
RC24663 (W0810-036) October 7, 2008
Computer Science

IBM Research Report

Network Flow Based BSM Asssignment

Hua Xiang, Haoxing Ren
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Tingdong Zhou
IBM System & Technology Group

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Network Flow Based BSM Asssignment
Hua Xiang, Haoxing Ren, Tingdong Zhou*

IBM T. J. Waston Research Center
*IBM System & Technology Group

Abstract— in current industry practice, Bottom Surface Metals

(BSMs) assignment for high frequency signals on a package

device is a tedious manual job. One often needs to change the

assignment multiple times in order to produce a routable

solution. This paper proposes a network flow based method to

assign BSMs automatically. It constructs a network flow graph

based on available routing resource, honoring constraints such

as wiring/BSM blockages. Then it derives the BSM assignment

from the min-cost max-flow solution. The resulting assignment

is optimal in terms of routability and wirelength. In practice,

some high speed signals require differential pair routing. This

paper proposes a two-step BSM assignment algorithm to handle

these differential pair constraints. The first step constructs a bi-

partite graph which solves the BSM pairing problem

automatically. The second step constructs a scaled flow graph

to assign BSM pairs to differential pairs. Compared to the

manual approach, these methods can provide an optimized

solution which also significantly reduces the turn around time

of board design process from days to seconds.

I. INTRODUCTION

The Printed Circuit Board (PCB) of high performance
server processor board is used to mechanically support and
electrically connect high speed devices such as Dual In-Line
Memory Modules (DIMMs) and Multi-Chip Module (MCM)
which houses several processor chips and their caches. The
interconnects between these devices are often high speed
signals which have to be routed on one PCB layer. As VLSI
systems become more and more complex, it is quite
challenging to complete the routing on the PCB.

Pin locations have a huge impact on the routability and
congestion of the interconnects, which further affect the chip
performance and the board cost. For industry standard
devices such as DIMMs, their pin locations are often
predefined. But devices such as MCM are custom designed
and their pins, so called Bottom Surface Metal (BSM), are
assigned by package designers. Bad BSM assignments will
result in scenic routes or require more PCB layers, which
sometimes becomes infeasible to manufacture. Hence BSMs
should be assigned with the PCB routing in mind. Figure 1
illustrates a PCB carries 4 DIMMs and one MCM which
houses 4 processor chips. The BSMs are at the bottom of
MCM connecting the MCM to the PCB. There are usually
thousands of high speed signals between MCM and DIMMs
and we have to contain all the wires in a handful of signal
layers within PCB.

The current design process for BSM assignment has two
steps. The first step is to divide the device BSMs into groups
and assign each group to a specific group of signals, e.g.
assign a BSM group for all the signals on a memory bus. The
BSM groups are created such that there is less chance the
wires between BSM groups can overlap. This step is often
done manually in a GUI environment. The second step is then

to assign the BSMs within each BSM group. This is the most
time consuming step because the package designers have to
manually fan out the BSMs in the group and line up them
with the traces from other devices. The whole process needs
several days for a processor board having 8 DIMMs.
Furthermore, any future change to one BSM assignment
requires reassignment of many other BSMs in the same group
because the wring channels are already fully utilized. Clearly,
it is highly desired to get the second step of assigning BSMs
within a BSM group done automatically by a CAD tool.

BSM assignment problem is similar to macro pin
assignment in the sense that the MCM can be considered as a
macro, and the BSMs considered as macro pins. Many
algorithms have been proposed to perform macro pin
assignment. Two conventional approaches are: 1): a two-step
approach where pin assignment is followed by routing [1] [2]
[3] [4], and 2): a net-by-net approach [5] [6] [7] [8] where pin
assignment and routing for a single net are performed
simultaneously. A newer approach [9] performs pin
assignments and routing simultaneously with a min-cost max-
flow formulation. This work follows a similar spirit of that
approach.

Two related problems of BSM assignment are chip IO
placement and escape routing. Although seems similar, there
are major differences between these problems. Chip IO
placement assigns available chip level IO circuits to chip
internal signals under constraints such as timing closure,
signal integrity and power integrity. There are several works
[10] [11] addressing this problem. They formulate it as a
linear programming (LP) problem to optimize the wiring cost
under electrical constraints. Although this formulation can
also be applied to BSM assignment problem, the lack of
routability analysis of this approach makes it unattractive. In
high speed designs, vias seriously degrade the signal

MCM

chip
DIMM

PCB

chip

chip

chip

chip

chip

BSM side view

top view

PCB

MCM

Figure 1 Package hierarchy illustration

characteristics, therefore high frequency nets are normally
routed in a planar fashion on every layer. Hence those nets
are routed with escape routing algorithms [12] [13] [14] [15]
[19] that route nets in one layer, sometimes minimize or
completely avoid crossings. Although this work uses a
routing modeling similar to these escape routing algorithms,
the difference of this work to them is in that the main
objective of escape routing algorithms is to find good routes
assuming the BSM locations are fixed, while this work is to
find good BSM assignments, which have feasible routing
solution.

The main contributions of this work are:

• We propose a min-cost max-flow based algorithm
which gives an optimal single-ended BSM
assignment solution in terms of routability and
wirelength for predefined BSM groups. To the best
of our knowledge, this is the first time such a
solution is given for the BSM assignment problem.

• We also propose a two-step method to extend this
approach to handle differential pair constraints. The
two steps are BSM pairing and pair assignment. We
model the BSM pairing problem as a bi-partite
problem which guarantees to return an optimal BSM
pairing solution. The pair assignment is easily
handled as a scaled version of the single ended BSM
assignment problem.

The paper is organized as follows: Section II describes the
BSM assignment problem; Section III gives the min-cost
max-flow network flow based algorithm to solve the single-
ended BSM assignment problem; Section IV extends this
algorithm to deal with pair constraints; experiment results on
three industry board designs are given in Section V followed
by conclusion in Section VI.

II. PROBLEM FORMULATION

As mentioned earlier in the introduction section, the BSM
assignment process has two steps. The first step is to define
the BSM group for each signal group. Each BSM group may
contain up to hundreds of signals. The BSM groups are
selected to reduce possible wiring overlaps. For example,
assign a set of BSMs on the left of MCM to a signal bus
coming from left. After BSM groups are defined, the second
step is to assign BSMs in each group. This work deals with
the automation of the second step.

For each BSM group, we are given a set of routing resource
on PCB, which is defined by the BSM group assignment step.
Assuming each BSM group is given completely non-
overlapping routing regions, we can solve the BSM
assignment problem of each group separately. Therefore, we
will continue our discussion based on BSM assignment of a
single group. For the BSM assignment problem on the entire
MCM, it can be easily solved by iteratively apply our
approach on all BSM groups.

Each BSM group is assigned to connect to a group of
signals from outside devices. In the rest of the paper, we
assume that those signal nets connect to a DIMM. Therefore
the pin locations on one end of these nets are predefined. The

other end of these nets is BSM and we need to assign each net
a BSM from the given BSM group. Since vias are not
allowed for high frequency net routing, each net needs to be
routed completely on a single layer. To minimize the total
number of layers, we need to assign a maximum number of
BSMs on each layer such that all the two-pin nets between
DIMM pins and BSMs on that layer have no crossing.
Therefore we try to assign BSMs for a maximum number of
nets on one layer, and iteratively assign for the remaining nets
on other layers.

We model the routing resource inside the routing region for
a BSM group as a 2-D routing grid. The adjacent grid nodes
are connected by edges which represent wire segments. Also
the BSMs and DIMM pins are located in the centers of
routing grids. Figure 2 gives an example of the routing grid.
On the PCB, both the horizontal/vertical and the 45˚ diagonal
routing are allowed. In Figure 2, the hexagons on the left side
(i.e., d1...d6) represent the DIMM pins, and the squares on the
right side (i.e., b1...b6) are the BSMs. Also both DIMM pins
and BSMs can be accessed from eight directions as illustrated
by the four horizontal/vertical line segments and the four 45˚
line segments. In this example, we need to assign BSM from
(b1...b6) for each of the 6 nets connected to (d1...d6).

d1

d2

d3

d4

d5 d6

b1

b2

b4

b3

b5

b6

Figure 2 A BSM assignment problem

In practice, the BSM pitch is twice of the routing pitch.
Furthermore, there might be pre-assigned BSMs for special
nets such as power and ground. Those BSMs will be
considered as blockage and ignored in the routing grid.

III. ALGORITHM

To solve the BSM problem, we first construct a network
graph G = (V, E) based on the routing grid, and then apply a
min-cost max-flow algorithm [17] to get a maximum flow
solution. The optimal BSM assignment can be derived from
the flow solution.

First, two nodes, a source node and a sink node are

created. The source node is connected to the DIMM pin
nodes, while all the BSM nodes are connected to the sink
node.

Second, the input graph for a min-cost max-flow algorithm
is required to be a directed graph. Therefore, each edge on
the routing grid (except the edges connecting to DIMM pins
and BSMs) is represented by two edges with opposite
directions. The edges between a BSM pin node and a routing
grid node are from the routing grid node to the BSM pin
node since the routing ends once the pins are reached.
Similarly, the edges between a DIMM pin node and a
routing grid node are from the DIMM pin nodes to routing
grid nodes.

 In this model, each edge and each node have a capacity
which specifies how many wires are allowed to go through.
To prevent routing crossing, capacity of each edge and node
is set to 1 since only one route is allowed. Also each edge in
the routing grid is associated with a cost 1. The edge cost
helps to shorten the total routing wire length. The edges
between a source/sink node and a pin/BSM node are
artificially created, and their cost is 0. Figure 3 shows the
graph construction for the problem in Figure 2. The two
numbers in each number pairs on edges are the edge capacity

and cost, respectively.

(1, 0)
(1, 0)

(1
, 0
)(1

, 0
)(1

, 0
)

(1
, 0
)

(1
, 0
)(1

, 0
)

Figure 3 Network flow graph construction

As we note that the classical network flow problem only
assigns capacities on flow edges. We handle node capacity
by splitting the node Q into two nodes Qin and Qout. One
edge is added between Qin and Qout with a capacity 1 and a
cost 0. Then all the original incoming edges are pointed to
Qin while all the original out-coming edges are pointed out

from Qout. Figure 4 illustrates the idea of the node splitting.

Once the network flow graph is constructed, the min-cost
max-flow algorithm can be applied to find an optimal flow
solution. We can then derive the BSM assignment from the
flow solution. Each flow from the source node to the sink
node should pass one DIMM pin node and one BSM node.
This BSM is then assigned for the net connected to the
DIMM pin. The thick lines in Figure 3 show the flow
solution to the example in Figure 2. And the pin assignment
solution is (d1, b1) (d2, b3) (d3, b2) (d4, b4) (d5, b5) (d6, b6).

Figure 4 Node splitting for node capacity

The optimality of the min-cost max-flow algorithm
guarantees that the maximum number of feasible nets can get
connected. Therefore, if the problem has a feasible solution,
the algorithm guarantees to return one. Furthermore, the
edge cost helps to identify a solution which has the minimum
total wire length so that more routing resource can be saved

for future usage.

After applying network flow algorithm on one layer, some
BSMs may not be assigned due to the routing resource
limitation. In this case, we can construct the flow graph for
the unassigned BSMs on another layer and apply the
algorithm again. By repeating this process, finally all BSMs
can get assigned. It is easy to see that the number of routing

layers for the given BSM problem is also minimized.

We now summarize the BSMA (BSM Assignment)
algorithm as follows. NETS is the set of nets to get

connected between the DIMM pins and the BSM pins.

BSMA Algorithm (NETS)
1. layerID = 0;
2. netset = NETS;
3. while (|netset| > 0)
4. Construct the network graph for LayerID
5. Assign capacity and cost
6. Apply the min-cost max-flow algorithm
7. Record the BSM assignment to RoutedNets
8. netset = netset – RoutedNets
9. LayerID ++
10. if (LayerID > Available_Layers)
11. return “No Feasible Solution”
12. endwhile

Theorem 1. The BSMA algorithm can exactly solve the
BSM problems. The algorithm guarantees to find the
minimum number of routing layers with a feasible BSM
assignment solution as long as one solution exists.
Furthermore, the returned solution has the minimum total

wire length.

Finding a min-cost max-flow solution in a flow network is
a classical problem, and several polynomial algorithms are
available [17] [18] [12]. Also the maximum number of
routing layers is fixed for a given design. Therefore, if the
double scaling algorithm in [17] is used, the time complexity
of the BSMA algorithm can be bounded by O(VElogV)
where V is the number of nodes in G and E is the number of

edges. It is easy to see that both V and E are linearly

bounded by the nodes in the routing grid.

IV. PAIRING CONSTRAINTS

Advanced server designs often use differential pair as
signaling technique for high frequency signals. The routing
paths of differential pairs are required to be close enough, in
other words, those paired nets should be routed together and
their BSMs should be adjacent. For convenience, we call the
BSM problem with the pairing constraints as PBSM (Paired
BSM) problem.

Usually the differential pairs are assigned in two steps:

1) Pair up two adjacent BSMs.

2) Assign the BSM pairs to differential pairs.

However, both steps are done MANUALLY in industry.

In this section, we extended the BSMA algorithm to
handle the pairing constraints. We still take the conventional

two-step approach but both steps are done automatically.

We still use the example in Figure 2 to illustrate our idea.
Please note that in practice, the BSM pitch is twice of the
routing pitch. To solve the PBSM problem, we start from
constructing a scaled routing grid as outlined by the dark
blue grid in Figure 6. Every two adjacent
horizontal/vertical/45˚ edges are represented by one dark
grid edge. For example, the first two vertical lines are
represented by the first dark vertical line, and the 3rd and the
4th vertical lines correspond to the 2nd dark vertical line. The
constructed dark grid is used for both BSM pairing and

PBSM assignment.

BSM Pairing The first step of our PBSM algorithm is to
pair up two adjacent BSMs. A BSM can be paired with a
BSM on its up, down, left and right side, but not diagonal
side. Since any two horizontal or vertical adjacent BSMs can
be assigned as a pair, there are many BSM pair
configurations. If we arbitrarily assign two adjacent BSMs as
a pair, it is very likely that some BSMs cannot get paired.
For example, for the 6 BSMs in Figure 2, if we make b2 and
b3 as a pair, then b1 and b4 cannot be paired. In this section,
we convert the BSM pairing problem into a bi-partite graph

so that an optimal pairing configuration can be identified.

Based on the scaled grid, we color the whole grid as a chess
board. Figure 5 (a) shows the grid piece that covers all of the
BSMs. In this way, we divide the BSMs into two groups:
BSMs in dark grid tiles and BSMs in white grid tiles. For
convenience, we call the two types of nodes as dark BSMs
and white BSMs, respectively. For any dark BSM, if there
are adjacent white BSMs, then edges are created between the
dark BSM and the white BSMs. In Figure 5, the white BSM
b3 and b1 are the neighbors of the black BSM b2. So two
edges are created which point from b2 to b1 and b3,
respectively. It also means that b2 can be paired with either

b1 or b3.

This graph is a bi-partite graph because there is no edge
between dark nodes or between light nodes. Also the edges

represent all the pairing possibility between two BSMs.

b1

b5

b6

b3b2

b4

(a) (b)

Figure 5 (a) The corresponding flow network for the bi-
partite graph to do BSM pairing (b) A BSM pairing solution

Solving a bi-partite problem is simple. We can construct a
direct network flow graph using dark BSM nodes as source
nodes, white BSM nodes as sink nodes, and flow edges from
dark BSMs to white BSMs with a capacity of 1 as shown in
Figure 5 (a). The maximum flow solution is a maximum pair
assignment solution. The nodes connected by an edge with
flow are a pair as indicated with ellipses in Figure 5 (b). The

BSM_Pairing algorithm is summarized as follows.

BSM_ Pairing Algorithm
1. Setup the scaled grid
2. Color the scaled grid as a chess board
3. Construct the bi-partite flow network
4. Apply the max-flow algorithm
5. Derive the BSM pairing solution

Theorem 2. The BSM_Pairing algorithm can exactly
solved the BSM pairing problems with the guarantee that the

maximum number of BSM pairs can be identified.

PBSM Assignment After BSM pair assignment, the
second step is to assign differential pairs to BSM pairs. We
still draw on the network flow to derive the assignment
solution.

To satisfy the pairing constraints, we treat each pair of nets
as one supper net. In this case, one supper net routing
actually requires a routing resource for two nets. Therefore,
we perform the net routing on the scaled graph as the dark
grid in Figure 6. For DIMM pins, they are already paired,
and the pairing information is a part of the input. For paired
DIMM pins and BSMs, we let the middle point of a pair of
DIMMs/BSMs as the pseudo DIMM/BSM pin location (i.e.,
the center of the ellipses in Figure 6). Then the source node

is connected to all the pseudo DIMM pins, and all the pseudo
BSM pins are connected to the sink node. Of course, the
number of flows pushed on the scaled graph is the number of
net pairs (i.e., half of the total nets). For the scaled graph, the
edge capacity and node capacity are still 1 since it means a
supper net (a pair of two nets). Using the scaled flow
network graph, we can find a routing solution for all pairs as

the thick lines (in orange, pink and green colors) in Figure 6.

(1
, 0
)

(1
, 0
) (1

, 0
)

Figure 6 A scaled network flow solution

Similar to the single-ended BSM problem, we can derive
the assignment of BSM pairs to differential pairs from the
min-cost max-flow solution of the scaled flow graph. Once
we get the pair assignment, one more step is required to split
one path into two paths in the original routing grid as
illustrated in Figure 7.

d1

d2

d3

d4

d5 d6

b1

b2

b4

b3

b5

b6

Figure 7 A PBSM solution based on the path splitting

The PBSMA (PBSM Assignment) algorithm is
summarized as follows.

PBSMA Algorithm (NETS)
1. layerID = 0;
2. netset = NETS;
3. while (|netset| > 0)
4. Construct the scaled network graph for LayerID
5. Assign capacity and cost
6. Apply the min-cost max-flow algorithm
7. Split each path into two paths on the original grid
8. Record the pin assignment solution to RoutedNets
9. netset = netset – RoutedNets
10. LayerID ++
11. if (LayerID > Available_Layers)
12. return “No Feasible Solution”

13. endwhile

V. EXPERIMENTAL RESULTS

We implement the proposed algorithm in C on an AIX
workstation (1.6GHz). The test cases are derived from
industry designs. Table 1 summarizes the basic information

of the three test cases.

Table 1. Test Case Property

Test
Routing
Region

#BSMs #nets
Pairing

constraints

Test1 300x600 108 108 N

Test2 300x600 108 108 N

Test3 300x600 113 108 Y

As shown in Figure 8, Test1 has two connector modules

(on the left) connecting to a MCM (on the right). Like
DIMM pins, the connector pins are predefined. We only
need to assign a critical group of BSMs allocated to connect
to those pins. The red lines show the connections between
connector pin and its assigned BSM using BSMA algorithm.

Figure 8 Rat nets of the BSM assignment for Test1

Table 2 shows the results of the two algorithms. For all
three testcases, the BSM assignments are completed using
only one layer and the runtimes are less than one minute.
(When the BSMA algorithm is applied, the pairing
constraints are ignored.) The running time for PBSMA
algorithm is even much faster because the underlying flow
network is smaller. In practice, for this kind of test cases,
designers have to do the pin pairing/assignment manually,

and it takes several days to complete one design.

Table 2. Test Results

Test Algorithm Layers Assigned
BSMs

Total
Wirelength

Run Time
(s)

Test1 BSMA 1 108 29380.72 48.7s

Test2 BSMA 1 108 26552.80 46.2s

Test3 BSMA 1 108 26384.04 46.7s

Test3 PBSMA 1 108 27043.01 7.77s

Test3 is a test case with the pairing constraints. With the
BSMA algorithm, the pairing constraints are not honored.
One the other hand, the PBSMA algorithm generates a
solution so that the paired nets can get similar routing path.
Figure 9 shows a piece of the routing and pin assignment of
Test3. The purple thin wires are the routing guide generated
by the scaled network flow, and the blue thick wires show
the routing path of each net. Comparing to the optimal
BSMA solution, the total wirelength of Test3 with PBSMA
algorithm only increases 2.5%. This also validates the

efficiency of the PBSMA algorithm.

Figure 9 A piece of Test3 BSM assignment solution with

pairing constraints.

VI. CONCLUSION

In this paper, we address the BSM (Bottom Surface Metals)
assignment problem. In the current industry practice, this
kind of problems is handled manually, which takes long time
(measured by days) and big design efforts. We propose a
network flow based algorithm which can optimally solve the
general BSM problems within a few seconds. For the BSM

problem with differential pairing constraints, we develop a
two-step BSM assignment algorithm. The first step finds the
optimal solution for BSM pairing, and the second step
assigns BSMs based on a scaled flow network so that the
pairing constraints are honored. The experimental results
demonstrate the effective and efficiency of our algorithms.

REFERENCES

[1] Koren, N.L. “Pin Assignment in Automated Printed Circuit Board
Design”. 9th Design Automation Workshop, 1972

[2] Mory-Rauch, L. “Pin Assignment on a Printed Circuit Board ”. 15th
IEEE Design Automation Conference, 1978.

[3] H. N. Brady, “An approach to topological pin assignment,” IEEE
Trans.Computer-Aided Design, vol. CAD-3, pp. 250–255, 1984.

[4] X. Yao, M. Yamada, and C. L. Liu, “A new approach to the pin
assignment problem,” in Proc. ACM/IEEE Design Automation Conf.,
1988, pp. 566–572.

[5] J. Cong, “Pin assignment with global routing for general cell designs,”
IEEE Trans. Computer-Aided Design, vol. 10, pp. 1401–1412, Nov.
1991.

[6] S. G. Choi and C. M. Kyung, “Three-step pin assignment algorithm
for building block layout,” Electron. Lett., vol. 28, no. 20, pp. 1882–
1884, 1992.

[7] T. Koide, S. Wakabayashi, and N. Yoshida, “An integrated approach
to pin assignment and global routing for VLSI building-block layout,”
in Proc. Eur. Conf. Design AutomationWith Eur. Event ASIC Design,
1993,pp. 24–28.

[8] L. E. Liu and C. Sechen, “Multilayer pin assignment for macro cell
circuits,” IEEE Trans. Computer-Aided Design, vol. 18, pp. 1452–
1461,Oct. 1999.

[9] H. Xiang, X. Tang, and M. D. F. Wong, “Min-cost flow-based
algorithm for simultaneous pin assignment and routing,” IEEE Trans.
Computer-Aided Design, vol. 22, pp. 870-878, July. 2003.

[10] W.-K. Mak, “I/O placement for FPGAs with multiple I/O
standards,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, pp. 315–320, February 2004.

[11] J. Xiong, Y.-C. Wong, E. Sarto, and L. He, “Constraint driven I/O
planning and placement for chip-package co-design”, ASPDAC, p24-
p27, 2006

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: MIT Press, 1992.

[13] J. Hershberger and S. Suri, “Efficient breakout routing in printed
circuit boards,” in Proc. 13th Annu. Symp. Comput. Geom., 1997, pp.
460–462.

[14] M. Yu andW.W. Dai, “Single-layer fanout routing and routability
analysis for ball grid arrays,” in Proc. ICCAD, 1995, pp. 581–586.

[15] M.M Ozdal.; M. D. F. Wong, and P. S. Honsinger, “Simultaneous
Escape-Routing Algorithms for Via Minimization of High-Speed
Boards”, IEEE Trans. Computer-Aided Design, vol. 27, pp. 84–95,
Jan. 2008.

[16] A. Titus, B. Jaiswal, T. Dishongh, and A. N. Cartwright, “Innovative
circuit board level routing designs for BGA packages,” IEEE Trans.
Adv. Packag., vol. 27, no. 4, pp. 630–639, Nov. 2004.

[17] R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding
minimum-cost flows by double scaling, Mathematical Programming
53, pp.243-266, 1992.

[18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows, Prentice
Hall, 1993.

[19] M. M. Ozdal, Escape routing for dense pin clusters in integrated
circuits. DAC 2007: 49-54.

