
RC24663 (W0810-036) October 7, 2008
Computer Science

IBM Research Report

Network Flow Based BSM Asssignment

Hua Xiang, Haoxing Ren
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Tingdong Zhou
IBM System & Technology Group

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Network Flow Based BSM Asssignment 
Hua Xiang,  Haoxing Ren,  Tingdong Zhou* 

IBM T. J. Waston Research Center 
*IBM System & Technology Group

  
Abstract— in current industry practice, Bottom Surface Metals 

(BSMs) assignment for high frequency signals on a package 

device is a tedious manual job. One often needs to change the 

assignment multiple times in order to produce a routable 

solution.  This paper proposes a network flow based method to 

assign BSMs automatically.  It constructs a network flow graph 

based on available routing resource, honoring constraints such 

as wiring/BSM blockages. Then it derives the BSM assignment 

from the min-cost max-flow solution. The resulting assignment 

is optimal in terms of routability and wirelength.  In practice, 

some high speed signals require differential pair routing. This 

paper proposes a two-step BSM assignment algorithm to handle 

these differential pair constraints. The first step constructs a bi-

partite graph which solves the BSM pairing problem 

automatically. The second step constructs a scaled flow graph 

to assign BSM pairs to differential pairs. Compared to the 

manual approach, these methods can provide an optimized 

solution which also significantly reduces the turn around time 

of board design process from days to seconds. 

I. INTRODUCTION 

The Printed Circuit Board (PCB) of high performance 
server processor board is used to mechanically support and 
electrically connect high speed devices such as Dual In-Line 
Memory Modules (DIMMs) and Multi-Chip Module (MCM) 
which houses several processor chips and their caches. The 
interconnects between these devices are often high speed 
signals which have to be routed on one PCB layer. As VLSI 
systems become more and more complex, it is quite 
challenging to complete the routing on the PCB.  

Pin locations have a huge impact on the routability and 
congestion of the interconnects, which further affect the chip 
performance and the board cost. For industry standard 
devices such as DIMMs, their pin locations are often 
predefined. But devices such as MCM are custom designed 
and their pins, so called Bottom Surface Metal (BSM), are 
assigned by package designers. Bad BSM assignments will 
result in scenic routes or require more PCB layers, which 
sometimes becomes infeasible to manufacture. Hence BSMs 
should be assigned with the PCB routing in mind. Figure 1 
illustrates a PCB carries 4 DIMMs and one MCM which 
houses 4 processor chips. The BSMs are at the bottom of 
MCM connecting the MCM to the PCB. There are usually 
thousands of high speed signals between MCM and DIMMs 
and we have to contain all the wires in a handful of signal 
layers within PCB. 

The current design process for BSM assignment has two 
steps. The first step is to divide the device BSMs into groups 
and assign each group to a specific group of signals, e.g. 
assign a BSM group for all the signals on a memory bus. The 
BSM groups are created such that there is less chance the 
wires between BSM groups can overlap. This step is often 
done manually in a GUI environment. The second step is then 

to assign the BSMs within each BSM group. This is the most 
time consuming step because the package designers have to 
manually fan out the BSMs in the group and line up them 
with the traces from other devices. The whole process needs 
several days for a processor board having 8 DIMMs. 
Furthermore, any future change to one BSM assignment 
requires reassignment of many other BSMs in the same group 
because the wring channels are already fully utilized. Clearly, 
it is highly desired to get the second step of assigning BSMs 
within a BSM group done automatically by a CAD tool. 

BSM assignment problem is similar to macro pin 
assignment in the sense that the MCM can be considered as a 
macro, and the BSMs considered as macro pins. Many 
algorithms have been proposed to perform macro pin 
assignment. Two conventional approaches are: 1): a two-step 
approach where pin assignment is followed by routing [1] [2] 
[3] [4], and 2): a net-by-net approach [5] [6] [7] [8] where pin 
assignment and routing for a single net are performed 
simultaneously. A newer approach [9] performs pin 
assignments and routing simultaneously with a min-cost max-
flow formulation. This work follows a similar spirit of that 
approach. 

Two related problems of BSM assignment are chip IO 
placement and escape routing. Although seems similar, there 
are major differences between these problems.  Chip IO 
placement assigns available chip level IO circuits to chip 
internal signals under constraints such as timing closure, 
signal integrity and power integrity. There are several works 
[10] [11] addressing this problem. They formulate it as a 
linear programming (LP) problem to optimize the wiring cost 
under electrical constraints. Although this formulation can 
also be applied to BSM assignment problem, the lack of 
routability analysis of this approach makes it unattractive. In 
high speed designs, vias seriously degrade the signal 
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Figure 1 Package hierarchy illustration 



characteristics, therefore high frequency nets are normally 
routed in a planar fashion on every layer. Hence those nets 
are routed with escape routing algorithms [12] [13] [14] [15] 
[19] that route nets in one layer, sometimes minimize or 
completely avoid crossings. Although this work uses a 
routing modeling similar to these escape routing algorithms, 
the difference of this work to them is in that the main 
objective of escape routing algorithms is to find good routes 
assuming the BSM locations are fixed, while this work is to 
find good BSM assignments, which have feasible routing 
solution.  

The main contributions of this work are:  

• We propose a min-cost max-flow based algorithm 
which gives an optimal single-ended BSM 
assignment solution in terms of routability and 
wirelength for predefined BSM groups. To the best 
of our knowledge, this is the first time such a 
solution is given for the BSM assignment problem. 

• We also propose a two-step method to extend this 
approach to handle differential pair constraints. The 
two steps are BSM pairing and pair assignment. We 
model the BSM pairing problem as a bi-partite 
problem which guarantees to return an optimal BSM 
pairing solution. The pair assignment is easily 
handled as a scaled version of the single ended BSM 
assignment problem.  

The paper is organized as follows: Section II describes the 
BSM assignment problem; Section III gives the min-cost 
max-flow network flow based algorithm to solve the single-
ended BSM assignment problem; Section IV extends this 
algorithm to deal with pair constraints; experiment results on 
three industry board designs are given in Section V followed 
by conclusion in Section VI. 

II. PROBLEM FORMULATION 

As mentioned earlier in the introduction section, the BSM 
assignment process has two steps. The first step is to define 
the BSM group for each signal group. Each BSM group may 
contain up to hundreds of signals. The BSM groups are 
selected to reduce possible wiring overlaps. For example, 
assign a set of BSMs on the left of MCM to a signal bus 
coming from left. After BSM groups are defined, the second 
step is to assign BSMs in each group. This work deals with 
the automation of the second step.   

For each BSM group, we are given a set of routing resource 
on PCB, which is defined by the BSM group assignment step. 
Assuming each BSM group is given completely non-
overlapping routing regions, we can solve the BSM 
assignment problem of each group separately. Therefore, we 
will continue our discussion based on BSM assignment of a 
single group. For the BSM assignment problem on the entire 
MCM, it can be easily solved by iteratively apply our 
approach on all BSM groups. 

Each BSM group is assigned to connect to a group of 
signals from outside devices. In the rest of the paper, we 
assume that those signal nets connect to a DIMM. Therefore 
the pin locations on one end of these nets are predefined. The 

other end of these nets is BSM and we need to assign each net 
a BSM from the given BSM group. Since vias are not 
allowed for high frequency net routing, each net needs to be 
routed completely on a single layer. To minimize the total 
number of layers, we need to assign a maximum number of 
BSMs on each layer such that all the two-pin nets between 
DIMM pins and BSMs on that layer have no crossing. 
Therefore we try to assign BSMs for a maximum number of 
nets on one layer, and iteratively assign for the remaining nets 
on other layers. 

We model the routing resource inside the routing region for 
a BSM group as a 2-D routing grid. The adjacent grid nodes 
are connected by edges which represent wire segments. Also 
the BSMs and DIMM pins are located in the centers of 
routing grids. Figure 2 gives an example of the routing grid. 
On the PCB, both the horizontal/vertical and the 45˚ diagonal 
routing are allowed. In Figure 2, the hexagons on the left side 
(i.e., d1...d6) represent the DIMM pins, and the squares on the 
right side (i.e., b1...b6) are the BSMs. Also both DIMM pins 
and BSMs can be accessed from eight directions as illustrated 
by the four horizontal/vertical line segments and the four 45˚ 
line segments. In this example, we need to assign BSM from 
(b1...b6) for each of the 6 nets connected to (d1...d6).  

d1

d2

d3

d4

d5 d6

b1

b2

b4

b3

b5

b6

 

Figure 2  A BSM assignment problem 

In practice, the BSM pitch is twice of the routing pitch. 
Furthermore, there might be pre-assigned BSMs for special 
nets such as power and ground. Those BSMs will be 
considered as blockage and ignored in the routing grid.  

III. ALGORITHM 

To solve the BSM problem, we first construct a network 
graph G = (V, E) based on the routing grid, and then apply a 
min-cost max-flow algorithm [17] to get a maximum flow 
solution. The optimal BSM assignment can be derived from 
the flow solution. 

 
First, two nodes, a source node and a sink node are 

created. The source node is connected to the DIMM pin 
nodes, while all the BSM nodes are connected to the sink 
node. 



Second, the input graph for a min-cost max-flow algorithm 
is required to be a directed graph. Therefore, each edge on 
the routing grid (except the edges connecting to DIMM pins 
and BSMs) is represented by two edges with opposite 
directions. The edges between a BSM pin node and a routing 
grid node are from the routing grid node to the BSM pin 
node since the routing ends once the pins are reached. 
Similarly, the edges between a DIMM pin node and a 
routing grid node are from the DIMM pin nodes to routing 
grid nodes. 

 In this model, each edge and each node have a capacity 
which specifies how many wires are allowed to go through. 
To prevent routing crossing, capacity of each edge and node 
is set to 1 since only one route is allowed. Also each edge in 
the routing grid is associated with a cost 1. The edge cost 
helps to shorten the total routing wire length. The edges 
between a source/sink node and a pin/BSM node are 
artificially created, and their cost is 0. Figure 3 shows the 
graph construction for the problem in Figure 2. The two 
numbers in each number pairs on edges are the edge capacity 

and cost, respectively. 
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Figure 3 Network flow graph construction 

As we note that the classical network flow problem only 
assigns capacities on flow edges. We handle node capacity 
by splitting the node Q into two nodes Qin and Qout. One 
edge is added between Qin and Qout with a capacity 1 and a 
cost 0. Then all the original incoming edges are pointed to 
Qin while all the original out-coming edges are pointed out 

from Qout. Figure 4 illustrates the idea of the node splitting. 

Once the network flow graph is constructed, the min-cost 
max-flow algorithm can be applied to find an optimal flow 
solution. We can then derive the BSM assignment from the 
flow solution.  Each flow from the source node to the sink 
node should pass one DIMM pin node and one BSM node. 
This BSM is then assigned for the net connected to the 
DIMM pin. The thick lines in Figure 3 show the flow 
solution to the example in Figure 2. And the pin assignment 
solution is (d1, b1) (d2, b3) (d3, b2) (d4, b4) (d5, b5) (d6, b6). 

 

 
Figure 4  Node splitting for node capacity 

The optimality of the min-cost max-flow algorithm 
guarantees that the maximum number of feasible nets can get 
connected. Therefore, if the problem has a feasible solution, 
the algorithm guarantees to return one. Furthermore, the 
edge cost helps to identify a solution which has the minimum 
total wire length so that more routing resource can be saved 

for future usage. 

After applying network flow algorithm on one layer, some 
BSMs may not be assigned due to the routing resource 
limitation. In this case, we can construct the flow graph for 
the unassigned BSMs on another layer and apply the 
algorithm again. By repeating this process, finally all BSMs 
can get assigned. It is easy to see that the number of routing 

layers for the given BSM problem is also minimized. 

We now summarize the BSMA (BSM Assignment) 
algorithm as follows. NETS is the set of nets to get 

connected between the DIMM pins and the BSM pins. 

BSMA Algorithm (NETS) 
1. layerID = 0; 
2. netset = NETS; 
3. while (|netset| > 0) 
4.       Construct the network graph for LayerID 
5.       Assign capacity and cost 
6.       Apply the min-cost max-flow algorithm 
7.       Record the BSM assignment to RoutedNets 
8.       netset = netset – RoutedNets 
9.       LayerID ++ 
10.       if (LayerID > Available_Layers) 
11.           return “No Feasible Solution” 
12. endwhile 

 

Theorem 1. The BSMA algorithm can exactly solve the 
BSM problems. The algorithm guarantees to find the 
minimum number of routing layers with a feasible BSM 
assignment solution as long as one solution exists. 
Furthermore, the returned solution has the minimum total 

wire length. 

Finding a min-cost max-flow solution in a flow network is 
a classical problem, and several polynomial algorithms are 
available [17] [18] [12]. Also the maximum number of 
routing layers is fixed for a given design. Therefore, if the 
double scaling algorithm in [17] is used, the time complexity 
of the BSMA algorithm can be bounded by O(VElogV) 
where V is the number of nodes in G and E is the number of 



edges. It is easy to see that both V and E are linearly 

bounded by the nodes in the routing grid. 

IV. PAIRING CONSTRAINTS 

Advanced server designs often use differential pair as 
signaling technique for high frequency signals.  The routing 
paths of differential pairs are required to be close enough, in 
other words, those paired nets should be routed together and 
their BSMs should be adjacent. For convenience, we call the 
BSM problem with the pairing constraints as PBSM (Paired 
BSM) problem. 

Usually the differential pairs are assigned in two steps:  

1) Pair up two adjacent BSMs.  

2) Assign the BSM pairs to differential pairs.  

However, both steps are done MANUALLY in industry.  

In this section, we extended the BSMA algorithm to 
handle the pairing constraints. We still take the conventional 

two-step approach but both steps are done automatically.  

We still use the example in Figure 2 to illustrate our idea. 
Please note that in practice, the BSM pitch is twice of the 
routing pitch. To solve the PBSM problem, we start from 
constructing a scaled routing grid as outlined by the dark 
blue grid in Figure 6. Every two adjacent 
horizontal/vertical/45˚ edges are represented by one dark 
grid edge. For example, the first two vertical lines are 
represented by the first dark vertical line, and the 3rd and the 
4th vertical lines correspond to the 2nd dark vertical line. The 
constructed dark grid is used for both BSM pairing and 

PBSM assignment. 

BSM Pairing The first step of our PBSM algorithm is to 
pair up two adjacent BSMs. A BSM can be paired with a 
BSM on its up, down, left and right side, but not diagonal 
side. Since any two horizontal or vertical adjacent BSMs can 
be assigned as a pair, there are many BSM pair 
configurations. If we arbitrarily assign two adjacent BSMs as 
a pair, it is very likely that some BSMs cannot get paired. 
For example, for the 6 BSMs in Figure 2, if we make b2 and 
b3 as a pair, then b1 and b4 cannot be paired.  In this section, 
we convert the BSM pairing problem into a bi-partite graph 

so that an optimal pairing configuration can be identified.  

Based on the scaled grid, we color the whole grid as a chess 
board. Figure 5 (a) shows the grid piece that covers all of the 
BSMs. In this way, we divide the BSMs into two groups: 
BSMs in dark grid tiles and BSMs in white grid tiles. For 
convenience, we call the two types of nodes as dark BSMs 
and white BSMs, respectively. For any dark BSM, if there 
are adjacent white BSMs, then edges are created between the 
dark BSM and the white BSMs. In Figure 5, the white BSM 
b3 and b1 are the neighbors of the black BSM b2. So two 
edges are created which point from b2 to b1 and b3, 
respectively. It also means that b2 can be paired with either 

b1 or b3. 

This graph is a bi-partite graph because there is no edge 
between dark nodes or between light nodes. Also the edges 

represent all the pairing possibility between two BSMs.   
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b4

 
(a) (b) 

Figure 5 (a) The corresponding flow network for the bi-
partite graph to do BSM pairing (b) A BSM pairing solution 

Solving a bi-partite problem is simple. We can construct a 
direct network flow graph using dark BSM nodes as source 
nodes, white BSM nodes as sink nodes, and flow edges from 
dark BSMs to white BSMs with a capacity of 1 as shown in 
Figure 5 (a). The maximum flow solution is a maximum pair 
assignment solution. The nodes connected by an edge with 
flow are a pair as indicated with ellipses in Figure 5 (b).  The 

BSM_Pairing algorithm is summarized as follows. 

BSM_ Pairing Algorithm  
1. Setup the scaled grid 
2. Color the scaled grid as a chess board 
3. Construct the bi-partite flow network  
4. Apply the max-flow algorithm 
5. Derive the BSM pairing solution 

 

Theorem 2. The BSM_Pairing algorithm can exactly 
solved the BSM pairing problems with the guarantee that the 

maximum number of BSM pairs can be identified. 

PBSM Assignment After BSM pair assignment, the 
second step is to assign differential pairs to BSM pairs. We 
still draw on the network flow to derive the assignment 
solution.  

To satisfy the pairing constraints, we treat each pair of nets 
as one supper net. In this case, one supper net routing 
actually requires a routing resource for two nets.  Therefore, 
we perform the net routing on the scaled graph as the dark 
grid in Figure 6. For DIMM pins, they are already paired, 
and the pairing information is a part of the input. For paired 
DIMM pins and BSMs, we let the middle point of a pair of 
DIMMs/BSMs as the pseudo DIMM/BSM pin location (i.e., 
the center of the ellipses in Figure 6). Then the source node 



is connected to all the pseudo DIMM pins, and all the pseudo 
BSM pins are connected to the sink node. Of course, the 
number of flows pushed on the scaled graph is the number of 
net pairs (i.e., half of the total nets). For the scaled graph, the 
edge capacity and node capacity are still 1 since it means a 
supper net (a pair of two nets). Using the scaled flow 
network graph, we can find a routing solution for all pairs as 

the thick lines (in orange, pink and green colors) in Figure 6. 
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Figure 6 A scaled network flow solution 

Similar to the single-ended BSM problem, we can derive 
the assignment of BSM pairs to differential pairs from the 
min-cost max-flow solution of the scaled flow graph. Once 
we get the pair assignment, one more step is required to split 
one path into two paths in the original routing grid as 
illustrated in Figure 7. 
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Figure 7 A PBSM solution based on the path splitting 

The PBSMA (PBSM Assignment) algorithm is 
summarized as follows. 

 

PBSMA Algorithm (NETS) 
1. layerID = 0; 
2. netset = NETS; 
3. while (|netset| > 0) 
4.       Construct the scaled network graph for LayerID 
5.       Assign capacity and cost 
6.       Apply the min-cost max-flow algorithm 
7.       Split each path into two paths on the original grid 
8.       Record the pin assignment solution to RoutedNets 
9.       netset = netset – RoutedNets 
10.       LayerID ++ 
11.       if (LayerID > Available_Layers) 
12.           return “No Feasible Solution” 

13. endwhile 

V. EXPERIMENTAL RESULTS 

We implement the proposed algorithm in C on an AIX 
workstation (1.6GHz). The test cases are derived from 
industry designs. Table 1 summarizes the basic information 

of the three test cases.  

Table 1. Test Case Property 

Test 
Routing 
Region 

#BSMs #nets 
Pairing 

constraints 

Test1 300x600 108 108 N 

Test2 300x600 108 108 N 

Test3 300x600 113 108 Y 

 
As shown in Figure 8, Test1 has two connector modules 

(on the left) connecting to a MCM (on the right). Like 
DIMM pins, the connector pins are predefined. We only 
need to assign a critical group of BSMs allocated to connect 
to those pins. The red lines show the connections between 
connector pin and its assigned BSM using BSMA algorithm. 

 

 
Figure 8  Rat nets of  the BSM assignment  for Test1 



Table 2 shows the results of the two algorithms. For all 
three testcases, the BSM assignments are completed using 
only one layer and the runtimes are less than one minute. 
(When the BSMA algorithm is applied, the pairing 
constraints are ignored.) The running time for PBSMA 
algorithm is even much faster because the underlying flow 
network is smaller. In practice, for this kind of test cases, 
designers have to do the pin pairing/assignment manually, 

and it takes several days to complete one design. 

Table 2. Test Results 

Test Algorithm Layers Assigned 
BSMs 

Total  
Wirelength 

Run Time 
(s) 

Test1 BSMA 1 108 29380.72 48.7s 

Test2 BSMA 1 108 26552.80 46.2s 

Test3 BSMA 1 108 26384.04 46.7s 

Test3 PBSMA 1 108 27043.01 7.77s 

 

Test3 is a test case with the pairing constraints. With the 
BSMA algorithm, the pairing constraints are not honored. 
One the other hand, the PBSMA algorithm generates a 
solution so that the paired nets can get similar routing path. 
Figure 9 shows a piece of the routing and pin assignment of 
Test3. The purple thin wires are the routing guide generated 
by the scaled network flow, and the blue thick wires show 
the routing path of each net. Comparing to the optimal 
BSMA solution, the total wirelength of Test3 with PBSMA 
algorithm only increases 2.5%. This also validates the 

efficiency of the PBSMA algorithm.  

 

 
Figure 9 A piece of Test3 BSM assignment solution with 

pairing constraints. 
 

VI. CONCLUSION 

In this paper, we address the BSM (Bottom Surface Metals) 
assignment problem. In the current industry practice, this 
kind of problems is handled manually, which takes long time 
(measured by days) and big design efforts. We propose a 
network flow based algorithm which can optimally solve the 
general BSM problems within a few seconds. For the BSM 

problem with differential pairing constraints, we develop a 
two-step BSM assignment algorithm. The first step finds the 
optimal solution for BSM pairing, and the second step 
assigns BSMs based on a scaled flow network so that the 
pairing constraints are honored. The experimental results 
demonstrate the effective and efficiency of our algorithms. 
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