pr does not lie in range of curr)

// by invariant, must be to the right
next = curr.next;

else if (curr.level > level+1)
// need to descend to next level
next = child whose range we think contains pr;

else if (curr.level == level+1)
// we are one level above desired level
result = child whose range we think contains pr;

else
// we are the appropriate node (short tree)
result = curr;

return result;

B. Procedure for Applying an Operation

TheSearchprocedure essentially uses higher levels of a tree to
find, relatively quickly, a good starting point for obtaining the
node on which one desires to operate. Because of asynchrony,
the desired node may actually be to the right of the node
returned bySearch, so a fundamental operation at a given
level proceeds using this pattern:

Result ApplyOp (Node start, Pair pr, Mode m):
Node curr;
Node next = start;
Result res;
while (next != null)

curr = next;
atomic (curr, m) // m is the locking mode Op needs
if (pr lies in range of curr)

res = perform Op;
next = null;

else
next = curr.next;

return res;

If we abandon the discipline of strictly matching acquire/re-
lease pairs, we could write a simpler searching routine that
would find the desired node, lock it in the requested mode, and
return it. Another way to avoid writing the pattern repeatedly
(once for each operation) is to write a single search routinethat
takes a handle on an operation (e.g., a function pointer in C)
and its arguments, i.e., essentially a closure. The routinedoes
the search and applies the operation, so theApplyOppattern
appears only once. Notice that in between executions of the
atomic block, node ranges can change. However, the proper
node always lies to the right.

C. Complexity of Searching

At this point a few remarks on the algorithmic complexity of
our search procedure may be helpful. It should be clear that if
the B-tree is balanced (as it should be by definition), and its
levels are up to date with respect to each other, then a search
from the root visitsO(logn) nodes for a tree containingn
key-value pairs. If there arek deferred structure-modifying
operations (SMOs), then a parent node may omit up tok

child pointers. Thus a traversing thread may need to make
up to k moves to theright in the tree, without movingdown.
To maintain a bound ofO(logn) time for traversing a tree,
we need to boundk so that it also isO(logn). This requires
semaphore-style synchronization for performing SMOs, i.e.,
a semaphore that, when idle, has a valueN that is O(logn),
and on which a thread must perform aP before requesting an
SMO, and aV after updating the parent level.

We did not feel it was worth putting this extra logic into
our implementation, for the following reason. In a system with
high concurrency, any given thread can be continually over-
taken as it traverses toward a target leaf node. The overtaking
threads can perform inserts in leaves and force continual splits.
The semaphore synchronization we just described controls
only the number ofsimultaneously outstandingSMOs, not the
total numberof SMOs that can occur in between times that
our unlucky thread makes progress. This issue exists in lock
coupling implementations as well, if they support overtaking:
the parent has out-of-date boundary key information, so the
unlucky thread goes to the “wrong” child. It may need to
traverse to the right. But other threads can insert rapidly and
push the unlucky thread’s target key farther and farther right.

The only solution is to impose a fairly strong global
fairness-of-progress guarantee, namely that operations started
against the tree earlier will eventually beat all new operations
in making progress. One mechanism that would work is to
distribute sequentially numbered tickets as operations begin,
and to hold back new operations if the oldest incomplete
operation is more thanO(logn) tickets ago. There are undoubt-
edly more clever ways to do this that reduce the frequency
of synchronization. We chose not to pursue a comprehensive
solution, but we do insure that the degree of concurrency
in our experiments does not exceed the number of hardware
threads available, thus reducing the likelihood of long periods
of thread inactivity because of descheduling, which would
make threads vulnerable to this kind of starvation.

D. Fetch and FetchNext

ImplementingFetch is straightforward givenSearchand Ap-
plyOp: either the desired pair is present or it is not, and we
return the appropriate result, as shown inFetchCorebelow
(which would be invoked whereOp is called inApplyOp).

Pair FetchCore (Node curr, Pair pr):
// by design pr is in curr’s range
// and curr is acquired in S mode
if (pr in curr)
return pr;

else
return null;

FetchNextis more complex, and requires a custom version of
ApplyOp, shown asFetchNextOpbelow. The custom version is
required because the input pair forFetchNextmay be the last
pair in a node (or beyond it), forcingFetchNextto examine
nodes to the right. In this caseFetchNextOpmust lock both
nodes to insure that no pair is inserted betweenpr and res.

It must skip any intervening empty nodes (we guarantee that
such nodes will remain empty).

Pair FetchNextOp (Node start, Pair pr):
Node curr;
Node next = start;
Pair res = null;
while (next != null)

curr = next;
atomic (curr, S)

next = curr.next;
if (pr is not in range of curr)
continue;

else if (curr has a pair > pr)
res = the smallest such pair;
next = null;

else // find next non−empty node
Node succ;
while (next != null)

succ = next;
atomic (succ, S)

next = succ.next;
if (succ has pairs)

res = smallest pair of succ;
next = null;

return res;

Fetching the first and last pairs of the entire tree are slightly
special cases, but offer no difficulty.

E. Insert: Handling Splits

Except for the case of a node that is full,Insert is also
straightforward. However, it is important to obey the range
of pairs allowed in a node. If the pair being inserted comes
after all pairs currently in the node and the node has room,
one might think it is all right to insert the pair in the node. But
if the pair does not lie in the node’s assigned range, wemust
proceed to the right. This situation would not arise in a non-
concurrent B-tree, or in one that maintained strict consistency
of boundary key information across levels. But using deferred
SMOs implies that some insertions may arrive at the “wrong”
node, to the left of where they should be. If we fail to obey the
nodes’ assigned range information, we can end up inserting
pairs out of order. In fact, it was through considering cases
such as these that we determined the wisdom and clarity of
recording the ranges in the nodes, as opposed to keeping only
separator keys as a non-concurrent B-tree would.

What if the proper node to receive the new pair is full? As
expected, we split the node, inserting a new right sibling that
receives the higher half of the pairs. We determine a boundary
pair valueb that separates the two groups of pairs, and set the
left (original) node’s range to end atb, and the right node’s
range to start atb and end where the original node previously
ended.

boolean InsertCore (Node curr, Pair pr):
// by design pr is in curr’s range,
// and curr is acquired in X mode

if (pr in curr) // no change required
return false;

else if (pr fits in curr)
insert pr;
return true;

// overflow: rebalance or split
// this is the place to attempt rebalancing if desired
Node fresh = a new node; fresh.state = beingAdded;
balance old pairs plus pr between curr and fresh,

with fresh getting the higher pairs;
// insert fresh on same−level linked list of nodes
fresh.next = curr.next; curr.next = fresh;
// adjust node ranges
fresh.max = curr.max;
Pair bnd = smallest pair of fresh;
curr.max = fresh.min = bnd;
// request a deferred SMO
request InsertSMO(curr.level+1, curr.min, curr, bnd, fresh);
return true;

At this point, the insertion is complete at the leaf level. Wethen
perform, as aseparate operationon the tree, an SMO to insert
the boundary pairbnd and the new node into the parent level.
Note that the node at the parent level that we traversed to getto
the leaf that we split may not have been, or may no longer be,
the parent of the split node. That is why we speak of inserting
the pair and node into the parentlevel. That insertion proceeds
analogously to inserting a pair into a leaf. If the insertionat
the parent level causes a split, we perform yetanotherseparate
SMO to insert the new parent-level node into the grandparent
level, etc. SMOs do have ordering requirements, which we
discuss further below (Section IV-H).

Figure 3 illustrates the overall sequence of handling a split.
(A) shows the initial situation; (B) shows the state after
splitting nodeA into A andC (but before runningInsertSMO),
and (C) shows the final state after runningInsertSMO. As
discussed with Figure 2, the situation in (B) is visible to
concurrent B-tree operations.

(C) After insertSMO

0

0 5

P

1

0 2010

0

0

0

10 20

A B

P

A

0 0

0

1

0 20

0 5

5 10

10 20

10

10

C

B

P

0

1

10 20

0

5

BA

100 5

C

20

10

(B) After split, before insertSMO

(A) Before split

Fig. 3. The Insertion Operation

If the root node splits, we create a new root node, referring
to the split node and its right sibling, and update the root
pointer to refer to the new root node. Note that operations
that come to the split root node before we add the new root
node still proceed correctly, though they may have to take an
immediate move to the right.

F. Insert: Rebalancing

An option that sometimes avoids allocating a new node when
inserting into a full node is to perform localrebalancing.
Recall our rule that pairs (and the key range associated witha
node) can move only to the right. If an inserted pair overflows
its target node, and the target’s right sibling has free space,
we can move some pairs from the target to the sibling. This
requires locking both nodes exclusively, of course. Note that
not only do somepairs move, but also some range ofkey
spacegets moved from the target to the right sibling as well.
This requires a separate SMO to the parent level, to record
that adjustment of key space (updating the boundary between
the siblings). This is similar to inserting into the parent level
after a split, except that it modifies existing information as
opposed to adding a new pair and child pointer. It was not
obvious to us that the greater space efficiency sometimes
possible with rebalancing instead of splitting was worth the
extra implementation effort (in either case, space efficiency
remainsO(n)), so we omitted this rebalancing capability in
our prototype, and likewise omit design details here.

G. Delete: Handling Underflow

As with insertion, deletion most commonly involves a search
followed by updating one leaf node. For leaves that become
underfull, there are two strategies employed in the past. One
strategy rebalances the under-populated leaf by drawing pairs
from one (or both) of the leaf’s siblings. This applies in a B-
tree of orderk if there are still 2×⌈k/2⌉ pairs left between two
adjacent nodes, i.e., enough to properly populate both nodes.
If there are not enough, then one shifts all the pairs into one
of the nodes and deletes the other one. This strategy maintains
O(n) space use for the B-tree, necessary for obtainingO(logn)
levels and thusO(logn) time for operations.

An alternative strategy, employed in a number of commer-
cial systems, presumably because it is simpler and usually
works adequately well in practice, is to tolerate underfull
nodes, deleting them only when they become entirely empty.
Our prototype takes this approach, to avoid the complex
algorithmics of rebalancing. Note that one can also simply
rebuild a tree if its space efficiency is too low, though doing
so concurrently would require additional coding effort.

We offer pseudo-code forDeleteOpbelow. Its subtle aspect
is the adjustment of the ranges of nodes when a node becomes
empty and we wish to delete it. We desire to make the range
of the empty node also empty (maxequal tomin), so that the
node can be unlinked and freed later. To do this, we “push”
the node’s range to the right (following our rule that range
and pairs move only to the right). There are two special cases
of concern. One is if the empty node is the last one on its

level. In that case, we simply leave it. This can result in at
most O(logn) space waste, not significant asymptotically (or
in practice for trees of any size). The other interesting case is
when the node’s right sibling is also in the process of being
deleted. In this case, we search for a node farther to the right,
until we reach a node not being deleted. (Such a node must
exist, since we do not delete the rightmost node.) It might
seem that threads can race in deleting nodes and pushing range
to the right, but since we retain anX mode lock on the node
being deleted until we successfully push its range right, threads
cannot pass each other in the pushing process. Rebalancing
underfull nodes (if implemented) needs to proceed similarly,
skipping over nodes being deleted to find a suitable node into
which to shift pairs (and range). That search should be done
within the first atomic block, as noted in the code.

boolean DeleteOp (Node start, Pair pr):
Node here, first, second;
Node next = start;
boolean more = false;
while (true) // loop to find pr’s node

here = next;
atomic (here, X)
if (pr not in range of here)

next = here.next;
continue;

else if (pr not in here)
// no change required;
return false;

delete pr;
if (here has pairs but is underfull)

// rebalancing goes here; should search to find
// the first node to the right that is not being
// deleted, then atomically shift pairs and range
// to that node and start a rebalancing SMO at
// the parent level

if (here has any pairs || here.next == null)
return true;

// starting to delete node here
here.state = beingDeleted;
first = here;
// repeatedly push key range to the right
boolean more = true;
while (more)
atomic (first, X)

first.max = here.min;
second = first.next;
atomic (second, X)

second.min = here.min;
more = (second.state == beingDeleted);

first = second;
break;

request DeleteSMO(here.level+1, here.min, here, first);
return true;

In the worst case, the code above acquires three nodes at once,
the node being deleted (here) and a pair of adjacent nodes (first

andsecond) between which we are shifting key range. (In the
first iteration of the loop,here and first are the same node.)
It may be possible to reduce this to two nodes, but it would
require relaxing the invariant that key range is always exactly
partitioned across a level.

A

P

1

Q

1

20 30 ...20100

A C

50

0 0

0

5 10

10 20

20 30

D

4030

B

...

P

1

Q

1

10 ...100

A C

50

0 0

0

5 10

10 10

10 10

D

4010

0

B

40...

P

1

Q

1

20 ...20100

A C

50

0

0

5 10

10 10

10 10

4010

0

B

40...

D

P

1

Q

1

10 ...100

A C

50

0 0

0

10 10

10 10

D

40

0

B

40...

P

1

Q

1

10 ...0

A C

50

0 0

0

5 10

10 10

10 10

D

4010

0

B

40 10

0

0

10

0

0

5 10

10 20

20 20

B

P P Q

0

20 40

Q

D

0

Q

0

0

0

5 10

10 10

10 10

B

P P Q

D

10 40

0

105

(G) After UnlinkSMO on B

(B) After DeleteOp of C

(C) After DeleteOp of B (D) After DeleteSMO on C

(F) After UnlinkSMO on C(E) After DeleteSMO on B

(A) Initial situation

C

C

A

Fig. 4. The Deletion Operation

Figure 4 (A), (B), and (C) illustrate this “pushing” pro-
cedure. (A) shows an initial state with nodesP and Q at the
parent level, and leavesA, B, C, andD. (B) shows the situation
after DeleteOpmakesC empty: C’s range has moved toD;
Q will be updated by the deferredDeleteSMO. Similarly, (C)
shows the situation afterDeleteOpmakesB empty. Notice
how its range is “pushed” throughC to D, but updatingC’s
(empty) range on the way. We discuss the remainder of the
figure after presenting the relevant SMOs.

Concerning rebalancing, if the underfull node’s right sibling
is too full to receive all of the underfull node’s pairs, one can
imagine “pulling” pairs from the left sibling. This is complex
because the linked list goes in one direction only. Double
linking requires more locking and updates, so is not a great
option. Notice thattogetheran underfull node and a full right
sibling still maintainO(n) space usage all together, so in fact
“pulling” is not necessary.

H. Deferred Structure-Modifying Operations

First we take up how each SMO is implemented, and then
consider how we insure that we execute SMOs in a safe

order. In the pseudo-code above, there are occasions where we
requestan SMO. By that we mean that we either (a) make a
note of the desired SMO and execute it at the end of the current
operation, just before returning to the user, or (b) enqueue
the SMO for some helper thread to execute on our behalf.
Option (a) we callsynchronousand (b)asynchronous. Both are
deferred, meaning they are executed after the current operation
and start in a situation where the thread is not in an atomic
block. Asynchronous SMO execution requires designing a
suitable work queuing mechanism, which we found to be
tricky, but has the advantage that the number of helper threads
constrains the number of concurrent SMOs, and in particular
using a single helper thread guarantees atomicity of SMOs
with each other, simplifying implementation. Asynchronous
SMO execution reduces user-thread operation times (and vari-
ance in those times), while synchronous SMO execution may
increase concurrency of SMO execution.

In any case, each SMO must search, to the appropriate level.
We provide a target pair and also the relevant child node(s) and
other information. The code below sketchesInsertSMOCore,
as would appear inside theApplyOppattern. However, before
calling Search, the InsertSMOcode needs to check if the level
of the requested insert is higher than the root node of the tree
(i.e., the root just split). In that case, it must create a newnode
with the two children and given boundary key, and update the
root pointer to refer to that new node.

void InsertSMOCore (Node parent,
Pair start, Node child,
Pair split, Node fresh):

// here we hold parent in X mode,
// and start is in parent’s range
insert split and fresh just after start and child;
fresh.state = present;
if (parent overflows)
do split analogously to leaf level;
// the next level SMO request looks like this:
request InsertSMO(parent.level+1, parent.min, parent,

newbnd, fresh);

In pseudo-code,DeleteSMOis quite similar toDelete (see
below). However, after removing the child from the parent’s
level (which may request an SMO at the grandparent level,
etc.), it requests anUnlinkSMO, to remove thechild from
the linked list at its level and attempt to reclaim it. If the
child is the first node of its level, then we can skip unlinking.
Otherwise,UnlinkSMOsearches to find the predecessor of the
child being removed. It first proceeds similarly toSearchand
ApplyOp, except that it is trying to find a node whosemin
is less thanthe child’s min (start in the code below), and in
its ApplyOp loop it is trying to find a node whosenext is
child. Call this nodepred. The pseudo-code forUnlinkCore
shows the rest. Note, however, that it is possible forchild to
end up as the first node of its level, evenafter we request the
UnlinkSMO. In this casepred will be null.

void DeleteSMOCore (Node parent, Pair start,

Node child, Node rcvr):
// here we hold parent in X mode and
// start is in parent’s range;
// rcvr, which receives the deleted range,
// is used for synchronization
delete start and child from the node;
child.state = deleted; // will no longer be offered
if (rcvr is not a child of parent)

push range from start to the right of parent
if (parent is underfull or empty)

proceed similarly as for leaf level
// may request DeleteSMO to remove
// parent at grandparent level
request UnlinkSMO(child.level, start, child, rcvr);

void UnlinkCore (Node pred, Node child, Node rcvr):
// if pred != null we hold it in
// X mode, and child == pred.next
if (pred != null) pred.next = rcvr;
child.state = unlinked;

Returning to Figure 4, (D) shows the situation after the
DeleteSMOfor C. At that time, Q no longer points toC,
but C is still linked at the leaf level. (E) shows the situation
after theDeleteSMOfor B. Similarly, P no longer points toB,
but B is still linked. Finally (F) and (G) show the situations
after theUnlinkSMOfor C andB, respectively.

I. Ordering of Deferred SMOs

It is fairly easy to see that we needsomeordering restrictions
on executing SMOs. For example, if a node splits, and then all
of the fresh node’s pairs are deleted, we might have concurrent
deferred SMOs for the split that introduces the new node
and for the node’s deletion. A drastic solution would be to
execute SMOs one at a time in the order they were requested.
However, this would be a concurrency bottleneck and is overly
restrictive, since many SMOs can proceed at the same time
safely. The important insight to solving this problem is that
we need to execute two SMOs in the order in which they
were requested only if their affected key ranges overlap: SMOs
for non-overlapping ranges can proceed concurrently (modulo
atomicity of updates to parent-level nodes).

At first, it may not be clear how we can enforce ordering
for each bit of key range without introducing another complex
concurrent data structure. What we do is that we use the child-
level nodes as surrogates for their ranges. We say that an
SMO pertains toone or more affected nodes if their range
is involved. Thus anInsertSMOpertains to the node that was
split (child) and to the node introduced by the split (fresh), and
a DeleteSMOpertains to the deleted node (child) and the node
to which it ultimately shifted its key range (rcvr). Likewise an
UnlinkSMOpertains tochild and rcvr.

When werequestan SMO, we obtain aticket for each node
to which the SMO pertains. Here is how tickets work. Each
node has twoticket counters, nextTicketandnextServed, each
starting at 0. To get a ticket, while holding the node inX mode
we read the value ofnextTicket, and then increment it. An

SMO is ready if the nextServedvalues in each node to which
the SMO pertains match the tickets that we obtained when we
requested the SMO. We begin to execute an SMO only after it
is ready. When an SMO completes, if incrementsnextServed
in the nodes to which it pertains. Checking whether an SMO
is ready should properly be done having acquired the relevant
objects in at leastS mode, though an implementation may
be able to use some form of “volatile” memory read instead.
Likewise, if an SMO does not need to acquire a pertinent
object inX mode, when done it may be able to use an atomic
increment instruction onnextServed, avoiding locking. These
are just refinements to the obvious safe strategy of accessing
and updating the ticket counters only under the proper lock.

Node B Node C Node D
Figure tkt srvd tkt srvd tkt srvd

(A) 3 3 6 6 10 10
request DeleteSMO(1, 20, C, D, 6, 10)

(B) 3 3 7 6 11 10
request DeleteSMO(1, 10, B, D, 3, 11)

(C) 4 3 7 6 12 10
run DeleteSMO(1, 20, C, D, 6, 10)

request UnlinkSMO(0, 20, C, D, 7, 12)
(D) 4 3 8 7 13 11

run DeleteSMO(1, 10, B, D, 3, 11)
request UnlinkSMO(0, 10, B, D, 4, 13)

(E) 5 4 8 7 14 12
run UnlinkSMO(0, 20, C, D, 7, 12)

(F) 5 4 8 8 14 13
run UnlinkSMO(0, 10, B, D, 4, 13)

(G) 5 5 8 8 14 14

Fig. 5. Ticket sequencing for Figure 4

Figure 4 implicitly shows our ordering constraints. We
assumed that aDeleteOpcall requested aDeleteSMOfor C,
and then anotherDeleteOpcall requested aDeleteSMOfor
B. Ticket ordering onD forces the twoDeleteSMOs to run
in that order at the parent level. They take new tickets onD
for the two UnlinkSMOs, so those also run in the orderC
thenB. Figure 5 shows details, assuming some starting ticket
numbers, and adding ticket numbers to SMO requests. We
abbreviatenextTicketas tkt andnextServedas srvd, and show
the ticket situation before/after each SMO-related operation.
Running aDeleteSMOinvolves requesting anUnlinkSMOas
part of it, so those two appear together.

J. Cursors

A cursor caches information about a node, and the path
from the root to that node, in the hope of speeding up later
operations, such asFetchNextduring a sequential scan. If
a sequence of operations has some degree of locality, then
cursors will likely speed up the sequence, at the cost of
additional bookkeeping. A cursor may be used for accessing
leaf nodes, or for accessing interior nodes when performing
SMOs or needing to search further.

A cursor contains, for each level of the tree, the node
most recently traversed at that level. New cursors start in
an uninitialized state. Using an uninitialized cursor requires
traversing from the root of the tree, but will initialize thecursor

for each level of tree accessed during the search. Considering
our Searchroutine, the node that should be entered into a
cursor when starting from the root is the node whose key
range includes the key for which we are searching.

When using aninitialized cursor to search for a given pair
p at a given level (e.g., leaf level), one examines the node that
the cursor records for that level. If the cursor has no node for
that level, or if the pairp lies outside the range of the node,
one examines the node remembered by the cursor for the next
higher level. If one finds a node whose range containsp, one
proceeds from that point as inSearch. It is possible that none
of the nodes includesp (the tree may have grown in height),
in which case one treats the cursor as uninitialized and starts
from the root. As one finds nodes that includep, one records
them in the cursor for future use.

A FetchNextproceeds only slightly differently from ordi-
nary search: it looks for a node that includesp but whosemax
is strictly > p. It may still have to move right from that node,
but cannot distinguish that case without inspecting the pairs in
the node. In such cases of sequential access requiring a move
to the right, one typically moves just one node to the right,
and obviously it is sometimes necessary.

Optionally one may cache additional information in cursors
to speed operations more. For example, one may record the
min and max of each node recorded in the cursor, to reduce
probing nodes that are not likely to help. The utility of this
depends on locking costs, etc. Another possible improvement
is to record in the cursor with each node the pair most recently
accessed at that node, and the index of that pair within the
node’s array of pairs. To determine whether the index is valid,
we add a field to each node calledmodCount, which we
increment whenever we change the set of pairs in a node.
The cursor samples and savesmodCountwhen saving the pair
and index information. Thus, if the savedmodCountmatches,
then we can use the index and avoid a binary search for the
pair. In trees with large nodes under heavy sequential access
loads this may be a good idea, but deserves some study as
to the benefits realizable in practice. The primary benefit of
cursors is likely to be reducing thenumberof nodes accessed,
the numberof binary searches performed, etc.

K. Reclaiming Deleted Nodes

Consider a node that becomes empty and is unlinked from its
level’s linked list. One might think that we could reclaim that
node immediately. In fact, it is possible that there are active
threads that will still traverse it, and cursors may also refer
to it. We propose to reclaim nodes usingreference counting.
The obvious reference counting strategy is to maintain in
each node the current number of references to the node, both
from other nodes and from threads and cursors. However,
that strategy requires incrementing and decrementing reference
counts even for read-only search operations. So the actual
reference counting scheme we propose isdeferred reference
counting [24]. In this scheme we maintain in the node a count
only of the number of referencesfrom other nodes, a quantity
that does not change frequently. A node is certainly not eligible

from reclamation until this reference count is 0. (Notice that
unlinked nodes can refer to each other and to linked nodes, so
it is not obvious when the count will become 0.) But we need
to prevent reclaiming the node if there are thread or cursor
references to it. We now present one way to do that.

For each thread, and for each level of a cursor, assign an
id that is unique among all the ids currently assigned. It is
perhaps easiest to imagine the id as a direct index into a
single flat array, which we call thedynamic reference table.
In practice, one needs a scheme that is relatively fast at
assigning currently unused ids and at getting and setting the
node associated with an id.

Whenever a thread holds a reference to a node that it has
not currently acquired(in either S or X mode), the thread
stores a copy of the node reference into the thread’s unique
slot in the dynamic reference table. Likewise, when the thread
is done using that reference, it clears the slot. Similarly,when
caching a node reference in a cursor, one stores a copy of
the node reference into the unique table slot assigned to that
level of that cursor. We clear slots associated with cursors
only when reinitializing or destroying the cursor. If it were
important, itmight be possible for an asynchronous thread to
clear information in a cursor, but we view cursors as private
to threads and thus not requiring synchronization for them to
access. Allowing other threads to access cursors would impose
additional synchronization requirements, which seems unwise.

When a node’s reference count becomes 0, we scan the
dynamic reference table. (This scan may be done only peri-
odically by a background thread, if desired.) If no slots refer
to the node, we can reclaim it. This works because once we
unlink the node, no additional threads or cursors can obtain
references to the node. If some table slot refers to the node,
we cannot reclaim it. We manage the deferred reclamation
of these nodes by entering them into awatched node table,
along with a record of the table slot(s) that refer to the node.
Periodically we check to see if any watched node’s slots no
longer refer to the node. Eventually there will be no such slots
and we reclaim the node. We additionally need some means for
indicating that a thread or cursor will no longer use its dynamic
reference table slots, so that the table space can be reused or
compacted. We handle that by requiring threads toconnectto
a tree (in order to obtain a table slot) and later todisconnect
from it (freeing the slot). Since threads do not retain node
referencesbetweenB-tree operations, the connect/disconnect
protocol can be associated with accessinganyB-tree, not with
each one individually. Likewise, we require cursor finalization,
which will release the associated table slots. Our approachis
essentially a specific application of Michael’shazard pointers
technique [25].

L. Lock Granularity

In our design as presented we assumed atomic blocks (locks)
that protect one B-tree node at a time. We call thisfine-
grained locking. For those actions that require atomic access
to two or three nodes at once, we employ nested atomic blocks.
In principle, the fine-grained approach will yield the highest

concurrency (among approaches that lock only whole nodes,
as opposed to fields of nodes, etc.). However, the highest
concurrencymay not give the highestthroughput, because
locking overhead can be significant. In fact, there are reasons
to believe that in multi-core systems locking overhead willbe
relatively higher than in previous systems.

B−Tree Object

Coarse−grain Locking

Medium−grain
Locking

Leaves

Root Navigation

Cursor Navigation

Root Node

Fig. 6. Granularities of Atomic Blocks

We observe that in B-trees SMOs occur only a fraction of
the time that leaf modifications do, and become progressively
rarer at higher levels of the tree. Hence we propose to use fine-
grained locking only for levels at or below a chosenthreshold
levelof a given tree. Our implementation currently offers only
these choices for fine-grained locking: none (one lock for the
whole tree), leaves only, or all nodes fine-grained.

V. I NFORMAL CORRECTNESSCLAIMS

We first consider the issue of which nodes constitute a par-
ticular level of the tree. For each level, there is afirst node
at that level. Consider the nodes at leveln referred to by
level n+ 1 (their parents), and all the nodes reachable from
these leveln nodes by followingnextpointers. We first claim
that these are exactly the nodes of leveln whose state is not
unlinked or unrooted; we call these thelinked nodes. It is
easy to verify that nodes in statespresentand beingDeleted
have a parent referring to them. Nodes in statebeingAdded
do not have a referring parent, but a referring left sibling
that is reachable from the parent level, and will remain so
(because of SMO ordering) at least until the new node is
added at the parent level. Nodes in statedeletedlikewise have
a reachable left sibling (because they were not the first child
referred to from the parent level). Finally,unlinkednodes are
not reachable from the parent level or from any linked node.
The unrootedstate is used for an old root node when the tree
shrinks in height. It is obviously not reachable from the root,
but continues to refer to the first node of the next lower level.
Unlinked nodes continue to refer to their former sibling.

Second, we claim that the nodes of a level exactly partition
the key-value pair space from〈−∞,−∞〉 to 〈+∞,+∞〉. The
initial node starts that way, and each split maintains the

property. When deleting a node, we make its range empty
(but in sequence), “pushing” its range to the right. Thus, when
we unlink a node in the middle of a level, we maintain the
invariant. Likewise, if we delete a node at the left end of a
level, since its range is empty and starts with〈−∞,−∞〉, its
right sibling also starts with〈−∞,−∞〉.

Third, we claim that the min and max of a node never
increase. A split decreases the max of the splitting node. A
delete also decreases the max of the node being deleted, and
the “pushing” right of its range decreases its sibling’s min.
Further pushing decreases one node’s max and the next node’s
min. No node will ever have max< min; the leftmost node’s
min will always be〈−∞,−∞〉 and the rightmost node’s max
will always be〈+∞,+∞〉 (it never decreases).

Fourth, because of the non-increasing min and max of
nodes, “out of date” references from parents or non-linked
nodes can refer only to nodes whose range begins no higher
than what the referring node might assume. Thus, when search
proceeds to leveln searching for a particular pair, it will always
arrive at or to the left of the proper node. If it is to the left,it
can search to the right. It need not lock nodes (in lock coupling
style) while doing this, since the referent node’s range also
obeys the non-increasing property.

Fifth, we make the following claims concerning SMOs and
their ordering. (1) The left siblingO of a new nodeN must
be inserted in the parent level beforeN is. This is because the
ticket fromO for addingO is strictly less than the ticket from
O for addingN. (2) The right siblingN must be inserted in
the parent level beforeO is deleted. Again, this is because the
ticket fromO for addingN must be strictly less than the ticket
from O for deletingO. (3) A being-deleted nodeD must be
deleted before the nodeR receiving its range is deleted. This
is because the ticket fromR for deleting O will be strictly
less than the ticket fromR for deletingR. (4) When a nodeU
becomes unlinked, its range receiving nodeR must be linked.
This is because when theUnlinkSMO is requested,R is not
yet deleted (by (3)), so the ticket fromR for unlinkingU must
be less than the ticket fromR for unlinking R. (5) WhenU
becomes unlinked, its range receiving nodeR will be its right
sibling.U is deleted after all the nodes betweenU andR, and
thus it will be unlinked after those nodes are unlinked. Since
they’re unlinked, there is no node betweenU and R, hence
R is U ’s right sibling. (6) If in UnlinkSMO the predecessor
pred is not null, thenpred is linked and is the left sibling of
child. The fact thatpred is linked follows from the fact that a
search found it (search can find only linked nodes). It is the left
sibling because it refers tochild. These facts do not come from
ticket ordering ofUnlinkSMObut from the particular search
it does. If child is first on its level, or becomes so during the
search,pred will be null.

Why search works: At a given level when searching for pair
p, in a parent node whose range includesp we will choose the
child c that apparently containsp. When we arrive atc, it may
have a different range from what we saw in the parent, but it
can only be lower. Ifc’s maxis≤ p, we proceed to the right. In
between releasingc (in S or X mode) and acquiring its right

sibling r, r ’s range could become lower, but again, we will
simply keep searching. It is not possible to prove termination
of search, but it is not hard to see that if it terminates it gives
the correct answer, and that termination is a problem only if
other threads insert new pairs more rapidly than the searcher
can skip over them. It is also possible thatc is unlinked by
the time we examine it. However, it maintains anext pointer
to a node whosemin is ≤ the min of c (which equals themax
of c). Again, we can findp by proceeding to the right, even
thoughc was unlinked. The same holds going to the only child
of a unrooted former root node.

Why insert works: The non-split case follows from cor-
rectness of search. The split case maintains the invariants
that allow search to work. In a sense theInsertSMOis not
necessary for correctness, but itis necessary for the tree to
stabilize toO(logn) cost. The SMO ordering constraints insure
that operations pertaining to ranges containing any specific key
k (splitting, balancing, deleting (merge of ranges), etc.) execute
in the same order at the parent level as they do at the child
level. Therefore, sincek is always in the range of some node
at the child level, not only will it be in the range of some node
at parent level, in an idle tree the parent level will indicate the
exact child whose range containsk.

Why delete works: The non-SMO case again follows from
correctness of search. Otherwise, letD be the node to be
deleted andR the node receiving its key range. TheX mode
lock we keep onD prevents any pushing of range from the
left of D. The nodes betweenD and R, which are being
deleted, have already pushed their range right (ultimatelyto
R). They will be deleted from the parent level by the time
this DeleteSMOexecutes, and they will be unlinked from the
child level by the time theUnlinkSMO for D runs. So when
the SMOs run,R is D’s right sibling and is still linked (even
if D is the first node of its level, etc.).

VI. I MPLEMENTATION DETAILS

We have implemented the algorithm in C using pthreads as the
threading library. We tested the algorithm on Linux/x86 and
AIX/PowerPC machines. The implementation has three dif-
ferent components: a multi-threaded workload generator that
emulates a concurrent user workload consisting of concurrent
insert, delete, and search operations; a workload manager that
converts user requests into tree operations and also manages
auxiliary functions such as cursors and asynchronous SMO
threads (when supported); and the core Blink-tree component
that implements a non-unique key-value pair index.

Upon the first request from any thread, the workload man-
ager registers the thread and assigns it a cursor. The cursordata
structure is a stack whose size is bound by the maximum depth
of the tree. Initially it contains only one entry, which refers
to the Blink-tree root. The workload manager then invokes the
corresponding Blink-tree operation with the cursor top as the
starting point of the tree operation. We have also implemented
a non-cursor based implementation where each tree operation
always starts from the tree root.

For the most part, our prototype implementation follows the
design laid out in Section IV. The significant differences or
choices we made are as follows. We do not support rebalanc-
ing, and thus we delete a node only when it becomes empty.
While this can theoretically lead to bad space utilization, it
is simpler and has a venerable history in practice. We imple-
mented both synchronous and asynchronous SMO processing;
for asynchronous processing we use a single SMO processing
thread, which simplified the queuing protocol. We support
atomic blocks using CAS-based multiple-reader, single-writer
read-write locks. A writer waits for all concurrent readersor
any current writer to complete. A new reader waits only if
there is a current writer. This policy may starve writers, sowe
may need to revise it in the future. We implemented the read-
write locks using hardware primitives on both architectures.

Our implementation supports three lock granularities:
coarse, medium, and fine. In the coarse-grained implemen-
tation, an operation locks the entire tree; search operations
lock it in S (read) mode, whereas insert, delete, and SMO
operations lock it inX (write) mode. In the medium-grained
implementation, we lock the internal (non-leaf) sub-tree sepa-
rately from the leaves (see Figure 6). While executing search,
insert, and delete operations, the navigation phase holds the
lock on this region inS mode, while SMO operations lock
it in X mode. We lock leaf nodes individually in eitherS or
X mode as appropriate. In the fine-grained version, we lock
each tree node, leaf and non-leaf, individually inSor X mode.
Note that careful implementation of the core tree operations
into three logical phases (search, leaf, SMO) enables us to use
the same code for all three granularities.

We are currently evaluating the functionality and perfor-
mance of the implementation under varying workloads and
configuration parameters. Initial experience shows that the
medium-grained lock implementation can result in superior
concurrency and throughput. While the fine-grained imple-
mentation provides the highest concurrency, the cost of locking
and unlocking can be significant. In future systems, the relative
cost of synchronization is likely to increase, making the
situation even worse. The medium-grained implementation
executes fewer lock operations than the fine-grained imple-
mentation. Moreover, in steady state, the number of SMOs is
not significant, which reduces contention on the internal nodes
of the tree (i.e., the higher you are in the tree, the lower the
frequency ofX mode locking).

VII. C ONCLUSIONS ANDFUTURE WORK

We have shown that it is indeed possible to design and imple-
ment a highly concurrent Blink-tree using atomic blocks. Our
design indeed supports multiple lock granularities and cursors.
We obtain high concurrency through both finer-grained locking
and deferring structure modifying operations. While the design
is subtle, it appears necessarily so to obtain concurrency.

In the future we hope to offer detailed performance evalu-
ation of our algorithm, exploring lock granularity, the advan-
tages of cursors, etc., as well as implementing and comparing

with a transactional memory version. We also hope to offer a
more detailed proof of correctness.

REFERENCES

[1] R. Bayer and E. McCreight, “Organization and maintenanceof large
ordered indexes,”Acta Informatica, pp. 173–189, 1972.

[2] D. Comer, “The ubiquitous B-tree,”ACM Computing Surveys, vol. 11,
no. 2, pp. 121–137, 1979.

[3] G. Weikum and G. Vossen,Transactional Information Systems. Morgan
Kaufmann, 2002.

[4] J. K. Metzger, “Managing simultaneous operations in large ordered
indexes,” Institut Fur Informatik, Technische UniversitatMunchen, Tech.
Rep., 1975.

[5] D. Lea, Concurrent Programming in Java: Design Principles and
Patterns. Prentice Hall, 1999.

[6] T. Harris and K. Fraser, “Language support for lightweight transactions,”
in Proceedings of OOPSLA, 2003, pp. 14–25.

[7] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
support for lock-free data structures,” inProceedings of the International
Symposium on Computer Architecture, 1993, pp. 289–300.

[8] M. Herlihy and N. Shavit,The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[9] Y. Sagiv, “Concurrent operations on B* trees with overtaking,” Journal
of Computer and System Sciences, vol. 33, no. 2, pp. 275–296, 1986.

[10] D. Lomet, “Simple, robust and highly concurrent B-trees with node
deletion,” in Proceedings of the International Conference on Data
Engineering, 2004, pp. 18–28.

[11] D. Shasha and N. Goodman, “Concurrent search structure algorithms,”
ACM Transactions on Database Systems, vol. 13, no. 1, pp. 53–90, 1988.

[12] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J.W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, “System R:
Relational approach to database management,”ACM Trans. Database
Syst., vol. 1, no. 2, pp. 97–137, 1976.

[13] R. Bayer and M. Schkolnick, “Concurrency of operationson B-trees,”
Acta Informatica, vol. 9, no. 1, pp. 1–21, 1977.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,”ACM Trans-
actions on Database Systems, vol. 17, no. 1, pp. 94–162, 1992.

[15] Y. Mond and Y. Raz, “Concurrency control in B+-trees databases using
preparatory operations,” inProceedings of International Conference on
Very Large Data Bases (VLDB), 1985, pp. 331–334.

[16] G. Graefe, “Hierarchical locking in B-tree indexes,” in BTW 2007, March
2007, pp. 18–42.

[17] P. Lehman and S. B. Yao, “Efficient locking for concurrentoperations
on B-trees,”ACM Transactions on Database Systems, vol. 6, no. 4, pp.
650–670, 1981.

[18] V. Srinivasan and M. Carey, “Performance of B-tree concurrency algo-
rithms,” in Proceedings of the ACM SIGMOD Conference, 1991, pp.
416–425.

[19] T. Johnson and D. Shasha, “A framework for the performanceanalysis
of concurrent B-tree algorithms,” inProceedings of ACM Symposium on
Principles of Database Systems, 1990, pp. 273–287.

[20] K. Eswaren, J. Gray, R. Lorie, and I. Traiger, “Granularity of locks and
degrees of consistency in a shared data base,” IBM Research,Tech. Rep.
RJ1654, 1975.

[21] D. Lomet, “Process structuring, synchronization, and recovery using
atomic actions,” inProceedings of the ACM Conference on Language
Design for Reliable Software, 1977, pp. 128–137.

[22] D. Lomet and B. Salzberg, “Concurrency and recovery for index trees,”
VLDB Journal, vol. 6, no. 3, pp. 224–240, 1997.

[23] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi, “Optimizing memory
transactions,” inProceedings of the ACM Conference on Programming
Languages, Design, and Implementation, 2003, pp. 388–402.

[24] L. P. Deutsch and D. G. Bobrow, “An efficient, incremental, automatic
garbage collector,”Commun. ACM, vol. 19, no. 9, pp. 522–526, 1976.

[25] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-
free objects,”IEEE Transactions on Parallel and Distributed Systems,
vol. 15, no. 6, pp. 491–504, June 2004.

