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A C++ Modelling Environment for Stochastic Programming

Michal Kaut · Alan King · Tim Helge Hultberg

September 2008

Abstract Stochastic programming presents many challenges to modelling environments.
One major challenge is to support the efficient processing of model artifacts as stochastic
parameters change and scenarios are generated. In this paper we present an example that
combines COIN-OR packages FLOPC++ and SMI to produce a C++ program, which gen-
erates and solves the extensive form of a stochastic program known as the deterministic
equivalent. Quick updating of scenario data is enabled by writing a specialized subrou-
tine that calculates the modified data. We also discuss what stochastic extensions would be
needed to implement this capability using modelling abstractions.

Keywords stochastic programming · algebraic modelling languages and C++

1 Introduction

Modelling environments for stochastic programming must meet two opposing requirements:
they must implement a modelling paradigm familiar to users of mathematical programming
software and extend it for stochastic programming; and they must support sequential, fre-
quent, and repeated processing of model artifacts during the solution of the stochastic pro-
gram itself.

An example from financial investment illustrates the requirements. An investor wishes to
solve a multiperiod asset allocation problem, where asset returns are driven by a log-normal
factor model, and solve it using a simulation based method — for example, Stochastic Av-
erage Approximation. The algebraic model, with its inter-period wealth balance equations,
portfolio bounds, transaction costs on trades, and so forth, is most naturally modelled using
an algebraic modelling language. Monte Carlo simulation is the natural choice to generate
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the log-normal returns. The main point for us to consider is that the processing of these sim-
ulations into the optimization subproblems will require some kind of interaction with the
algebraic model.

The processing of the simulations must be efficient in two respects. First, the size of
the data communicated between modelling environment and optimization solvers must be
small enough to allow for the distribution of the artifacts. For problems of practical size, this
means that the modelling environment should not generate an entire deterministic equivalent
in serial fashion — the processing of the simulations into the optimization subproblems must
be able to be distributed. Second, the time it takes for the processing of each simulation must
be very low. Stochastic programs of realistic size and detail will require the processing of
millions of simulations, and sub-second processing times will be required. In this paper we
try to address this point by showing, through an example, the abstractions that are required
and must be made efficient.

Here is a brief overview of the literature on modelling software for stochastic program-
ming. Birge et al. (1987) developed a standard for extending the MPS format to stochas-
tic programs, which has since become known as the Stochastic MPS (SMPS) format, and
some extensions were developed in Gassmann and Schweizer (1996). SMPS was intended
to promote communication of problem instances between stochastic programming algo-
rithm developers, and there is now a reasonable collection of problem instances available at
the stochastic-programming community home page, http://www.stoprog.org. The SMPS
format was never intended to support modelling facilities, however. Gassmann and Ire-
land (1995) demonstrated how to generate an explicit representation of a stochastic pro-
gram using the subset capabilities of the modelling language AMPL. Condevaux-Lanloy
et al. (2002) discussed a technique for separating scenario generation from the modelling
language, by using the modelling language GAMS as a matrix generation service. An in-
teresting proposal for recursive model definition, as might be applied to Markov processes,
appeared in Buchanan et al. (2001). Valente et al. (2008) describes a way to extend AMPL to
handle stochastic programming problems; this has later become part of the SPInE integrated
environment, (Valente et al. 2005), which includes also a stochastic solver called FortMP.
Another extension of AMPL can be found in Fourer and Lopes (2008). MPL (Kristjansson)
has support for stochastic programming. Finally, the SLP-IOR model management system,
see (Kall and Mayer 2005), maintains a collection of stochastic programs and solvers in an
integrated environment for two-stage stochastic programs.

This paper documents a C++ modelling environment for stochastic programming based
on two projects, FLOPC++ and SMI, in the COIN-OR open source repository. Rather than
describing the entire stochastic program in the modelling environment, it follows the basic
pattern of the SMPS standard in separating the definition of the core data from the definition
of the stochastics data. Our approach builds on the fact that the FLOPC++ modeling facilities
are provided by C++ classes, so that the entire process of scenario generation can take place
within the C++ runtime. It is our hope that this will lead to a highly efficient process of
scenario generation within an algebraic modeling environment, however we do not examine
the runtime efficiency in this paper.

The paper is in three parts. The first part presents the motivation for our work, together
with an investment example we are going to model later in the paper. The second part de-
scribes the two projects our solution is based on, namely SMI for efficient processing of
stochastic programming data into optimization subproblems and FLOPC++ for processing
algebraic modelling statements inside C++. The third part develops our proposal for the
stochastic programming modelling environment, demonstrated on the investment example.
We finish with a discussion of the C++ approach and its possible generalizations.
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2 Motivation

A simple example from the literature on stochastic programming for financial applications
illustrates the requirements of a modelling system for stochastic programming. It is based
on an the “Financial Planning and Control” example from (Birge and Louveaux 1997, pp.
20–28). Applications of this type are canonical in financial portfolio management.

An investor wishes to use a trading program to maximize the expected value of a func-
tion of terminal wealth at a given future date. The program starts with a specified initial
wealth w0, and specifies proportions of that wealth x j

0 to be allocated initially to a given list
of assets j = 1, . . . ,J.

J

∑
j=1

x j
0 = w0 (1)

At each trading date t = 1, . . . ,T , the program observes the realized vector of returns rt at
date t and calculates the new wealth:

J

∑
j=1

r j
t x j

t−1 = wt . (2)

Then it specifies a new allocation xt :

J

∑
j=1

x j
t = wt . (3)

At the final period T , the program calculates the function of terminal wealth. The investor
has a target wealth in mind vT and wishes to optimize a function of the difference wT − vT .
Here we use a function that assigns a linear weight of 1.1 to positive outcomes and a penalty
weight of 1.3 to negative outcomes:

f (wT − vT ) =

{
1.1(wT − vT ) if wT ≥ vT

−1.3(vT −wT ) if wT ≤ vT
(4)

The program maximizes its expected value over the distribution of the uncertain returns:

maxE f (wT − vT ) (5)

The domain of maximization of (5) includes all allocations xt satisfying (1) for t = 0, and
(2)–(3) for all dates t = 1, . . . ,T that are non-negative and non-anticipative. Non-anticipativity
requirements distinguish stochastic programs from their deterministic counterparts. In this
example, when the program optimizes an allocation xt it takes into account the impact of the
allocation on the conditional expected value of f (wT ) given the past observations (r1, . . . ,rt)
and the current wealth state wt . The allocation xt thus depends only on the past observations.

When distributions are discretely distributed it is convenient to describe the non-anti-
cipativity structures using the device of a scenario tree. Sample paths of length t correspond
one-to-one with nodes in the collection Nt at level t in the scenario tree. Nodes in Nt
transition to the nodes in Nt+1 that share a common history of length t. The set of child
nodes to which it is possible to transition from a given node n ∈Nt is denoted by the set
n+ ⊂Nt+1. The parent of a node n ∈Nt is denoted n− ∈Nt−1. Complete paths from root
to leaf are called scenarios. Probability pn is assigned to nodes n in the natural way, by
multiplying the conditional transition probabilities along the sample path connecting the
node to the root.
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Scenario trees are a useful way to illustrate the challenges of modelling stochastic opti-
mization problems. The trading problem (1)–(5) can easily be reformulated using scenario
tree semantics:

max ∑n∈NT pn f (wn− vT )

subject to
∑

J
j=1 x j

0 = w0

∑
J
j=1 r j

nx j
n− = ∑

J
j=1 x j

n (n ∈Nt , t = 1, . . . ,T −1)
∑

J
j=1 r j

nx j
n− = wn (n ∈NT ),

(6)

where for clarity in subsequent discussions, we have eliminated the redundant wealth vari-
ables at the intermediate dates. This formulation is called the deterministic equivalent. The
allocations xn are explicitly non-anticipative because they are indexed over nodes in the sce-
nario tree, hence this is an equivalent formulation. It is deterministic because it explicitly
describes all possible sample paths in the probability space.

3 Modelling Challenges

Let us now use this example to illustrate the main issues concerning modelling for stochastic
programs.

It is natural to use an algebraic modelling language (AML) to describe the constraint
system (1)–(3). Algebraic modelling languages can parse these algebraic statements and
declare place-holders for index sets, data, variables, and constraints. Many modelling lan-
guages implement library interfaces to databases that enable index sets and data to be passed
automatically from tables generated by SQL statements.

To model the distribution of returns using an algebraic modelling language is also quite
natural for an AML. Autoregressive processes, factor models, and the like, can be mod-
eled using algebraic operations on the problem data and simulated from standard libraries
for random number generation. Inputs for these simulations can be drawn from databases
containing the various parameters and historical information.

The main difficulty for the AML lies in combining the constraint system with the distri-
bution data to produce the artifacts that are to be passed to a solver. In the case of a linear
programming solver, the matrix, right-hand side, and objective coefficients are assembled
by the AML and transported across an interface to the solver. Then solution information and
solution arrays are collected from the solver and marshaled into the AML-managed data
structures. Because the number of nodes in the scenario tree is exponential in the time index
and the base of this exponentiation is on the order of the number of states in the transition
distributions, for many problems of realistic size the deterministic equivalent stochastic pro-
gram (6) is practically impossible to handle in this manner. So, while it is nominally possible
to generate a deterministic equivalent in an AML environment, this capability is not likely
to be useful in many practical applications.

Indeed, it has long been accepted that this “curse of dimensionality” for stochastic prob-
lems implies that effective solvers will rely on parallel decomposition and simulation al-
gorithms; see Birge (1997). The challenge for the modelling environment is then how to
interact with solvers that require artifacts for the parallel generation of decomposition sub-
problems and simulations.
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4 COIN-OR libraries

The Computational Infrastructure for Operations Research (COIN-OR, see Lougee-Heimer
(2003)) is a collection of open-source projects developing software for the operations re-
search (OR) community. According to the COIN-OR web page1, the goal of the project is
“to create for mathematical software what the open literature is for mathematical theory”.
Most of the projects are released under the Common Public License (CPL), an open-source
software license published by IBM and approved by the Open Source Initiative and Free
Software Foundation (but not compatible with GPLv2). The COIN-OR project is managed
by a non-profit educational and scientific foundation The COIN-OR Foundation, Inc.

The proposed stochastic-programming tool is built upon the following two COIN-OR
projects: FLOPC++ for a modelling language and SMI for a stochastic modelling interface.
These are introduced in the following sections. In addition, we will be needing some generic
COIN-OR constructs. The most important of these is OSI, which stands for open solver
interface, COIN-OR API for interacting with callable LP and (M)IP solver libraries. The
rest will be introduced when needed.

4.1 FLOPC++

The Formulation of Linear Optimization Problems in C++ (FLOPC++, see Hultberg (2007))
is an algebraic modelling language implemented as a C++ library. In other words, it makes
it possible to specify a linear model in C++ in a way resembling the traditional modelling
languages like AMPL or GAMS—with the additional advantage of having the full strength
of the C++ language for manipulating (solving, updating, resolving) the model once it has
been created. Or, as the FLOPC++ web page2 puts it, “FLOPC++ can be used as a substitute
for traditional modelling languages, when modelling linear optimization problems, but its
principal strength lies in the fact that the modelling facilities are combined with a powerful
general purpose programming language. This combination is essential for implementing
efficient algorithms (using linear optimization for subproblems), integrating optimization
models in user applications, etc.”

4.2 SMI

SMI3 stands for Stochastic Modeling Interface and is meant to be an interface for stochastic-
programming models. The list of currently implemented features includes

– a scenario tree structure for multiperiod stochastic data
– an implementation of a Stochastic MPS (SMPS) reader
– interfaces for generating scenario trees from paths and from discrete random variables
– generating an OSI object with the deterministic equivalent problem
– parsing the solutions by stage and scenario.

The most important missing feature is a stochastic solver, which is currently being
worked upon. This means that, for now, the only way to solve the stochastic program repre-
sented by an SMI object is to create an OSI object with its deterministic equivalent and use
some of the OSI solvers to solve it.

1 See http://www.coin-or.org/
2 See https://projects.coin-or.org/FLOPC++
3 See https://projects.coin-or.org/Smi
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The structure of an SMI object is closely related to the SMPS format: we start by creating
a core model and then associate its variables and constraints with stages. The scenario tree
is then created in an SMPS-like fashion by adding scenarios one by one, specifying their
parent scenario, the stage they branch from the parent scenario and the data in which they
differ from it. Note that SMI also provides a way of generating scenarios using discrete
distributions, but we will not need this feature in this paper.

5 Modelling the investment example

In this section, we demonstrate the possibilities of combining the FLOPC++ and SMI pack-
ages on the investment examples presented in Section 2. We will only present the relevant
parts of the code. The full source code can be obtained as file investment.cpp in the ex-
amples folder of the SMI project.

5.1 The StageNodeBase class

We first discuss a generic base class StageNodeBase for stage-nodes. This is a problem-
independent base class that provides basic functions for accessing stage-dependent infor-
mation of the core model. It contains pointers to its predecessor and successor nodes, and
provides “meta-objects” to retain links to all variables and all constraints that will belong to
a node. We also include a member to express the objective function at the node, modelled as
a FLOPC++ MP_expression object. The class declaration is presented in Figure 1.

class StageNodeBase {
public:

StageNodeBase *ptParent; // pointer to parent node
StageNodeBase *ptChild; // pointers to children of this node
MP expression objFunction; // objective function at this node

vector<VariableRef *> all variables; // references to all variables
vector<MP constraint *> all constraints; // references to all constraints

StageNodeBase(StageNodeBase *ptPred)
: ptParent(ptPred), ptChild(NULL)
{

if (ptParent != NULL)
ptParent->ptChild = this; // Register with the parent

}

protected:
virtual void make obj function () {

if (ptChild)
ptChild->make obj function ();

objFunction = ptChild->objFunction; // Add node objective to this line
}

};

Fig. 1: The StageNodeBase generic base class.

The StageNodeBase constructor assumes that each node’s parent is created before the
node itself. The node’s constructor gets a pointer to the parent node and then registers itself
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as the child of its parent. (Note that all the class members are declared as public only for
the sake of brevity. Normally, one would most likely make them private and then write
separate get/set methods. This would, however, unnecessarily clutter the presentation.)

void StageNodeBase::make obj function () {
if (ptChild) {

ptChild->make obj function (); //recursive call down chain to leaf.
objFunction = ptChild->objFunction; //add any objective to this expression.

}
}

Fig. 2: The make_obj_function_() method.

The StageNodeBase class includes a make_obj_function_() method that creates the
objective function and puts it into the objFunction member (see Figure 2). The method is
intended only to be called from the root node, so it is declared protected. Only the root
node will be given a public interface. The make_obj_function_() method recurses down to
the leaf node (the last stage). Each node assigns its objFunction object to the child objective
and adds its own objective expression, if any, to the line indicated by the comment. If a node
needs to add something to the objective, then this method will have to be over-ridden.

5.2 Stage Node classes for the investment example

In the investment problem there are only three types of submodels: one for the root of the
tree, one for the leaf nodes and one for all the intermediate nodes of the tree. Each node’s
model has, obviously, different data, but the model structure is always one of the three types.
We therefore write three C++ classes for the three models, using the FLOPC++ modelling
constructs.

The StageNode class, presented in Figure 3, includes the model-dependent entities that
are common for all the nodes of the tree, modelled as FLOPC++ objects. In our example,
this means the set ASSETS and variables x and wealth. In addition, we define an index a,
for indexing over ASSETS. (These are not needed in the leaf nodes, as we shall see, but
declaring them for all nodes does no harm.) In the constructor, the set ASSETS is defined to
have nmbAssets members and the declaration x(ASSETS) declares the variable x to be in-
dexed over that set. The equation wealth_defn in every period allocates the variable wealth
among the investment variables.

The constructor of the StageNode class displays one of the basic patterns for integrat-
ing FLOPC++ with SMI. The class declares variables (using MP_variable) and constraints
(using MP_constraint), and then adds them to their respective containers all_variables
and all_constraints. This pattern is repeated in each of the derived classes. As we shall
see, it is convenient to have these containers when integrating with the SMI procedures.

The member get_wealth() demonstrates part of the pattern for retrieving values from
a solution. In this case, the method accesses the value of the wealth variable from a solution
vector. The position of the wealth variable wealth in the vector is determined from the
method wealth().getColumn().

The pattern for changing scenario data is displayed in the load_modified_matrix()

method (see Figure 4). This method updates the core matrix with the changed data values for
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class StageNode: public StageNodeBase {
public:

MP set ASSETS; // set of assets
MP index a; // index used in formulas
MP variable x; // the ”buy” variable, defined on ASSETS
MP variable wealth; // the wealth at each period
MP constraint wealth defn; // the equation defining wealth

StageNode(StageNode *ptPred, const int nmbAssets)
: StageNodeBase(ptPred), ASSETS(nmbAssets), x(ASSETS)
{

wealth defn = sum(ASSETS(a), x(a)) == wealth();

all variables.push back(new VariableRef(wealth()));
for (int a = 0; a < nmbAssets; a++) {

all variables.push back(new VariableRef(x(a)));
}
all constraints.push back(&wealth defn);

}

StageNode *get parent() {
return (StageNode *) ptParent;

}

virtual double get wealth(const double *variableValues, const int nmbVars) {
return variableValues[wealth().getColumn()];

}

MP constraint *balance constraint;
virtual void load modified matrix(CoinPackedMatrix &ADiff, double *retData);

};

Fig. 3: The StageNode class.

void load modified matrix(CoinPackedMatrix &ADiff, double *retData) {
int i = balance constraint->row number();
for (int a = 0; a < ASSETS.size(); a++) {

int j = this->get parent()->x(a).getColumn();
ADiff.modifyCoefficient(i, j, retData[a]);

}
}

Fig. 4: The load_modified_matrix method.

each scenario. In the case of our example, the data values that change with the scenario are
the returns. The row that is to be updated is pointed to by the balance_constraint object.
The indices of the matrix elements to be updated correspond to the indices of the asset
holdings x from the previous period – this is why the method accesses the x(a) members
from the parent node. The method get_parent() simply retrieves the parent pointer and
casts it to a StageNode pointer.
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5.3 Root, MidStage, and LastStage Node classes

From the StageNode class, we derive the three node-type classes that will be actually used
in the model: RootNode (Figure 5), the MidStageNode class (Figure 6), and finally, the
LastStageNode class (Figure 7).

class RootNode: public StageNode {
public:

MP constraint initialBudget; // initial budget constraint

RootNode(const int nmbAssets, const double initWealth
: StageNode(NULL, nmbAssets)
{

initialBudget() = wealth() == initWealth;

all constraints.push back(&initialBudget);
balance constraint = NULL;

}

// Public interface to the protected make obj function ()
void make objective function() {

make obj function ();
}

};

Fig. 5: The RootNode class adds an initial-wealth constraint, and the public interface for make_
obj_function_.

class MidStageNode: public StageNode {
public:

MP constraint cashFlowBalance; // cash-flow balance constraint
MP data Return; // returns of the assets at this node

MidStageNode(StageNode *ptPred, double *ptRetVect)
: StageNode(ptPred, ptPred->ASSETS.size()), Return(ptRetVect, ASSETS)
{

cashFlowBalance = sum(ASSETS(a), get parent()->x(a) * Return(a))
== wealth();

all constraints.push back(&cashFlowBalance);
balance constraint = &cashFlowBalance;

}
};

Fig. 6: The MidStageNode class adds the cash-flow-balance constraint that links the node’s
wealth to its parent’s investments.

The RootNode defines the initial-wealth constraint, which ensures that positions in the
investments add up to the starting wealth. The MP_constraint object created by this def-
inition is then added to the list of constraints that belong to the RootNode. The initial-
wealth constraint pointer is stored in the parent class’s balance_constraint for use in
the load_modified_matrix() method.
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class LastStageNode: public MidStageNode {
public:

MP variable w; // shortage variable
MP variable y; // surplus variable
MP constraint penalty; // equation defining the surplus and shortage

LastStageNode(StageNode *ptPred, double *ptRetVect, const double capTarget)
: MidStageNode(ptPred, ptRetVect)
{

penalty = wealth() + w() - y() == capTarget;

all variables.push back(new VariableRef(w()));
all variables.push back(new VariableRef(y()));
all constraints.push back(&penalty);

}
protected:

// version of make obj function () for the leaves - no recursion
void make obj function () {

objFunction = 1.3 * w() - 1.1 * y();
}

};

Fig. 7: The LastStageNode class adds the objective (4), modelled using a shortage and surplus
variable.

The MidStageNode class contains only one constraint which is the cash-flow balance
constraint. Finally, the LastStageNode class contains the variables and constraints that
model a piecewise linear penalty function around the capital target. The LastStageNode

class does not really make use of its x variables that it inherits from StageNode, but in-
cluding these superfluous variables does no harm. If we want to avoid this, we would have
added a new class for the non-leaf nodes, derived from the StageNode class, and derived the
RootNode and LastStageNode classes from it.

The code for StageNode and its derived classes displays the basic patterns that will
enable us to integrate the FLOPC++ constructions with SMI. Each node class defines the
constraints and variables that belong to its particular stage, and adds them to the contain-
ers all_constraints or all_variables, respectively. These containers allow us to iden-
tify the variables and constraints with their stage membership. The get_wealth() method
shows how each class can use the FLOPC++ interfaces to locate solution values. Finally,
each class declares a“modify” member that describes how incoming stochastic data modi-
fies the core linear program data and allows us to generate the scenarios, as we shall see.

5.4 Scenario-tree structure

To further support the creation of stochastic programs, we develop classes for scenario-tree
structures. The base class is shown in Figure 8.

For our example, we use a derived class BinTreeStruct for binary trees (see Figure 9).
The class BinTreeStruct implements the logic for getting scenario information necessary
for SMI to construct scenarios. Upon each call to get_next_scenario() it returns a vector
of node numbers, a unique scenario number, an ancestor scenario, a branching stage, and a
probability. Thus, this class encapsulates the logic of the branching pattern of the scenario
tree. The vector of node numbers, in our implementation, are offsets into the retData array,
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class ScenTreeStruct {
public:

int nmbNodes; // nodes are 0..nmbNodes-1, where 0 is root
int firstLeaf; // nodes firstLeaf..nmbNodes-1 are leaves

ScenTreeStruct(const int nNodes, const int firstL)
: nmbNodes(nNodes), firstLeaf(firstL) {}

virtual int get parent(int n) const = 0;
virtual int get nmb stages() const = 0;
virtual void get core scenario(int *scenNodeNmb) const = 0;
virtual void get next scenario(int *scenNodeNmb, int *scen, int* parentScen,

int *branchStage, double *prob) const = 0;
};

Fig. 8: The ScenTreeStruct virtual base class for scenario trees.

class BinTreeStruct : public ScenTreeStruct {
private:

int nextLeaf;
public:

// Binary tree has 2ˆT-1 nodes and the first leaf is 2ˆ(T-1)-1.
BinTreeStruct(const int T)
: ScenTreeStruct((int) pow(2.0, T) - 1, (int) pow(2.0, T-1) - 1), nmbStages(T)
{

nextLeaf = this->firstLeaf;
}

int get parent(int n) const { return (n-1) / 2; } // get parent(0) = 0

void get core scenario(int *scenNodeNmb) {
int n = this->firstLeaf;
for (int t = nmbStages; t > 0; t--) {

scenNodeNmb[t-1] = n;
n = this->get parent(n);

}
}

void get next scenario(int *scenNodeNmb, int *scen, int* parentScen,
int *branchStage, double *prob) {

if (nextLeaf == nmbNodes)
return NULL;

int n = nextLeaf;
int t = nmbStages-1;
while (n != scenNodeNmb[t]) { // add nodes not already in list

scenNodeNmb[t] = n;
n = this->get parent(n);
t--;

}
*scen = nextLeaf - this->firstLeaf; // scenario index
*parentScen = (*scen == 0 ? 0 : *scen - 1); // parent scenario
*branchStage = (*scen == 0 ? 1 : t+1); // branching scenario
*prob = 1.0 / this->getNmbScen(); // equiprobable scen.
nextLeaf++;

}
};

Fig. 9: The BinTreeStruct class.

which is declared in the main program. For better encapsulation this could be placed inside
the binary tree object, if desired.
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5.5 Putting it all together

Now, we are ready to construct the whole model. We start by creating the node models for
the core, i.e. the first scenario of the tree. The code for this part is presented in Figure 10.
Note that we present only the relevant parts of the code, skipping for example some “natural”
definitions, like saying that i and j are integers.

BinTreeStruct binTree(nmbStages); // scenario-tree object
double retData[nmbScen][nmbAssets]; // scenario data
MP model &mpCoreModel = MP model::getDefaultModel(); // FlopC++ model

int * scenNodeNmb = new int[nmbStages]; // nodes (indices) in a scenario
binTree.get core scenario(scenNodeNmb);

vector<StageNode *> coreNodes(nmbStages); // node-objects for the core

coreNodes[0] = new RootNode(nmbAssets, initBudget);
for (t = 1; t < nmbStages-1; t++)

coreNodes[t] = new MidStageNode(coreNodes[t-1], retData[scenNodeNmb[t]-1]);

coreNodes[t] = new LastStageNode(coreNodes[t-1], retData[scenNodeNmb[t]-1],
capTarget);

RootNode *ptRoot = dynamic cast<RootNode *>(coreNodes[0]);

ptRoot->make objective function(); // Create the objective func.
mpCoreModel.setObjective(ptRoot->objFunction); // Set the objective
mpCoreModel.attach(); // Attach the model

Fig. 10: The main function, part 1—creating of the core-model object. Note that we have removed
declaration of some entities, for the sake of brevity.

After some definitions, we get the node numbers of the nodes in the first scenario, using
the firstLeaf and get_parent methods of the BinTreeStruct object scTree. Then we
create a vector coreNodes of T stage-node objects and initiate them with the data from the
first scenario. Note how the different derived classes have different parameters: compared to
the MidStageNode objects, the RootNode object does not have any scenario data, while the
LastStageNode class needs in addition the value of capital target v.

Finally we create the objective function by calling the make_objective_function()

method on the root node and attaching it to the model object coreModel. The attach()

method tells FLOPC++ to process the model and create its OSI representation.

The next step is to create an SMI SmiCoreData object with the created core (determin-
istic) model—see Figure 11 for the source code. To do this, we have to get the number of
variables (columns) and constraints (rows) in the model, as well as the stage number of each
column and row. This is done using the all_variables and all_constraints objects of
the StageNodeBase class; without them, we would have to refer to all the variables and
constraints by name.

The bracket operator, used in the last line of the code, is overloaded in the MP_Model

class to point to the OSI interface to the attached LP model. In other words, the constructor
of the SmiCoreData class will get an OSI interface to the core model, the number of stages,
and the vectors of stage information for all variables and constraints as its parameters.
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// Get sizes of the created core problem
int nmbCoreCols = mpCoreModel->getNumCols();
int nmbCoreRows = mpCoreModel->getNumRows();

// Get the stage number for all variables and constraints
int *colStages = new int[nmbCoreCols];
for (t = 0; t < nmbStages; t++) {

for (j = 0; j < (int) coreNodes[t]->all variables.size(); j++) {
int colIndx = coreNodes[t]->all variables[j]->getColumn();
colStages[colIndx] = t;

}
}
// The same for constraints
int *rowStages = new int[nmbCoreRows];
for (t = 0; t < nmbStages; t++) {

for (i = 0; i < (int) coreNodes[t]->all constraints.size(); i++) {
int rowIndx = *coreNodes[t]->all constraints[i];
rowStages[rowIndx] = t;

}
}

// Build the core problem as an SMI object
SmiCoreData smiCoreData(mpCoreModel.operator->(), nmbStages,

colStages, rowStages);

Fig. 11: The main function, part 2 – creating an SMI core-data object.

Once we have the core model, we are ready to create the stochastic model, using the
code presented in Figure 12. The method get_next_scenario() provides a pointer to the
node indices into the retData array for a given scenario, and also provides the parent sce-
nario index, the branching stage, and the probability. These calculations are specific to the
particular tree (in our case we are using the method from BinTreeStruct). The scenario
is then added to the SMI SmiScnModel object stochModel using the generateScenario()

method, whose parameters are the core model, the matrix of differences wrt. the parent
scenario, branching stage, parent scenario, and the scenario probability.

By the end of the code in Figure 12, the SMI object stochModel includes the full
stochastic model and is thus ready to be solved. Unfortunately, there is currently no stochas-
tic solver that we could use, so the only option is to create an OSI object of the deterministic
equivalent using the loadOsiSolverData() method of the SmiScnModel class and then
solve the problem using one of the OSI-enabled solvers.

Despite this temporary shortcoming, we can still take advantage of the fact that the
SmiScnModel holds the information about the structure of the stochastic model. We can, for
example, compute the objective value of the stochastic program by summing up the scenario
objective values, as shown in Figure 13.

Finally, the example in Figure 14 shows the combined use of the SMI object and the
FLOPC++ stageNode objects: it traverses the whole scenario tree and reports for each sce-
nario the wealth in all the nodes along the scenario. Note how we have to provide, for each
node’s get_wealth() method, the solution vector of the corresponding scenario problem,
for the node’s model to be able to compute the wealth.
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SmiScnModel smiModel; // SMI model object
int *scenNodeNmb; // scenario NodeNumbers for accessing returns array
int scen; // scenario number
int parent; // parent scenario that current scenario branches from
int branch; // branching stage
double prob; // probability

while(scenNodeNmb = binTree.get next scenario(&scen,&parent,&branch,&prob)) {
// clean the matrix of differences - must reset dimensions!
ADiff.clear();
ADiff.setDimensions(nmbCoreRows, nmbCoreCols);

for (t=branchStage; t<nmbStages; t++) {
// load modified data into ADiff
coreNodes[t]->load modified matrix(ADiff,retData[scenNodeNmb[t]-1]);

}
//generate scenario -- only the matrix is changed in this application.
smiModel.generateScenario(&smiCoreData, &ADiff, NULL, NULL, NULL, NULL, NULL,

branch, parent, prob);
}

Fig. 12: The main function, part 3 – creating an SMI stochastic object.

double objValue = 0.0;

for (SmiScenarioIndex sc = 0; sc < smiModel.getNumScenarios(); sc ++) {
SmiScnNode *smiNode = smiModel.getLeafNode(sc); // leaf node of scen. sc
double scProb = smiNode->getModelProb(); // probability of the leaf
double scenObjVal = smiModel.getObjectiveValue(sc); // objective value
objValue += scProb * scenObjVal;

}

Fig. 13: The main function, part 4 – computing the objective function by summing up the scenario
objectives.

// Report the wealth at each node of the tree
vector<double> nodeWealth(nmbStages, 0);

for (SmiScenarioIndex sc = 0; sc < smiModel.getNumScenarios(); sc ++) {
// Get the solution for scenario sc sorted into the original (FlopC++) order:
int nmbColsInScen;
double *smiScenSol = smiModel.getColSolution(sc, &nmbColsInScen);

// Go up the tree from leaf node to root
int nodeStage = nmbStages;
SmiScnNode *smiNode = smiModel.getLeafNode(sc);
while (smiNode != NULL) {

// Get the wealth from the scenario solution
nodeWealth[nodeStage-1]

= coreNodes[nodeStage-1]->get wealth(smiScenSol, nmbColsInScen);
smiNode = smiNode->get parent();
nodeStage--;

}
free(smiScenSol);

}

Fig. 14: The main function, part 5 – computing the wealth development along all scenarios.
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5.6 Final comments

The example shows a basic pattern for combining FLOPC++ and SMI. These are based on
the following abstractions:

1. A StageNode class that associates constraints and variables with a stage descriptor, and
supplies methods for generating scenario data from stochastics data.

2. A ScenTreeStruct class that provides stochastics data for consumption by the StageNode
classes, and provides branching information for SMI.

Readers who are not experienced with C++ will probably be asking themselves at this point
whether the example represents any kind of progress towards a modelling environment! It is
true that the example contains a lot of C++ coding, so this is a natural question. Let us try to
speculate a bit on how the example could evolve towards a modelling system for stochastic
programming.

First, we observe that the user should not need to write the StageNode classes directly.
It is possible to place them into a library and invoke them by FLOPC++ style statements,
using an MP_stage abstraction:

MP_stage T(numStages);

/* .. */

cashFlowBalance(T) =

wealth(T) == sum(ASSETS, Returns(T,ASSETS) * x(T-1,ASSETS));

This abstraction conveys the relationship of constraints and variables to stages. The major
piece missing is the mapping between stochastic data and scenario generation, which in our
example is implemented by load_modified_matrix(). We want a mechanism for the user
to specify that the factor Returns will be changed when scenarios are generated. One way
to do this is to use a label:

MP_stochastic Returns(T);

With this labelling, the system would know that scenarios will be generated by assigning
new values to the factor Returns, and would be able to figure out which matrix entries
are to be updated. This information could be passed to an object whose function is to take
stochastic data as inputs and supply scenario data as outputs.

Second, we note that the main program, which uses SMI methods to generate and solve
the stochastic program, is almost completely generic. Most of this code could be placed into
a solver class for FLOPC++. The major piece that could not be treated in this fashion is the
section that reports the value of the wealth variable along each scenario. The difficulty is
that FLOPC++ does not have an explicit representation of scenarios. Possibly this could be
accomplished abstractly by extending the display() method of FLOPC++:

for(s = 0; s < MP_scenarios.size(); s++)

for(t = 0; t < T.size(); t++)

wealth(T).stoch_display(s);

The interpretation would be that MP_scenarios is an abstract data set that allows access to
the underlying SmiScnModel object.

Finally, the scenario tree objects could be placed in a library. The BinTreeStruct object
is perfectly generic, for example. One could supply arguments that describe the up and down
movements, as follows:
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MP_data up(ASSETS);

MP_data dn(ASSETS);

MP_binaryTree Returns(T, ASSETS, up, dn);

This would be sufficient to describe a binary tree that has fixed up and down movements.
One could even make the up and down movements vary over time.

6 Conclusions and future work

In this paper, we have presented a way of modelling stochastic programs in C++, combining
the power of SMI and FLOPC++ projects from the COIN-OR open source repository. The
stochastic program is modelled using a decomposition into sub-models for nodes of the
stochastic tree, plus information about the scenario-tree structure. This allows us to keep
track of the structure of the problem and therefore to take advantage of structure-exploiting
solvers—once such solvers are available.

While the proposed approach is already applicable, there are several things that can be
improved: first of all, we need some structure-exploiting solver to take the advantage of the
special structure implied by multiperiod stochastic programs. For this purpose, a Benders’
decomposition solver is currently being developed as a part of the SMI project. There is
also a plan to interface SMI with the OOPS solver, which is a parallel, structure-exploiting
interior point solver, see Gondzio and Grothey (2007). Another way of improving the ap-
plicability of the proposed solution is its deeper integration with the SMI and FLOPC++
packages, as mentioned above.
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