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Abstract 
 

High Throughput Computing (HTC) environments strive 
“to provide large amounts of processing capacity to 
customers over long periods of time by exploiting existing 
resources on the network” according to Basney and Livny 
[1]. A single Blue Gene/L rack can provide thousands of 
CPU resources into HTC environments. This paper 
discusses the implementation of an asynchronous task 
dispatch system that exploits a recently released feature of 
the Blue Gene/L control system – called HTC mode – and 
presents data on experimental runs consisting of the 
asynchronous submission of multiple batches of thousands 
of tasks for financial workloads. The methodology 
developed here demonstrates how systems with very large 
processor counts and light-weight kernels can be 
configured to deliver capacity computing at the individual 
processor level in future petascale computing systems. 
 
 
1. Introduction 
 
 The goal of High Throughput Computing (HTC) as 
stated by Basney and Livny [2] is “to provide large 
amounts of processing capacity to customers over long 
periods of time by exploiting existing resources on the 
network”. A single Blue Gene/L rack has thousands of 
processors, so in principle, a Blue Gene/L computer has the 
potential to vastly increase the available resources.  
 Blue Gene is the result of an IBM supercomputing 
project begun over five years ago, dedicated to building a   
new family of supercomputers optimized for bandwidth, 

 
 

scalability and the ability to handle large amounts of data 
while minimizing electrical power and floor space 
requirements. The design of the Blue Gene/L 
supercomputer was focused on simplicity and scalability. 
[3] These aims came from the needs of the initial target 
applications for large scale computer simulations of 
biological processes like protein folding. These applications 
were developed using the High Performance Computing 
(HPC) model and are predicated on the use of cooperating 
nodes in a synchronous runtime and are often utilizing 
MPI. This required the development of a massively parallel 
supercomputer fine tuned for HPC applications. The major 
challenge fell in the mapping of a fixed size simulation 
onto such a massively parallel system.  [4]  
 However, as Blue Gene/L moves from the domain of a 
research-only vehicle to that of IBM product offering, new 
user requirements are introduced as the fields of usage 
broaden.  
 
 In the finance industry, focus is on both applying 
computational power to increasingly complex workloads, 
and also on reliability and fault tolerance [5].  Work loads 
such as risk management and portfolio analysis, require 
large amounts of asynchronous calculations as well as  high 
reliability and fast recovery.   

In 2006, the responses we received during a year-long 
campaign of finance industry briefings on the capabilities 
of the Blue Gene supercomputers gave us a view of the 
deep concerns of the industry on the tradeoffs involved in a 
business model that requires growth in computing capacity 
on the order of 30% annually. 

The IBM term for the reliability of data centers is 
Reliability, Availability, and Serviceability (RAS).  RAS 
issues dominate the concerns of IT managers in the 
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financial industry, since any interruption in the processing 
of risk management workloads may affect the ability of a 
financial firm to manage their trading risks in the 
marketplace.  There are two basic workflows involved.  
First, daily risk management reports are generated during a 
tightly choreographed time window between close of 
trading on one day and market reopen on the next day.    
These risk management reports are used by senior 
management to set high-level trading policies, and by 
traders to set parameters for the numerical processes used 
to evaluate positions and trades. Second, an increasing 
fraction of trading activity is automated, especially 
including trades performed to manage portfolio risk.  

Competition places enormous pressure on financial 
industry IT departments to reduce costs by automating 
trading of securities and to support the increasingly 
complex calculations for more profitable new generations 
of securities.  As IT managers deploy additional computers 
to meet the demands of their businesses, they are deeply 
familiar with the fact that the more programs that are 
running, the higher is the probability that one will fail 
during any particular time window. 

The solution adopted by the industry to the RAS and 
performance tradeoff is to deploy large numbers of 
homogeneous single or dual processor computers in form 
factors that can be densely stacked in data centers and 
networked into a grid.  This grid solution fits the workload 
type, which consists mostly of large numbers of “pleasantly 
parallel” operations that can easily be distributed onto a 
grid, and also contributes to a RAS approach based on the 
capability to shift workload from a failed device to any of a 
large number of identical devices.  Consequently, an IT 
department in a large bank currently is typically managing 
thousands of single or dual processor blade-type computers, 
and installing new capacity at a 30% annual rate. 

The reaction of the financial industry to the Blue Gene 
design was that while the machine can conveniently deliver 
a very large number of processors, it must do so in such a 
way as to not increase the risk of failure or reduce the 
ability to recover.   

 
The designers of the Blue Gene computer did 

contemplate the fact that a system with thousands of 
processors is much more likely to suffer a failure during the 
execution of a long-running workload.  Consequently, the 
control system has protocols to detect node failures and to 
route around them if possible, and the nodes themselves are 
manufactured to be robust to mechanical failures and easy 
to replace.  While customer data shows that a Blue Gene 
computer has a far-lower mean time to failure than an 
equivalent grid of computers (largely because Blue Gene 
nodes have no disk) the operating mode of the Blue Gene 
system was designed for HPC workloads, in which a large 
number of processors are harnessed using MPI to perform a 
more-or-less single operation.  While it is possible to 

develop software to mimic a grid-type environment using 
MPI, this would not meet the RAS requirements of 
financial workloads.  This is primarily due to the fact that 
when an HPC program fails the entire MPI partition will 
fail, bringing down all the healthy nodes and jobs as well.   
 
 This paper discusses the first phase of the enablement 
of a model for High Throughput Computing (HTC) on Blue 
Gene/L. Our implementation enables the support of 
applications that run asynchronously and increases the 
availability of the system. In this paper we report on 
experiments demonstrating how HTC mode can reliably 
supply many thousands of individual processors into a grid 
pool.  We developed a task dispatch program, and tested its 
performance on independent task dispatch to over 8000 
nodes with a latency overhead of around 1 millisecond per 
task.  Dispatcher performance scales perfectly from 2 racks 
to 4 racks, with declining overheads as more processors are 
added.  In addition, each process runs independently of 
each other in HTC mode, and so is resilient to soft-failures 
caused by abnormal application exits.   
 HTC mode of the Blue Gene/L operating system is 
reviewed in Section 2. Section 3 covers the implementation 
of a basic asynchronous dispatch subsystem for HTC mode 
of operation. Section 4 discusses the results of some large 
scale experiments with the task dispatcher. Finally, Section 
5 summarizes our experiences with HTC mode on Blue 
Gene/L, its advantages and disadvantages, and discusses 
some possible extensions. 
 
2. HTC mode 
 
In HTC mode, the compute nodes in a partition are running 
independent programs that do not communicate with each 
other. A launcher program (running on a compute node) 
requests work from a dispatcher that is running on a remote 
system that is connected to the functional network. Based 
on information provided by the dispatcher, the launcher 
program spawns a worker program that performs some 
task. 
 When running in HTC mode there are two basic 
operational differences over the default HPC mode. First, 
after the worker program completes, the launcher program 
is reloaded so it can handle additional work requests. The 
launcher program is cached so that it can be reloaded onto 
the node automatically by the control system.  Second, if a 
compute node encounters a soft error, such as a parity error, 
the entire partition is not terminated. In HPC mode, the 
processors are cooperating on one task relying on the 
supporting networks for message passing so a single node 
failure will cause the entire job to halt and the whole 
partition will need to be rebooted.  In HTC mode, the 
processors are running asynchronous independent tasks 
without inter-nodal communication, so one node failure 
does not need to bring the entire partition down. Rather, the 
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control system attempts to restart the single compute node 
while other compute nodes continue to operate. The control 
system will poll hardware on a regular interval looking for 
compute nodes in a reset state. If a failed node is discovered 
and the node failure is not due to a network hardware error, 
a software reboot is attempted to recover the compute node.  
A diagram of the Blue Gene/L Compute Chip is shown 
below.  If the failure falls on the chip anywhere outside the 
network dedicated hardware (circled), a reboot will be 
attempted. 
 

 
Figure 1. Overview of the Blue Gene/L Compute Chip (BLC) [3] 
 
 On a remote system that is connected to the functional 
network, which could be a Service Node or a Front End 
Node, there is a dispatcher that manages a queue of jobs to 
be run. There is a client/server relationship between the 
launcher program and the dispatcher program. After the 
launcher program is started on a compute node, it connects 
back to the dispatcher and indicates it is ready to receive 
work-requests. When the dispatcher has a job for the 
launcher, it responds to the work-request by sending the 
launcher program the job related information (such as the 
name of the worker program executable, arguments, and 
environment variables). The launcher program then spawns 
off the worker program. When the worker program 
completes, the launcher is reloaded and repeats the process 
of requesting work from the dispatcher. 
 
2.1 Applications perspective: MPI or HTC 
 
As previously stated, the Blue Gene/L architecture targeted 
MPI applications for optimal execution. These applications 
are characterized as Single Program Multiple Data (SPMD) 
with synchronized communication and execution. The tasks 
in an MPI program are cooperating to solve a single 
problem. Because of this close cooperation, a failure in a 
single node, software or hardware, requires the termination 
of all nodes. 

 HTC applications have different characteristics. The 
code executing on each node is independent of work being 
done on another node and communication between nodes is 
not required. At any specific time, each node is solving its 
own problem. As a result, a failure on a single node, 
software or hardware, will not necessitate the termination 
of all nodes. Initially, in order to run these applications on a 
Blue Gene/L, a port to the MPI programming model was 
required. This was done successfully for several 
applications, but was not an optimal solution in some cases. 
Some MPI applications may benefit by being ported to the 
HTC model. In particular, some pleasantly parallel MPI 
applications may be good candidates for HTC mode 
because they do not require communication between the 
nodes and the failure of one node does not invalidate the 
work being done on other nodes. A key advantage of the 
MPI model is a reduction of extraneous booking by the 
application. An MPI program will be coded to handle data 
distribution and minimize IO by having all IO done by one 
node (typically rank 0) and distribute the work to the other 
MPI ranks. When running in HTC mode, the application 
data needs to be manually split up and distributed to the 
nodes. This porting effort may be justified to achieve better 
application reliability and throughput than could be 
achieved with an MPI model. 
 
 
2.2 Restarting the launcher program 
 
In the default HPC mode, when a program ends on the 
compute node the Compute Node Kernel (CNK) sends a 
message to the IO node that reports how the node ended. 
The message indicates if the program ended normally or by 
signal and the exit value or signal number, respectively. 
The IO node then forwards the message to the control 
system. When the control system has received messages for 
all of the compute nodes, it then ends the job. In HTC 
mode, CNK handles a program ending differently 
depending on what program ended. CNK records the path 
of the program that is first submitted with the job which is 
the launcher program. When a program other than the 
launcher program (or the worker program) ends, CNK 
records the exit status of the worker program, and then 
reloads and restarts the launcher program. If the worker 
program ended by signal, CNK generates an event to record 
the signal number that ended the program. If the worker 
program ended normally, no information is logged. 
 The launcher program can retrieve the exit status of the 
worker program using a CNK system call. Since no 
message is sent to the control system indicating that a 
program ended, the job continues running. The effect is to 
have a continually running program on the compute nodes. 
To reduce the load on the file system, the launcher program 
is cached in memory on the IO node. When CNK requests 
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to reload the launcher program it does not need to be read 
from the 
 
 

 
Figure 2.  Launcher run sequence. [8] 
 
file system but can be sent directly to the compute node 
from memory. Since the launcher is typically a small 
executable it does not require much additional memory to 
cache it. 
After the launcher program ends, CNK reports that a 
program ended to the control system, as it does for HPC 
mode. This allows the launcher program to cleanly end on 
the compute node and for the control system to end the job. 
 
2.3 IO considerations 
 
Running in HTC mode changes the IO patterns compared 
to HPC mode.  When a program reads and writes to the file 
system it is typically done with small buffer sizes.  While 
the administrator can configure the buffer size, the most 
common sizes are 256KB or 512KB.  When running in 
HTC mode, loading the worker program requires reading 
the complete executable into memory and sending it over 
the collective network to a compute node.  An executable is 
at least several megabytes and can be many megabytes. 
 
The Blue Gene/L design was not optimized for applications 
that load large files.  Internal tracing showed that the 
greatest amount of overhead was spent sending the 
executable over the collective network.  It took 0.001131 
seconds to read a 5MB executable from the file system, but 
it took 1.535258 seconds for the IO node to inject the 
packets into the collective network.  This includes the time 
to read the packet for the next message but it accounts for 
most of the time. 

 
To achieve the best IO performance a low compute node to 
IO node ratio is preferred.  Blue Gene/L supports compute 
node to IO node ratios of 8-1, 32-1, and 64-1.  The 
additional IO demands of HTC mode from loading 

executables is best handled by a system with a 8-1 compute 
node to IO node ratio.  The smaller number of compute 
nodes per IO node allows for the best utilization of the 
collective network.  When running in HTC mode the 
variability in the length of work requests does allow 
computation and IO to be overlapped. 

 
3. Asynchronous task dispatch subsystem 
 
This section covers an implementation of an asynchronous 
task dispatch subsystem. The dispatch subsystem was 
implemented in C and is available as an example from the 
online Blue Gene/L Technical Knowledge Base. 
 

 
 
Figure 3.  Asynchronous task dispatch subsystem.  
 
 
 
The diagram in Figure 2 shows the logical relationships. 
Our design is motivated by the principle that the client is 
ultimately responsible for ensuring successful completion 
of the job, following [2]. 
 
3.1 Clients 
 
The client implements a task submission thread that 
publishes task submission messages onto a work queue, and 
a task verification thread that listens for task completion 
messages. Clients are assumed to be responsible citizens of 
the dispatch system, as in the ”Ethernet” analogy discussed 
in [2]. When the dispatch system informs the client that the 
task has terminated, and optionally supplies an exit status, 
the client is then responsible for resolving task completion 
status and for taking actions, including re-launching tasks. 
The client is expected to behave itself, "Ethernet” style, in 
such a way as to maintain the stability and the fair 
allocation of the dispatch system resources. 
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3.2 Message Queues 
 
The design is based on publishing and subscribing to 
message queues. Clients publish task submission messages 
onto a single work queue. Dispatcher programs subscribe to 
the work queue and process task submission messages. 
Clients subscribe to task completion messages.  
 Messages consist of text data comprising the work to be 
performed, a job identifier, a task identifier, and a message 
type. Job identifiers are generated by the client process and 
are required to be globally unique. Task identifiers are 
unique within the job session. The message type field for 
task submission messages is used by the dispatcher to 
distinguish work of high priority versus work of normal 
priority. Responsibility for reliable message delivery 
belongs to the message queuing system. 
 
 
 
3.3 Dispatcher program 
 
The dispatcher program responsibilities are as follows. First 
it pulls a task submission message off the work queue. 
Then it waits on a socket for a launcher connection, and 
reads the launcher id from the socket. It writes the task into 
the socket, and the association between task and launcher is 
stored in a table. The table stores the last task dispatched to 
the launcher program, so this connection is an indication 
that the last task has completed and the task completion 
message can be published back to the client. 
 

 
 
 
Figure 4.  Interaction diagram for asynchronous HTC dispatcher 
program.  [8] 
 
 The interaction diagram for the duration of task N is 
depicted in Figure 3. The intention of this design is to 
optimize the launcher program. The dispatcher program 
spends little time between connect and dispatch, so latency 
volatily would mainly be due to the waiting-time for 

dispatcher program connections. Publishing the task 
messages closer to the compute nodes will go a long way to 
eliminating launcher program latencies. 
 One might think that the launcher program would 
preferentially publish the completion message. But this 
mechanism is not more efficient than the implementation 
just described, since any publication involves a network 
transaction. The first thing the launcher program does after 
rebooting is connect to the dispatcher program, so it may as 
well pass the completion information to the dispatcher 
program at that time. Faster methods of spawning 
completion messages will require direct connections 
between the executing task and the client. 
 This still leaves open the question of how the task 
completion message is generated. The solution we 
implemented was to have the dispatcher generate the task 
completion message. To assist task status resolution, the 
CNK stores the exit status of the last running process in a 
buffer. After launcher program restart, the contents of this 
buffer can be written to the dispatcher and stored in the task 
completion message. 
 
 
3.4 Launcher program 
 
The launcher program is intentionally kept very simple. 
Arguments to the launcher program describe a socket 
connection to the dispatcher. When the launcher program 
starts, it connects to this socket, writes its identity into the 
socket, and waits for a task message. Upon receipt of the 
task message the launcher parses the message and calls the 
execve system call to execute the task. When the task exits 
(for whatever reason), the CNK restarts the launcher 
program again. The launcher program is not a container for 
the application, so no matter what happens to the 
application, the launcher program will not fail to restart. 
 
4. Experimental results 
 
This section discusses our experiments driving 
computational workloads through our asynchronous task 
dispatch subsystem. The test workloads are derived from a 
financial problem set. Each test is configured to reflect a 
realistic use case. 
 
4.1 Financial Portfolio Risk Calculations 
 
Portfolio risk calculations are run by broker-dealers, 
market-makers, and investment banks to meet financial 
regulatory reporting requirements and to feed automated 
trading programs. A risk calculation integrates portfolio 
cash flows over probability distributions that are calibrated 
to market data and/or stressed by market and economic 
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scenarios. These integrations are almost always performed 
by Monte Carlo simulation. 
 Risk calculation workloads for regulatory reporting are 
typically run in a carefully synchronized overnight batch 
run, but there is an emerging competitive trend to perform 
risk calculations in “real-time” to support automated 
trading programs. Batch workloads consist of large 
numbers of tasks that are distributed on local grids using 
commercial or home-grown grid services middleware. A 
typical batch workload configuration allocates around 45 
minutes of work to a single node. The executables are 
generally large – around 50MB – because they are built to 
handle any conceivable portfolio and are typically pricing 
several thousand instruments. A node running such a 
workload would be unavailable for additional work during 
the computation, so this model of workload distribution 
would not be suitable for a real-time environment. HTC 
mode on a Blue Gene/L offers fast access to very large 
numbers of nodes, so we focused on repackaging finance 
workloads into smaller units. When a single instrument 
simulation is packaged into an executable its size may be 
quite small. For example, an implementation of a stochastic 
mesh method to price American options, due to Broadie 
and Glasserman [7], has an executable size of 1.5MB and 
has a run time that is approximately 28 seconds. 
 For our experimentation with HTC mode we configured 
the options pricing method to be a function that accepts a 
single input string and writes a single output string. This 
function was wrapped into a main program that implements 
a socket connect-write-receive protocol similar to that of 
the launcher, and contains a control loop that responds to 
sequences of task messages from a client.  The program 
essentially implements a stateful session under the control 
of the client.   
 In the experiments we perform, the client first requests 
the dispatcher to launch the sessions on the Blue Gene 
nodes.  Each session opens a connection to the dispatcher 
and identifies itself as a session bound to a client id.  The 
dispatcher then places the session into the list of available 
resources for task messages from that client.  Sessions are 
terminated by the client. 
 
4.1.1 Results 
 
Experiments were run on the BGW computer at IBM's 
Thomas J Watson Research Center.   This is a Blue Gene/L 
system with 1024 dual-core nodes, and one IO Node for 
every 32 Compute Nodes.  The HTC partitions were booted 
in Virtual Node mode.  A single rack will boot 2048 
launchers, one per core.   Two racks will boot 4096 
launchers, and four racks 8192.  When running on Blue 
Gene we have exclusive access to the HTC partition, 
however the Front End Node that hosts the dispatcher is 
typically a busy machine. 
 

 

#Sessions #Tasks 
Load 
Time (s) 

Overhead/ 
Task (ms) 

256 1024 73.44 0.0182 
512 2048 116.76 0.0104 

1024 4096 111.66 0.0071 
2048 8192 193.5 0.005 

        
256 2048 60.31 0.0169 
512 4096 77.12 0.0108 

1024 8192 120.93 0.0058 
2048 16384 166.46 0.0035 

Table 1.  The results of 4 and 8 tasks per session.  Both sets were 
run on 2048 processors (one rack) with 8 dispatchers. 
 
Each row in the table represents a single run.  Each run 
specifies the number of sessions to start, followed by a list 
of tasks of a given size.  Tasks are distributed by the 
dispatcher to the sessions on a first-come first-served basis; 
there is no requirement to synchronize so that each node 
performs a given number of tasks.  The client blocks until 
all sessions connect, so the per-task timings are 
conservative.  (Better elapsed times would be observed if 
task dispatch started after the first session connects.)  
 
The first set of experiments, displayed in Table 1, was run 
on sub-rack numbers of partitions.  The first batch submits 
an average of 4 tasks per session; the second submits 8 
tasks per session.   Each batch consists of runs of 256, 512, 
1024, and 2048 sessions.  The first interesting point to note 
is the high variability of the time to load the executables.  
Load time is measured at the client, from beginning of 
session dispatch to the time when all sessions requested 
have connected.  It is clear that these timings are not scaling 
particularly well for sub-rack sized partitions.  The second 
interesting point to note is the predictability of the overhead 
per task.  Overhead is computed by subtracting load time 
from the elapsed time for the entire run.  Overhead per task 
is computed simply by dividing the number of tasks into 
the overhead.  It is clear that the overhead per task declines 
as the numbers of tasks increases becomes quite 
predictable.  For example the overhead per task for 8192 
tasks is approximately 5 or 6 milliseconds per task whether 
there are 1024 or 2048 sessions. 
 The final sets of experiments are run on multiple rack 
sized partitions.  The first run is on two racks, or 4096 
processors, and the second is on four racks, or 8192 
processors.  Both runs are shown in Table 2.  The runs 
show practically identical time to load.  Overhead per task 
still shows a tendency to decline with increasing numbers 
of tasks; perhaps this is due to some overhead amortization 
in the initialization of the client sessions.   
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#Disp #Sess

. 
#Tasks Load Overhead 

16 4096 16384 182.8s 0.0015ms 
32 8192 32796 182.85s 0.0011ms 
 
Table 2.  The results with 16 and 32 dispatchers, and partition sizes 
of 4096 and 8192 processors. 
 
The bottom line is that on a very large run of 32,796 tasks 
on 8192 processors, we obtain an average overhead of 1.1 
millisecond per task. 
 
5. Conclusions and Future Directions 
 
We have shown in our results that HTC mode on Blue 
Gene/L provides large amounts of processing capacity to a 
wide range of applications. We have presented data for 
financial workloads which demonstrates Blue Gene’s 
capability of running thousands of independent tasks. This 
is significant because it enables a new class of applications 
to execute on the Blue Gene/L architecture without 
significant porting effort. Application reliability is 
significantly improved by allowing single node software or 
hardware failures to occur without causing application 
termination on all nodes.  
 The asynchronous task dispatch subsystem described in 
this paper shows a scalable design capable of managing 
thousands of tasks. Running in HTC mode produced 
different IO patterns then typically seen in HPC 
applications on Blue Gene/L , therefore best performance is 
achieved by using a high IO to compute node ratio. Work is 
currently underway to explore further optimization of the 
HTC mode, such as persistent memory across worker 
program executions, mixing HTC and HPC applications 
within the same partition, and providing tighter integration 
of HTC mode with the Blue Gene/L control system. We are 
also continuing to refine our dispatcher control flow 
seeking efficiencies in the message queuing system. 
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