
RC24664 (W0810-052) October 9, 2008
Other

IBM Research Report

Asynchronous Task Dispatch for High Throughput Computing
for the eServer IBM Blue Gene® Supercomputer

Amanda Peters1, Alan King2, Tom Budnik1, Pat McCarthy1, Paul Michaud3,
Mike Mundy1, James Sexton2, Greg Stewart1

1IBM Systems and Technology Group
Rochester, MN 55901

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

3IBM Software Group
Houston, TX 77056

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Abstract

High Throughput Computing (HTC) environments strive
“to provide large amounts of processing capacity to
customers over long periods of time by exploiting existing
resources on the network” according to Basney and Livny
[1]. A single Blue Gene/L rack can provide thousands of
CPU resources into HTC environments. This paper
discusses the implementation of an asynchronous task
dispatch system that exploits a recently released feature of
the Blue Gene/L control system – called HTC mode – and
presents data on experimental runs consisting of the
asynchronous submission of multiple batches of thousands
of tasks for financial workloads. The methodology
developed here demonstrates how systems with very large
processor counts and light-weight kernels can be
configured to deliver capacity computing at the individual
processor level in future petascale computing systems.

1. Introduction

 The goal of High Throughput Computing (HTC) as
stated by Basney and Livny [2] is “to provide large
amounts of processing capacity to customers over long
periods of time by exploiting existing resources on the
network”. A single Blue Gene/L rack has thousands of
processors, so in principle, a Blue Gene/L computer has the
potential to vastly increase the available resources.
 Blue Gene is the result of an IBM supercomputing
project begun over five years ago, dedicated to building a
new family of supercomputers optimized for bandwidth,

scalability and the ability to handle large amounts of data
while minimizing electrical power and floor space
requirements. The design of the Blue Gene/L
supercomputer was focused on simplicity and scalability.
[3] These aims came from the needs of the initial target
applications for large scale computer simulations of
biological processes like protein folding. These applications
were developed using the High Performance Computing
(HPC) model and are predicated on the use of cooperating
nodes in a synchronous runtime and are often utilizing
MPI. This required the development of a massively parallel
supercomputer fine tuned for HPC applications. The major
challenge fell in the mapping of a fixed size simulation
onto such a massively parallel system. [4]
 However, as Blue Gene/L moves from the domain of a
research-only vehicle to that of IBM product offering, new
user requirements are introduced as the fields of usage
broaden.

 In the finance industry, focus is on both applying
computational power to increasingly complex workloads,
and also on reliability and fault tolerance [5]. Work loads
such as risk management and portfolio analysis, require
large amounts of asynchronous calculations as well as high
reliability and fast recovery.

In 2006, the responses we received during a year-long
campaign of finance industry briefings on the capabilities
of the Blue Gene supercomputers gave us a view of the
deep concerns of the industry on the tradeoffs involved in a
business model that requires growth in computing capacity
on the order of 30% annually.

The IBM term for the reliability of data centers is
Reliability, Availability, and Serviceability (RAS). RAS
issues dominate the concerns of IT managers in the

Asynchronous Task Dispatch for High Throughput
Computing for the eServer IBM Blue Gene® Supercomputer

Amanda Peters1, Alan King2, Tom Budnik1, Pat McCarthy1,
Paul Michaud3, Mike Mundy1, James Sexton2, Greg Stewart1

1IBM Systems and Technology Group
Rochester, MN 55901

{apeters, tbudnik, pjmccart, mmundy, gregstew}@us.ibm.com

2IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

{kingaj, sextonjc} @us.ibm.com

3IBM Software Group
Houston, TX 77056

{pkmichaud} @us.ibm.com

2

financial industry, since any interruption in the processing
of risk management workloads may affect the ability of a
financial firm to manage their trading risks in the
marketplace. There are two basic workflows involved.
First, daily risk management reports are generated during a
tightly choreographed time window between close of
trading on one day and market reopen on the next day.
These risk management reports are used by senior
management to set high-level trading policies, and by
traders to set parameters for the numerical processes used
to evaluate positions and trades. Second, an increasing
fraction of trading activity is automated, especially
including trades performed to manage portfolio risk.

Competition places enormous pressure on financial
industry IT departments to reduce costs by automating
trading of securities and to support the increasingly
complex calculations for more profitable new generations
of securities. As IT managers deploy additional computers
to meet the demands of their businesses, they are deeply
familiar with the fact that the more programs that are
running, the higher is the probability that one will fail
during any particular time window.

The solution adopted by the industry to the RAS and
performance tradeoff is to deploy large numbers of
homogeneous single or dual processor computers in form
factors that can be densely stacked in data centers and
networked into a grid. This grid solution fits the workload
type, which consists mostly of large numbers of “pleasantly
parallel” operations that can easily be distributed onto a
grid, and also contributes to a RAS approach based on the
capability to shift workload from a failed device to any of a
large number of identical devices. Consequently, an IT
department in a large bank currently is typically managing
thousands of single or dual processor blade-type computers,
and installing new capacity at a 30% annual rate.

The reaction of the financial industry to the Blue Gene
design was that while the machine can conveniently deliver
a very large number of processors, it must do so in such a
way as to not increase the risk of failure or reduce the
ability to recover.

The designers of the Blue Gene computer did

contemplate the fact that a system with thousands of
processors is much more likely to suffer a failure during the
execution of a long-running workload. Consequently, the
control system has protocols to detect node failures and to
route around them if possible, and the nodes themselves are
manufactured to be robust to mechanical failures and easy
to replace. While customer data shows that a Blue Gene
computer has a far-lower mean time to failure than an
equivalent grid of computers (largely because Blue Gene
nodes have no disk) the operating mode of the Blue Gene
system was designed for HPC workloads, in which a large
number of processors are harnessed using MPI to perform a
more-or-less single operation. While it is possible to

develop software to mimic a grid-type environment using
MPI, this would not meet the RAS requirements of
financial workloads. This is primarily due to the fact that
when an HPC program fails the entire MPI partition will
fail, bringing down all the healthy nodes and jobs as well.

 This paper discusses the first phase of the enablement
of a model for High Throughput Computing (HTC) on Blue
Gene/L. Our implementation enables the support of
applications that run asynchronously and increases the
availability of the system. In this paper we report on
experiments demonstrating how HTC mode can reliably
supply many thousands of individual processors into a grid
pool. We developed a task dispatch program, and tested its
performance on independent task dispatch to over 8000
nodes with a latency overhead of around 1 millisecond per
task. Dispatcher performance scales perfectly from 2 racks
to 4 racks, with declining overheads as more processors are
added. In addition, each process runs independently of
each other in HTC mode, and so is resilient to soft-failures
caused by abnormal application exits.
 HTC mode of the Blue Gene/L operating system is
reviewed in Section 2. Section 3 covers the implementation
of a basic asynchronous dispatch subsystem for HTC mode
of operation. Section 4 discusses the results of some large
scale experiments with the task dispatcher. Finally, Section
5 summarizes our experiences with HTC mode on Blue
Gene/L, its advantages and disadvantages, and discusses
some possible extensions.

2. HTC mode

In HTC mode, the compute nodes in a partition are running
independent programs that do not communicate with each
other. A launcher program (running on a compute node)
requests work from a dispatcher that is running on a remote
system that is connected to the functional network. Based
on information provided by the dispatcher, the launcher
program spawns a worker program that performs some
task.
 When running in HTC mode there are two basic
operational differences over the default HPC mode. First,
after the worker program completes, the launcher program
is reloaded so it can handle additional work requests. The
launcher program is cached so that it can be reloaded onto
the node automatically by the control system. Second, if a
compute node encounters a soft error, such as a parity error,
the entire partition is not terminated. In HPC mode, the
processors are cooperating on one task relying on the
supporting networks for message passing so a single node
failure will cause the entire job to halt and the whole
partition will need to be rebooted. In HTC mode, the
processors are running asynchronous independent tasks
without inter-nodal communication, so one node failure
does not need to bring the entire partition down. Rather, the

3

control system attempts to restart the single compute node
while other compute nodes continue to operate. The control
system will poll hardware on a regular interval looking for
compute nodes in a reset state. If a failed node is discovered
and the node failure is not due to a network hardware error,
a software reboot is attempted to recover the compute node.
A diagram of the Blue Gene/L Compute Chip is shown
below. If the failure falls on the chip anywhere outside the
network dedicated hardware (circled), a reboot will be
attempted.

Figure 1. Overview of the Blue Gene/L Compute Chip (BLC) [3]

 On a remote system that is connected to the functional
network, which could be a Service Node or a Front End
Node, there is a dispatcher that manages a queue of jobs to
be run. There is a client/server relationship between the
launcher program and the dispatcher program. After the
launcher program is started on a compute node, it connects
back to the dispatcher and indicates it is ready to receive
work-requests. When the dispatcher has a job for the
launcher, it responds to the work-request by sending the
launcher program the job related information (such as the
name of the worker program executable, arguments, and
environment variables). The launcher program then spawns
off the worker program. When the worker program
completes, the launcher is reloaded and repeats the process
of requesting work from the dispatcher.

2.1 Applications perspective: MPI or HTC

As previously stated, the Blue Gene/L architecture targeted
MPI applications for optimal execution. These applications
are characterized as Single Program Multiple Data (SPMD)
with synchronized communication and execution. The tasks
in an MPI program are cooperating to solve a single
problem. Because of this close cooperation, a failure in a
single node, software or hardware, requires the termination
of all nodes.

 HTC applications have different characteristics. The
code executing on each node is independent of work being
done on another node and communication between nodes is
not required. At any specific time, each node is solving its
own problem. As a result, a failure on a single node,
software or hardware, will not necessitate the termination
of all nodes. Initially, in order to run these applications on a
Blue Gene/L, a port to the MPI programming model was
required. This was done successfully for several
applications, but was not an optimal solution in some cases.
Some MPI applications may benefit by being ported to the
HTC model. In particular, some pleasantly parallel MPI
applications may be good candidates for HTC mode
because they do not require communication between the
nodes and the failure of one node does not invalidate the
work being done on other nodes. A key advantage of the
MPI model is a reduction of extraneous booking by the
application. An MPI program will be coded to handle data
distribution and minimize IO by having all IO done by one
node (typically rank 0) and distribute the work to the other
MPI ranks. When running in HTC mode, the application
data needs to be manually split up and distributed to the
nodes. This porting effort may be justified to achieve better
application reliability and throughput than could be
achieved with an MPI model.

2.2 Restarting the launcher program

In the default HPC mode, when a program ends on the
compute node the Compute Node Kernel (CNK) sends a
message to the IO node that reports how the node ended.
The message indicates if the program ended normally or by
signal and the exit value or signal number, respectively.
The IO node then forwards the message to the control
system. When the control system has received messages for
all of the compute nodes, it then ends the job. In HTC
mode, CNK handles a program ending differently
depending on what program ended. CNK records the path
of the program that is first submitted with the job which is
the launcher program. When a program other than the
launcher program (or the worker program) ends, CNK
records the exit status of the worker program, and then
reloads and restarts the launcher program. If the worker
program ended by signal, CNK generates an event to record
the signal number that ended the program. If the worker
program ended normally, no information is logged.
 The launcher program can retrieve the exit status of the
worker program using a CNK system call. Since no
message is sent to the control system indicating that a
program ended, the job continues running. The effect is to
have a continually running program on the compute nodes.
To reduce the load on the file system, the launcher program
is cached in memory on the IO node. When CNK requests

4

to reload the launcher program it does not need to be read
from the

Figure 2. Launcher run sequence. [8]

file system but can be sent directly to the compute node
from memory. Since the launcher is typically a small
executable it does not require much additional memory to
cache it.
After the launcher program ends, CNK reports that a
program ended to the control system, as it does for HPC
mode. This allows the launcher program to cleanly end on
the compute node and for the control system to end the job.

2.3 IO considerations

Running in HTC mode changes the IO patterns compared
to HPC mode. When a program reads and writes to the file
system it is typically done with small buffer sizes. While
the administrator can configure the buffer size, the most
common sizes are 256KB or 512KB. When running in
HTC mode, loading the worker program requires reading
the complete executable into memory and sending it over
the collective network to a compute node. An executable is
at least several megabytes and can be many megabytes.

The Blue Gene/L design was not optimized for applications
that load large files. Internal tracing showed that the
greatest amount of overhead was spent sending the
executable over the collective network. It took 0.001131
seconds to read a 5MB executable from the file system, but
it took 1.535258 seconds for the IO node to inject the
packets into the collective network. This includes the time
to read the packet for the next message but it accounts for
most of the time.

To achieve the best IO performance a low compute node to
IO node ratio is preferred. Blue Gene/L supports compute
node to IO node ratios of 8-1, 32-1, and 64-1. The
additional IO demands of HTC mode from loading

executables is best handled by a system with a 8-1 compute
node to IO node ratio. The smaller number of compute
nodes per IO node allows for the best utilization of the
collective network. When running in HTC mode the
variability in the length of work requests does allow
computation and IO to be overlapped.

3. Asynchronous task dispatch subsystem

This section covers an implementation of an asynchronous
task dispatch subsystem. The dispatch subsystem was
implemented in C and is available as an example from the
online Blue Gene/L Technical Knowledge Base.

Figure 3. Asynchronous task dispatch subsystem.

The diagram in Figure 2 shows the logical relationships.
Our design is motivated by the principle that the client is
ultimately responsible for ensuring successful completion
of the job, following [2].

3.1 Clients

The client implements a task submission thread that
publishes task submission messages onto a work queue, and
a task verification thread that listens for task completion
messages. Clients are assumed to be responsible citizens of
the dispatch system, as in the ”Ethernet” analogy discussed
in [2]. When the dispatch system informs the client that the
task has terminated, and optionally supplies an exit status,
the client is then responsible for resolving task completion
status and for taking actions, including re-launching tasks.
The client is expected to behave itself, "Ethernet” style, in
such a way as to maintain the stability and the fair
allocation of the dispatch system resources.

5

3.2 Message Queues

The design is based on publishing and subscribing to
message queues. Clients publish task submission messages
onto a single work queue. Dispatcher programs subscribe to
the work queue and process task submission messages.
Clients subscribe to task completion messages.
 Messages consist of text data comprising the work to be
performed, a job identifier, a task identifier, and a message
type. Job identifiers are generated by the client process and
are required to be globally unique. Task identifiers are
unique within the job session. The message type field for
task submission messages is used by the dispatcher to
distinguish work of high priority versus work of normal
priority. Responsibility for reliable message delivery
belongs to the message queuing system.

3.3 Dispatcher program

The dispatcher program responsibilities are as follows. First
it pulls a task submission message off the work queue.
Then it waits on a socket for a launcher connection, and
reads the launcher id from the socket. It writes the task into
the socket, and the association between task and launcher is
stored in a table. The table stores the last task dispatched to
the launcher program, so this connection is an indication
that the last task has completed and the task completion
message can be published back to the client.

Figure 4. Interaction diagram for asynchronous HTC dispatcher
program. [8]

 The interaction diagram for the duration of task N is
depicted in Figure 3. The intention of this design is to
optimize the launcher program. The dispatcher program
spends little time between connect and dispatch, so latency
volatily would mainly be due to the waiting-time for

dispatcher program connections. Publishing the task
messages closer to the compute nodes will go a long way to
eliminating launcher program latencies.
 One might think that the launcher program would
preferentially publish the completion message. But this
mechanism is not more efficient than the implementation
just described, since any publication involves a network
transaction. The first thing the launcher program does after
rebooting is connect to the dispatcher program, so it may as
well pass the completion information to the dispatcher
program at that time. Faster methods of spawning
completion messages will require direct connections
between the executing task and the client.
 This still leaves open the question of how the task
completion message is generated. The solution we
implemented was to have the dispatcher generate the task
completion message. To assist task status resolution, the
CNK stores the exit status of the last running process in a
buffer. After launcher program restart, the contents of this
buffer can be written to the dispatcher and stored in the task
completion message.

3.4 Launcher program

The launcher program is intentionally kept very simple.
Arguments to the launcher program describe a socket
connection to the dispatcher. When the launcher program
starts, it connects to this socket, writes its identity into the
socket, and waits for a task message. Upon receipt of the
task message the launcher parses the message and calls the
execve system call to execute the task. When the task exits
(for whatever reason), the CNK restarts the launcher
program again. The launcher program is not a container for
the application, so no matter what happens to the
application, the launcher program will not fail to restart.

4. Experimental results

This section discusses our experiments driving
computational workloads through our asynchronous task
dispatch subsystem. The test workloads are derived from a
financial problem set. Each test is configured to reflect a
realistic use case.

4.1 Financial Portfolio Risk Calculations

Portfolio risk calculations are run by broker-dealers,
market-makers, and investment banks to meet financial
regulatory reporting requirements and to feed automated
trading programs. A risk calculation integrates portfolio
cash flows over probability distributions that are calibrated
to market data and/or stressed by market and economic

6

scenarios. These integrations are almost always performed
by Monte Carlo simulation.
 Risk calculation workloads for regulatory reporting are
typically run in a carefully synchronized overnight batch
run, but there is an emerging competitive trend to perform
risk calculations in “real-time” to support automated
trading programs. Batch workloads consist of large
numbers of tasks that are distributed on local grids using
commercial or home-grown grid services middleware. A
typical batch workload configuration allocates around 45
minutes of work to a single node. The executables are
generally large – around 50MB – because they are built to
handle any conceivable portfolio and are typically pricing
several thousand instruments. A node running such a
workload would be unavailable for additional work during
the computation, so this model of workload distribution
would not be suitable for a real-time environment. HTC
mode on a Blue Gene/L offers fast access to very large
numbers of nodes, so we focused on repackaging finance
workloads into smaller units. When a single instrument
simulation is packaged into an executable its size may be
quite small. For example, an implementation of a stochastic
mesh method to price American options, due to Broadie
and Glasserman [7], has an executable size of 1.5MB and
has a run time that is approximately 28 seconds.
 For our experimentation with HTC mode we configured
the options pricing method to be a function that accepts a
single input string and writes a single output string. This
function was wrapped into a main program that implements
a socket connect-write-receive protocol similar to that of
the launcher, and contains a control loop that responds to
sequences of task messages from a client. The program
essentially implements a stateful session under the control
of the client.
 In the experiments we perform, the client first requests
the dispatcher to launch the sessions on the Blue Gene
nodes. Each session opens a connection to the dispatcher
and identifies itself as a session bound to a client id. The
dispatcher then places the session into the list of available
resources for task messages from that client. Sessions are
terminated by the client.

4.1.1 Results

Experiments were run on the BGW computer at IBM's
Thomas J Watson Research Center. This is a Blue Gene/L
system with 1024 dual-core nodes, and one IO Node for
every 32 Compute Nodes. The HTC partitions were booted
in Virtual Node mode. A single rack will boot 2048
launchers, one per core. Two racks will boot 4096
launchers, and four racks 8192. When running on Blue
Gene we have exclusive access to the HTC partition,
however the Front End Node that hosts the dispatcher is
typically a busy machine.

#Sessions #Tasks
Load
Time (s)

Overhead/
Task (ms)

256 1024 73.44 0.0182
512 2048 116.76 0.0104

1024 4096 111.66 0.0071
2048 8192 193.5 0.005

256 2048 60.31 0.0169
512 4096 77.12 0.0108

1024 8192 120.93 0.0058
2048 16384 166.46 0.0035

Table 1. The results of 4 and 8 tasks per session. Both sets were
run on 2048 processors (one rack) with 8 dispatchers.

Each row in the table represents a single run. Each run
specifies the number of sessions to start, followed by a list
of tasks of a given size. Tasks are distributed by the
dispatcher to the sessions on a first-come first-served basis;
there is no requirement to synchronize so that each node
performs a given number of tasks. The client blocks until
all sessions connect, so the per-task timings are
conservative. (Better elapsed times would be observed if
task dispatch started after the first session connects.)

The first set of experiments, displayed in Table 1, was run
on sub-rack numbers of partitions. The first batch submits
an average of 4 tasks per session; the second submits 8
tasks per session. Each batch consists of runs of 256, 512,
1024, and 2048 sessions. The first interesting point to note
is the high variability of the time to load the executables.
Load time is measured at the client, from beginning of
session dispatch to the time when all sessions requested
have connected. It is clear that these timings are not scaling
particularly well for sub-rack sized partitions. The second
interesting point to note is the predictability of the overhead
per task. Overhead is computed by subtracting load time
from the elapsed time for the entire run. Overhead per task
is computed simply by dividing the number of tasks into
the overhead. It is clear that the overhead per task declines
as the numbers of tasks increases becomes quite
predictable. For example the overhead per task for 8192
tasks is approximately 5 or 6 milliseconds per task whether
there are 1024 or 2048 sessions.
 The final sets of experiments are run on multiple rack
sized partitions. The first run is on two racks, or 4096
processors, and the second is on four racks, or 8192
processors. Both runs are shown in Table 2. The runs
show practically identical time to load. Overhead per task
still shows a tendency to decline with increasing numbers
of tasks; perhaps this is due to some overhead amortization
in the initialization of the client sessions.

7

#Disp #Sess

.
#Tasks Load Overhead

16 4096 16384 182.8s 0.0015ms
32 8192 32796 182.85s 0.0011ms

Table 2. The results with 16 and 32 dispatchers, and partition sizes
of 4096 and 8192 processors.

The bottom line is that on a very large run of 32,796 tasks
on 8192 processors, we obtain an average overhead of 1.1
millisecond per task.

5. Conclusions and Future Directions

We have shown in our results that HTC mode on Blue
Gene/L provides large amounts of processing capacity to a
wide range of applications. We have presented data for
financial workloads which demonstrates Blue Gene’s
capability of running thousands of independent tasks. This
is significant because it enables a new class of applications
to execute on the Blue Gene/L architecture without
significant porting effort. Application reliability is
significantly improved by allowing single node software or
hardware failures to occur without causing application
termination on all nodes.
 The asynchronous task dispatch subsystem described in
this paper shows a scalable design capable of managing
thousands of tasks. Running in HTC mode produced
different IO patterns then typically seen in HPC
applications on Blue Gene/L , therefore best performance is
achieved by using a high IO to compute node ratio. Work is
currently underway to explore further optimization of the
HTC mode, such as persistent memory across worker
program executions, mixing HTC and HPC applications
within the same partition, and providing tighter integration
of HTC mode with the Blue Gene/L control system. We are
also continuing to refine our dispatcher control flow
seeking efficiencies in the message queuing system.

Acknowledgements

The authors thank Nick Goracke for his HTC testing
assistance. We would also like to thank Fred Mintzer and
David Singer for their work with administration of the
Watson Blue Gene/L. As well as Carl Obert, Sam Ellis,
John Thomas, and Susan Lee for their continued support.

References

[1] J. Basney and M. Livny, “Deploying a high throughput
computing cluster,” in High Performance Cluster Computing:
Architectures and Systems, Volume 1 (R. Buyya, ed.), Prentice
Hall PTR, 1999.

[2] D. Thain and M. Livny, “The ethernet approach to grid
computing.,” in High-Performance Distributed Computing, pp.
138–151, IEEE Computer Society, 2003.

[3] Gara, M. A. Blumrich, et al. “Overview of the Blue Gene/L
system Architecture.” IBM Journal of Research and Development.
Vol. 49, no. 2/3, March/May 2005.

[4] Allen, F. G. Almasi, et al. “Blue Gene: a vision for protein
science using a petaflop supercomputer.” IBM Systems Journal.
Vol. 40, no. 2, February 2001.

[5] Chakravorty, S. C Mendes, et al. “HPC-Colony: services and
interfaces for very large systems”. ACM SIGOPS Operating
Systems Review. Vol. 40, no. 2, April 2006.

[6] IBM System Blue Gene Solution Delivers Competitive
Advantage to Finance and Securities Firms
http://www03.ibm.com/servers/deepcomputing/pdf/fssindu
strybrief.pdf

[7] M. Broadie and P. Glasserman, “A stochastic mesh method for
pricing high-dimensional American options,” Journal of
Computational Finance, vol. 7, pp. 35–72, 2004.

[8] G. Mullen-Schultz and C. P. Sosa, “IBM System Blue Gene
Solution: Application Development”, RedBook, SG24-7179-04,
Poughkeepsie, NY, June 21, 2007:
http://www.redbooks.ibm.com/redbooks/pdfs/sg247179.pdf

