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ABSTRACT
We describe the challenges of and our experience in char-
acterizing, constructing and managing the usage profiles of
System S applications. A System S application deployed at
runtime is a directed graph with software processing ele-
ments (PEs) as vertices and data streams as edges connect-
ing the PEs. The resource usage of each PE is a critical in-
put to the runtime scheduler for proper resource allocation.
We represent the resource usage of PEs in terms of resource
functions (RFs) that are used by the System S scheduler,
with one RF per resource per PE. The first challenge is that
building good RFs that can accurately predict the resource
usage of a PE can be difficult because the PEs perform ar-
bitrary computations. A second set of challenges arises in
managing the RFs and data so that we can apply them for
PEs that are re-run and/or reused by the same or different
applications or users. We report our experience in overcom-
ing these challenges. Specifically, we present an empirical
characterization of PE RFs from several real streaming ap-
plications running in a System S testbed. This justifies our
simple, yet effective, models of resource usage that build on
the data-flow nature of the underlying application. We show
that simple piecewise linear models are generally effective in
practice, even for complex PEs. To illustrate our method-
ology, we evaluate and analyze the performance of several
real System S applications as a function of the quality of our
resource profile models. To obtain these resource profiles,
the system automatically learns the models from the raw
metrics data collected from running PEs. We describe our
approach to managing the metrics and RF models, which
allows us to construct generalizable RFs and eliminates or
reduces the learning time for new PEs by intelligently stor-
ing and reusing the metrics data.

1. INTRODUCTION
System S [2, 20, 8, 19], under development at the IBM

T. J. Watson Research Center, and many other distributed
stream processing systems [22, 4, 11, 1] are in a class of
scalable distributed systems which are geared toward pro-
cessing long-running queries on continuous streams of data.
Streaming applications in such systems are typically orga-
nized as data-flow graphs. The runtime deployable unit in
System S is a PE. Each application is essentially a directed
graph with the software processing elements (the PEs) as
verticies and the data streams as directed edges connecting
the PEs.

A key resource allocation problem faced by the runtime
scheduler in such systems is to map the PEs in the applica-
tions to compute resources in a way that utilizes the avail-
able CPU, network and memory resources efficiently without
overloading any individual node or network link. In essence
this is a complex bin-packing problem. A critical input to
the runtime scheduler for solving such a problem is the “size”
of a PE, or, equivalently, the resource usage of a PE. The
resource demand rp of a PE p for resource r is given by the
functional form rp = fp,r(d1, d2, ...) where d1, d2, ... are the
factors on which the resource usage depends. The function
fp,r is called a resource function (RF) and is a model of the
PE’s resource usage.

There are several challenges that arise in the context of
RFs. First and foremost, accurately predicting the resource
usage of PEs can be difficult. A PE can be the result of
fusing multiple unrelated SPADE operators by the optimizer
of the SPADE compiler [8].1 A PE can also implement a
user-defined, arbitrarily complex data analytic algorithm.
As a result, the PE sizes are not fixed or even known a-priori.
Furthermore, the usage of one resource of a PE can depend
on characteristics of the input streams (such as volume/rate
and data content) which can change dynamically, potentially
causing the resource usage of a PE to change.

A second set of challenges arises in the context of manag-
ing the RFs, driven by how the PEs are used. A PE from

1SPADE is the development front-end for System S. It is
a language for composing a streaming application, which
is typically an operator-based data-flow graph. It is also
a compiler. After compilation, multiple operators can be
fused into a single PE and the operator-based flow graph is
coalesced into a PE-based flow graph for deployment [8].



a job may be resubmitted at a later time, either as part of
the same job or a different job. Users may share PEs (eg, a
classifier) in their own applications. The same PE may run
in the system under a different set of circumstances, such as
different parameterizations or context (ie, with different up-
stream or downstream PEs). Since even PEs that have never
been run before do need to be scheduled, it is very helpful
for good resource allocation to have some initial estimate
of the PE’s resource usage. Hence, one question is how do
we identify a PE so we can associate its RF with it? In a
similar vein, how should RFs be shared between instances
of a PE, and how can observing one instance of a PE yield
clues about another, slightly different PE instance’s resource
usage? For PEs that may not have been run before – what
sensible initial RF can be provided?

In this paper, we describe our experience in addressing
these challenges. Specifically, we present our practical ap-
proach to characterizing, constructing and managing the re-
source usage profiles of stream PEs for the purpose of pro-
viding a critical input to the SODA scheduler [19, 18] in
System S. (SODA is the runtime scheduler for System S and
it stands for Scheduling Optimizer for Distributed Appli-
cations.) Note that we do not claim that our approach to
addressing these challenges is the best one. Other alter-
natives certainly exist, and we continue to explore some of
them. Moreover, we focus only on learning the resource us-
age of CPU and network, and rely on matching resource
constraints associated with memory usage specified by the
application developer.

To highlight the impact of resource model inaccuracy on
system performance, In Figure 1, we compare the total in-
gest rate achieved for two System S applications: DAC [20]
and SKA [6] when SODA has increasingly incongruous re-
source models. The higher the total ingest rate, the better
the system performance. The applications are described in
Section 2.2 and the experiments are detailed in Section 3.5.1.
Here, an incongruity level of 1 represents the best appli-
cation performance when it is scheduled with SODA using
the actual trained RFs, i.e., the most congruous/accurate
RFs. (Note that, from now on, we will use RF, or Resource
Function, to describe the resource usage model of a PE.)
The other cases represent increasing levels of “incongruity”
of the RFs, namely the RFs are increasingly out of place.
We see that the RFs need not be completely accurate to
achieve good performance in practice (see the incongruity
levels of 3 and 5 for DAC and the incongruity level of 1.5
for SKA). However, they cannot be too far out of place,
either. For example, with severely incongruous RFs, the ap-
plication performance can reduce significantly, e.g., by over
30% for DAC and over 50% for SKA. In extreme cases, the
application may even fail to start or run.

Specifically, based on our experience, we make the follow-
ing contributions in this paper:

• We demonstrate a simple data flow-based approach to
modeling the resource usage of PEs. We show that
simple piecewise linear models are generally effective
in practice, even for complex PEs. We validate this ap-
proach empirically against PEs from several System S
applications, including both simple and complex PEs.

• We show a practical scheme for managing and building
these models in a way that maximizes the usage of raw
input (training) data and enables the learned resource
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Figure 1: Effect of scheduling with bad resource pro-
files

models to be generalized to new PEs.

• We validate that the RFs need not be very accurate.
Schedules generated by SODA degrade, but gracefully,
as the incongruity in RFs grows. The sensitivity to RF
incongruity appears to depend on the spare capacity
in the system as a whole.

The rest of the paper is organized as follows. In Section 2
we introduce System S and describe the testbed and appli-
cations used in the experiments in this paper. Next, we
present in Section 3 the resource model for CPU and net-
work that we use, along with an evaluation of the resource
model sensitivity. The issue of model management and a
description of our approach are given in Section 4. Related
work is reviewed in Section 5, and we conclude in Section 6.

2. BACKGROUND

2.1 System S
System S [2, 20, 8] is a large-scale distributed stream

processing middleware being developed at IBM Watson Re-
search. It is designed for supporting complex analytics on
large volumes of streaming data, both structured and un-
structured. System S has two main components: SPADE
and the System S runtime. SPADE is a rapid application
development front-end for System S [8]. It consists of a
language, a compiler, and auxiliary support for building
distributed stream processing applications. The SPADE
language provides a stream-centric, operator-level program-
ming model. The operator logic can optionally be imple-
mented in a lower-level language, like C++, whereas the
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ik, output ports ok and streams.

SPADE language is used to compose these operators into
logical data-flow graphs.

However, a SPADE operator implementing a simple logic,
like filtering, can be too “small” to be efficiently deployed
to a compute node at runtime. The SPADE compiler can
fuse several operators into a processing element (PE), which
is the unit of deployment in System S. As a result, the
SPADE compiler is able to coalesce logical data-flow graphs
(operator-based) into physical graphs (PE-based) that are
more appropriate for deployment.

At runtime, the processing of stream applications is or-
ganized in terms of one or more jobs that consist of PEs
organized into data-flow graphs. PEs can perform arbitrary
processing on their input data. A general PE is depicted in
Figure 2. PEs consume and produce streams which carry
data in terms of strictly-typed stream data objects (SDOs).
A PE receives and sends data through ports, which represent
attachment points for streams. A PE can read from multi-
ple ports, write to multiple ports, and multiple streams may
originate or end in a single port.

2.1.1 Processing Elements
In System S, PEs are a runtime deployable unit. Phys-

ically, a PE is a process, and may contain of one or more
threads of execution. The PEs of an application are dis-
tributed across the nodes of the System S cluster. Each
node in the cluster can run multiple PEs and divides its
CPU resource between them according to fractions dictated
by the scheduler SODA (Section 2.1.2).

The PEs can be generic programs, and are not limited
to standard streaming relational operators. As a specific
example, a PE may carry out several operators [8] and thus
its behavior is a conglomeration of the behavior of these
operators and the specifics of how they are connected inside
the PE.

2.1.2 SODA
Resource allocation in System S is performed by a central-

ized, epoch-based scheduler called SODA [19], which is a sub-
component of the System S runtime. In streaming systems
such as System S, the jobs are usually long-running, and of-
ten continue to run until they are terminated by the user
who submits them. Therefore, metrics such as completion
time and response time, which are traditionally optimized in
batch processing systems are not relevant. Instead, SODA
maximizes a utility-theoretic measure known in System S as
importance subject to a variety of real-world constraints. In
doing so, it analyzes a vast number of PE resource alloca-
tion alternatives for different job admission and template
choices, using importance as a black box objective function.

The importance metric is a weighted sum of selected value
functions at key (typically terminal) streams in the data-
flow graphs. The notion is that these streams represent the
“final” products of the various jobs, and the weighted value
functions translate these stream rates into measures of good-
ness of the work done in System S.

The SODA scheduler performs three major functions.

• Job admission: It chooses a subset of jobs to execute
from a potentially huge collection of jobs submitted to
the system.

• Template selection: For those jobs that will be ad-
mitted it chooses one of potentially several alternate
approaches, known as templates. Each such template
represents a distinct method of performing the job
functionality, and is represented by a different data-
flow graph. Templates are intended to express alter-
nate approaches which are computationally equivalent
but may trade off achieved benefit with required re-
sources for performing the job.

• Node assignment and fractional allocations: SODA also
chooses flow-balanced resource allocations for all the
PEs in the chosen templates of the admitted jobs. By
flow balance we mean that PEs are given the right level
of resource allocation relative to their predecessors. To
understand this, consider one particular PE. Giving
relatively too many resources to the PE’s predeces-
sors will “flood” the PE, while giving relatively too
few resources will starve the PE. The allocation levels
need to be balanced throughout the entire data-flow
graph. Then, it assigns a processing node to each of
these PEs. Finally, combining these decisions, SODA
chooses flow-balanced fractional allocations of PEs to
processing nodes. The fractional allocation prescribes
how a node’s CPU resources are divided among the
PEs assigned to that node.

MacroQ, one of the mathematical components of SODA, is
responsible for the first two of these functions and a portion
of the third: specifically, MacroQ performs job admission
and chooses job templates. It also computes flow-balanced
target resource allocations of PEs. Then, the MacroW com-
ponent of SODA finds the best processing nodes for each
PE, simultaneously load balancing the nodes and minimiz-
ing network traffic. Finally, the MicroW component com-
putes fractional allocations of the PEs to those processing
nodes to meet the target resource allocations as closely as
possible. In this paper, we focus on the MacroQ component
of SODA since it uses the RFs as input.

For MacroQ to do its job, the RFs must provide estimates
of the CPU requirements of the PEs and the network traf-
fic between PEs. A static estimate of resource usage would
perform poorly, because these requirements could (and do)
vary according to several factors. For example, a classifica-
tion PE will likely need resources that depend upon its input
rate, and will have an output rate that also depends on its
input rate. Resource usage could also depend on properties
of the input to the PE – if the classifier above is classifying
speech based on audio clips, the length of the audio clips
could effect the resources used.

Without going into further details of the MacroQ algo-
rithm (see [17]), there are some requirements imposed on
the RFs:



• Scope: A PE should have a common RF across the
nodes in the cluster, even for heterogeneous clusters.
This is for tractability. Otherwise the MacroQ search
space becomes too large.

• Accuracy: since the required accuracy depends on the
resource granularity chosen by SODA, we may, in prac-
tice, get away with less than perfect RFs as long as they
are not dramatically off.

• Form: The RFs should be monotonic increasing in their
input parameters. This is followed by a section which
is flat, and the function does not increase anymore af-
ter that. For most PEs, given more compute resources
and/or a higher input rate the output rate does not
decrease. This particular requirement is an implicit
assumption in the scheduler algorithm, and was dis-
covered during troubleshooting, as discussed in Sec-
tion 3.6.2.

2.2 Streaming Applications
For our tests, we study PEs from four applications running

on System S; these represent different but typical uses of
streaming systems.

• DAC [20] represents an insurance claims fraud detec-
tion and alerting system involving some heavy stream-
ing analytics, i.e., CPU-intensive complex stream min-
ing algorithms. Consisting of six jobs and 51 PEs.
DAC provides some scheduling challenges because its
PEs have a wide range of processing requirements.

• SKA [6] is a radio astronomy application which recon-
structs images from data received by radio telescope
antennas using interferometry [7]. SKA involves per-
forming processor and memory intensive computations
on large amounts of streaming data.

• Fab [12] is an application that processes streaming
data from automated tests in a chip manufacturing
plant, with a goal to monitor and alter the process to
improve yields.

• VWAP [3] represents a financial markets scenario where
real-time quotes are processed to detect bargains and
trading opportunities.

2.3 Testbed
The experiments and data discussed in this paper are col-

lected using a System S deployment on a cluster consist-
ing of IBM BladeCenters running Linux 2.6.9. We run our
applications on 14 blades with dual-CPU, dual-core 3GHz
Intel Xeon processors with 8GB RAM. The blades are in
the same rack; they communicate over 1GB/s links and are
inter-connected using a high-speed 20GB/s backplane.

For the specific set of applications and system software
used in our experiments, the network, backplane or network
interface card (NIC) is almost never a bottleneck. Thus,
the only disadvantage of placing two PEs that communicate
with each other on separate blades is the additional process-
ing overhead involved in sending data to a different node.
Although SODA allocates PEs to the nodes while trying to
minimize the traffic across blades, this feature is not critical
for the specific combination of infrastructure and applica-
tions described here. Workloads that will stress this aspect

of the system are currently being developed. Nevertheless,
accurate RFs are a key factor in SODAs ability to balance
the load on the processing nodes.

The system is operating in reliable transport mode (no
packets dropped between PEs in the system). We collect
the system metrics such as CPU and network traffic rates
in terms of averages for 1 minute intervals. The applica-
tions are configured to run for 30 minutes with throughput-
oriented workload generators which push as much through-
put as is possible. Each run (for a particular setting) is
repeated 4 times, and averages collected.

3. PE RESOURCE USAGE MODELING
A PE’s RF represents a resource usage model for that PE.

In this section we present a model for streaming PEs, and
validate it against actual PEs from the test applications de-
scribed above. Our RF models focus on the usage of CPU
and network by the PE. For memory, we currently assume
that application developers specify maximum memory re-
quirements of PEs, if necessary. The allocations returned
by SODA are such that all PEs assigned to a node will fit
within the available memory on that node.

3.1 Model Parameters
In order to predict the resource usage of a PE, we must

consider two broad categories of factors: dynamic and static,
depending on whether they vary at runtime. Dynamic fac-
tors include the input data rates to the PE, the distribution
of input data types, and data content. Static factors include
the PE code, the PE arguments, stream flowspecs and sys-
tem configuration such as the communication model. One
factor which could be regarded as dynamic but is treated
as static for modeling purposes is the nature of physical
resources given to the PE, for example, whether it is run-
ning on generic x86 hardware or special-purpose processors.
Also, the data content is difficult to characterize/represent
in the general case, so in the interest of simplicity we do
not consider it. PEs whose behavior is adaptive to available
resources may further depend on the time history of system
load and traffic.

In this section, we focus on modeling CPU and output
rates as a function of input rates for runtime PE instanti-
ations. The use of the static PE attributes are discussed
later, in Section 4.

We also remark that RFs are further classified as source,
sink, or transform RFs, depending on whether the PE is a
source PE (feeding from primal streams only), a sink PE
(not writing any streams, except maybe to disk), or a trans-
form PE (everything else), respectively. Our discussion in
this section assumes that the PE is a transform PE (with
both input and output streams), but the methodology and
techniques naturally carry over to the other types. The no-
tion of PE types will re-appear when we address RF model
management in Section 4.

3.2 Modeling CPU Usage
A challenge in modeling the CPU needs of a program is

that this demand will vary depending on the specific CPU
being used. To enable us to construct a general model that
can be used across all nodes in a heterogeneous cluster, we
use MIPS as a measure of CPU demand. The MIPS used here
is the processor BogoMips [16] reported by the Linux kernel.
The MIPS consumed by a PE is calculated by multiplying
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Figure 3: Examples of linear MIPS profile

(a) the CPU time fraction used by a PE on a specific node
(reported by the OS) and (b) the total BogoMips of the
cores on a processor. Inspite of the known limitations [16]
of the BogoMips measure, this approach is still useful as it
allows us to generalize across CPU speed variability within
the same processor family.

For processing resources, a natural model is to consider
a processing cost per incoming data object. In a queueing
theory sense, this is the “service time” per request. Even
though there is not necessarily a well-defined “service time”
for each incoming data object in streaming systems, in the
aggregate, one may expect the CPU requirements of a PE
to scale proportionally with input rate. For simplicity we
consider a linear scaling, and further it is based on the total
data rate into the PE ; we do not distinguish the rates on
individual ports.

To validate this model, we study the behavior of PEs in
our test applications. Some examples are shown in Figure 3.
For a majority of PEs, the MIPS-per-datum model seems
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Figure 4: Internal structure and RF of a fused PE
from VWAP
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Figure 5: Example of maximum MIPS profile (DAC
LoadDiffusion.JoinOperator)

to hold true. This seems to be the case for both heavier,
computationally more demanding, PEs (Figure 3(a), Fig-
ure 3(b)) as well as lighter PEs that use few MIPS per datum
(Figure 3(c), Figure 3(d)). In the case of the SPADE-based
applications, this model applies even for those PEs which are
composed (fused) from simpler SPADE operators. Another
surprise is that even some of the join PEs show this linear
behavior. As an example, the PE shown in Figure 4(a) is
composed of an aggregator, a functor and a join. Yet, the
MIPS profile follows the same linear MIPS-per-tuple pattern
as seen in 4(b).

Based on our experience, we present our initial candidate
model for CPU.

mp = min(Mp, ap

∑
i∈IPorts(p)

rI
i ) (1)

where Mp represents the maximum MIPS that can be allo-
cated to the PE p. This limit often occurs due to system
considerations: the maximum MIPS on any processing node
in the system, for instance. Even when this is not the case,
this limit allows us to place bounds on the search space ex-
plored by SODA. In this model, the term ap represents the
best-fit slope of the MIPS needed by the PE as a function of
its input rate.

To illustrate, consider the DAC Load Diffusion PE illus-
trated in Figure 3(a). For this PE, the coefficients Mp and
ap in (1) can be derived from fitting the best linear model
to the data, yielding Mp = 3000, and ap = 200.

Some PEs, on the other hand, notably from the DAC
application, consume a lot of CPU even when the input
rates are not very large, effectively saturating the processing
node. One example is shown in Figure 5. The PEs shown
are single-threaded, and 4000 MIPS represents the BogoMips
capacity of one core of the node. However, even such PEs
can be modeled using the linear model described in (1). By
recognizing that the resource usage of such PEs is largely
determined by the maximum MIPS available, we can set ap

sufficiently large (in this case larger than 50000), and set
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Figure 6: Example of linear output rate profile (Fab
PLLTest PE)

Mp = 4000 (from the observed data). Now the first term in
(1) dominates the second, resulting in a MIPS prediction mp

of 4000 for any sufficiently large non-zero data input rate.

3.3 Modeling Output Rates
Output rates for most streaming PEs are relatively easy

to model, since in many cases they have a 1:1 relationship
to the inputs, meaning that for every incoming tuple, an
outgoing tuple is produced. Operations that do not fit this
pattern include filtering, aggregation and timer-based data
output. We use the following model for output rate:

rO
p = min(Rp, bp

∑
i∈IPorts(p)

rI
i ) (2)

Thus, for PEs that have a 1:1 relationship to the inputs,
bp is equal to 1, and Rp is set to the largest data rates
seen at the output port. Consider the PLLTest PE from
Fab, illustrated in Figure 6. From the data, we observe that
Rp = 5. Filtering PEs will have bp < 1. Tuple count-based
operations (that produce an output for every k input tuples)
will have the slope bp = 1/k. PEs that produce output based
on timers are the main exception requiring a different model
since they are independent of the input rate. For such PEs,
the model takes the form rO

p = 1/T where output is every
T time units.

3.4 Building RFs
A parametric RF can be built for each output port of a

PE. Such an RF first describes the type of model considered,
followed by all the relevant parameters.

This study also reveals a methodological challenge: the
stable flow balance during this workload generator driven
data collection can result in very narrow input rates ob-
served at the PEs. This can result in skewed data for the
resource function learning. One way to address this is to ex-
plicitly “tweak” the input rates to each PE to ensure cover-
age over some reasonable range, so that the function fitting



will be valid and generalizable outside the range observed
during the calibration step.

3.5 Model Evaluation
To evaluate the RFs, we run the applications as described

in Section 2.3, and look at the following application and
infrastructure level metrics:

• Ingest rate: This is a measure of how much data (in
Mbps) could be processed by the system. It is intended
as a measure of the system’s “effective capacity” and
should be correlated with importance. In stream pro-
cessing systems such as System S, flow-balanced re-
source allocations for the PEs and a load-balanced al-
location of PEs to processing nodes minimizes bottle-
necks, thus maximizing the amount of data processed
at the source PEs (ingest rate).

• Stream affinity : One way to measure the quality of the
placement is in terms of the traffic load on the system.
We compute the amount of traffic that is sent between
PEs on the same node divided by the total traffic. The
higher this quantity, the better, since PEs which share
a stream should be put on the same node (or nearby)
to minimize network utilization.

• Maximum node utilization: This is a measure of how
well SODA distributes the processing load across var-
ious machines. This metric is especially interesting
when evaluated in conjunction with stream affinity;
SODA attempts to maximize stream affinity while si-
multaneously minimizing maximum node utilization.

The first metric (ingest rate) is the most tangible measure
of system performance for streaming systems. The latter
two metrics, in conjunction, illustrate the quality of the
placement of PEs to processing nodes. Given the same
stream affinity, smaller the maximum node utilization the
better. Given the same maximum node utilization, higher
the stream affinity the better. These metrics are computed
from the raw system metrics such as CPU usage per PE and
traffic consumed and produced by each PE.

3.5.1 Making RFs Less Congruous
In these experiments, we modify the RFs learned from an

expert placement in an attempt to systematically degrade
their quality, and analyze the resulting deterioration in the
quality of SODA placement. The expert placement corre-
sponds to an allocation of PEs to processing nodes by some-
one with significant knowledge about the application, and
is determined by a trial-and-error process until the domain
expert is satisfied with the performance of the application.
Note that the RFs are not tuned by hand; their parameters
are learnt automatically by the system using the models de-
scribed in Sections 3.2 and 3.3.

To analyze the deterioration of RFs carefully, we parametrize
the de-tuning of the RFs using a parameter κ. (When κ = 1,
the RFs are not modified.) Since our modifications involve
generating random numbers, to ensure that these modifi-
cations are consistent across runs and values of κ, we pre-
generate a sequence of random numbers, and use the same
sequence for all the runs. This is equivalent to seeding our
random number generator with the same value each run.

We now describe precisely how each term in an RF is
changed, given κ. Fix a particular value of κ. We mod-
ify each term t in an RF by a factor α, as follows. We draw
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Figure 7: Effect of scheduling with bad resource pro-
files on node utilization and intra-node traffic

two random numbers, say r1 and r2. The first number r1
determines how much the term t gets modified, and the sec-
ond number determines whether t is increased or decreased.
Let round(a, b) denote the value of a rounded to the nearest
multiple of b. We set α = 1 + round(r1 ∗ (κ− 1), 0.1); Thus,
α is some multiple of 0.1 between the values 1 and κ, deter-
mined by the value of the random number r1. If r2 < 0.5, we
multiply t by α. Otherwise we divide t by α. Observe that
when κ = 1, α = 1, and t is not modified. Furthermore, as
κ is increased, the amount of de-tuning increases probabilis-
tically. This allows us to modify each term in the RFs in a
controllable fashion, analyzing the performance of SODA as
the RFs degrade. Since we use the same sequence of random
numbers, each term is modified using the same r1, r2 in all
the runs. Different κ values will result in different values
of α that are strongly correlated with κ, as we desired. As
we increase κ to ∞, α also increases to ∞ (for positive r1),
and the RF term t either increases to ∞ or decreases to 0,
depending on whether r2 < 0.5.

We illustrate using the RF modeling the CPU usage of
the DAC Load Diffusion PE (see Figure 3(a)). The RF for
this PE has two terms Mp = 3000 and ap = 200. Let us
consider the first term. Suppose the two random numbers
r1 and r2 are 0.84 and 0.39. When κ = 3, α = 2.7, and Mp

is modified to the new value 8100. On the other hand, when
κ = 5, α = 4.4, and Mp is modified to a new value of 13200.
If κ = 1, the value of Mp is unchanged. Observe that larger
values of r1 result in a larger perturbation for a given κ, and
also that if r2 > 0.5, the value of Mp would have decreased
instead.

3.5.2 Impact on Application Performance
The effect of making the RFs less congruous is to make



SODA’s estimates of the resource requirements of the various
PEs more inaccurate. In the experiments we present here,
we do not consider job admission or template selection de-
cisions. Therefore, the MacroQ component of SODA deter-
mines the CPU requirements of the PEs (and traffic between
PEs) in the submitted job in the process of maximizing the
net importance of the system. These numbers are then used
as input by the MacroW component to allocate the PEs to
nodes in an intelligent manner (load-balancing the nodes
and minimizing inter-node traffic simultaneously). Less con-
gruous RFs results in worse CPU estimates in MacroQ and
less intelligent placement by MacroW.

These effects are shown in Figure 1 and Figure 7 for two
applications: DAC and SKA. We also show the performance
of the RND scheduler that assigns PEs to nodes in the clus-
ter randomly. Given our cluster size, the Fab and VWAP
applications did not present enough work, so we do not use
them in the evaluation here. We see that for SKA there is a
systematic drop in performance (ingest rate) as the RFs are
made more incongruous, whereas for DAC, the performance
is relatively insensitive to RF perturbation. In SKA, we see
that RND performance is considerably worse than SODA
with congruous RFs. On the other hand, the performance of
the RND placement on DAC is close to that of SODA with
congruous RFs (see Figure 1), even though RND uses more
nodes than SODA with congruous RFs, thus sending a larger
traffic load on the network (smaller stream affinity).

This behavior of the RF sensitivity as well as effectiveness
of RND placement is explained by considering the overall
node utilizations of the various scenarios (see Figure 7). We
see that in general, DAC has low average utilization, imply-
ing it is very over-provisioned. In this case, the effect of a
poor placement (in terms of network traffic load and node
utilization) on ingest rate is not going to be significant until
the placement gets dramatically tweaked. For SKA, on the
other hand, some PEs are quite computationally intensive.
Here, the nodes are well utilized in a placement computed
with congruous RFs, and the effect of making the RFs less
congruous is to create bottlenecks. This increases the max-
imum node utilization while decreasing average utilization.
For SKA, the RND case also seems to utilize the nodes well,
but because it does not account for intra-node traffic, its
performance is much lower than SODA with congruous RFs.

Thus, we see that in the under-utilized case, the perfor-
mance can be less sensitive to RF incongruity than under
higher node utilizations. On the other hand, with larger
workloads (higher node utilizations as in SKA), and with
mixed application workloads, the performance of the sched-
uler SODA deteriorates significantly when using incongruous
RFs as input data.

3.6 Experience with Advanced Models
In this section, we describe our experience and lessons

learned with more advanced models than the simple models
presented in Sections 3.2 and 3.3. We also consider the
impact of alternate data transport mechanisms, from the
perspective of both the RFs and the scheduler itself.

3.6.1 Unreliable Data Transport
In the preceding discussion, the RF was a function map-

ping from the input rates to either MIPS or to the output
rate. This was because System S, by default, operates in re-
liable data transport mode. In other words, no packets are

dropped, and queues get backed up if the PEs do not get
sufficient resources. As a result, in these RFs, input rates are
the only independent variables. We also refer to this mode
of operation, and the corresponding RFs, as the “no-drop”
model.

On the other hand, System S can also operate in an un-
reliable mode, in the sense that reducing the MIPS allocation
to a PE effectively forces packet drops. We call this the
“drop” model, in contrast with the “no-drop” model. This
affects the RF and the scheduler primarily in the following
way.

• Implications to SODA: Since the PEs now drop packets
when they do not have sufficient resources (in terms of
MIPS), the scheduler has one more knob to twiddle,
in its attempt to maximize system importance. It can,
intentionally, decide to give less resources to some PEs
than they would otherwise need. In some sense, SODA
can now decide to “partially” allocate resources to PEs
in some jobs, or even to parts of a job. To be able to
do so meaningfully, SODA needs to know how the data
output rates change as a function of the MIPS allocated
to the PEs. In other words, MIPS is no longer an
independent variable in the RFs.

• Implications to RFs: Now, the RF is a function map-
ping from the input rates and MIPS to the output rate.
These sorts of functions, where MIPS are input rather
than output, are appropriate for the cases in which re-
source usage limitations result in packet drops. These
new kinds of RFs need to be learned from the data.

3.6.2 Non-parametric Approaches
The model we described previously is a parametric model.

It assumes a particular formula and then determines param-
eters that best fit the data. If the formula is wrong, then
even the best fit model will be a bad fit. An alternative is
to use a non-parametric model. Non-parametric models, as
the name suggests, do not assume a particular form of the
resource function.

In particular, we elaborate on our experiences using one
particular kind of non-parametric model for the RFs: a de-
cision tree [10], with the “no-drop” mode mentioned above.
Although the resulting RFs for a decision tree based model
cannot be described as compactly as the parametric RFs, we
hoped that using these more accurate RFs would result in
better scheduling results.

The decision tree is trained using training data, with the
CPU usage and input rate as the classification attributes.
The output of the decision tree is an output rate, which is
used by the scheduler. Given a set of training data, the
output would be one of the values from the training set.

However, our initial decision-tree-based RFs resulted in
bad scheduling decisions because all the PEs were allocated
low amounts of resources. Upon investigation, we learned
that the data were noisy. The noisy data resulted in de-
cision tree outputs that did not satisfy the implicit form
assumptions by the scheduler (listed in 2.1.2).

As a general trend, when MIPS increases, the output rate
also increases. However, because the data were noisy, there
were cases where MIPS1 < MIPS2, but orate1 > orate2.
When the SODA scheduler does a series of RF queries and
encounters a point where increasing the MIPS decreases the
output rate, the scheduler decides that further increasing the
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Figure 8: Illustrative decision tree RF and its enve-
lope

MIPS will not produce a higher output. As a consequence,
the source PEs (and correspondingly, the downstream PEs)
end up with very few MIPS. While stopping under such a
condition is a result of the SODA scheduler’s specific algo-
rithm, we believe that many algorithms using RFs would
encounter the same problem and would probably behave
similarly.

Our first response was cleaning up the data by discard-
ing points that caused the problem. Once those outlier
points had been removed, the resulting RF had a shape
as in Figure 8. Yet, these RFs still had similar problems
as the previous ones, though for a different reason. When
the SODA scheduler encounters a flat spot (i.e., a place
where MIPS1 < MIPS2 and orate1 = orate2), the sched-
uler acts as if it were the case that for any MIPS > MIPS1,
orate = orate1. (Pictorially, it treats the RF as if the first
flat spot lasted forever.) Thus, the MIPS assignments were
again extremely small.

As a next step, we solved this problem by interpolating
between the outer points (see Figure 8), so long as there
was only one input. This model is effectively piecewise-linear
and not truly non-parametric. The results achieved were not
significantly better, so we discarded that approach as well.
If there is more than one input, it is difficult to see how to
ensure that the surface is increasing in both directions, and
we did not test models of that type.

We also considered a parametric model that did not in-
clude the maximum function. The problem encountered
there was quite interesting: the SODA scheduler never re-
turned results. It kept allocating more and more MIPS, so
its running time was very long.

From these different scenarios, we learned two lessons
about the RFs:

• The RFs must be strictly increasing. Once they stop
increasing, SODA will stop further exploration.

• They must have a flat spot where they stop increasing.

While these lessons are specific to the SODA scheduler,
they should be applicable to other schedulers which use RF
as their inputs. Furthermore, because of the fundamentally
different way in which SODA works in the no-drop case, it
may be possible for other model types to be effective in the
no-drop case; this is a topic of future research.

4. MODEL AND DATA MANAGEMENT
The study of real PEs in the previous section indicates

that an empirical approach based on collecting a few ob-

servations from each PE and constructing a model could
be a simple and practical approach to obtaining useful RFs.
While the previous section addresses the mathematics is-
sues, it does not touch the management issues. It leaves
several questions unanswered:

• What should we do about PEs when they are seen by
the system for the first time, and there is no empirical
data available for them yet?

• How can we identify whether previously collected data
(or a model built from it) is applicable for a PE that
runs in a slightly different environment than where the
data is collected? In addition to the input rate de-
pendency, a PE resource usage can depend on other
factors such as: the nature of the input data (which
may be a function of the upstream PEs), PE config-
uration (via, for example, command-line arguments),
or systems issues, such as processing node architec-
ture. This issue arises also when the same PE (e.g., a
classifier) is reused in multiple applications.

• How should metrics be stored and used to build and
update the PE RFs?

Our observation is that even though there are a myriad
factors (in addition to input rate) that affect a PE’s behav-
ior, a PE will not be run in every possible configuration.
Thus, rather than building a model that explicitly tries to
model all these factors, we build and manage separate mod-
els for different combinations of those factors. This multi-
plicity of models raises the need for managing the models as
well as the raw metrics data that is collected from the sys-
tem. Specifically, two aspects must be addressed: (a) given
a specific instance of a PE in a specific job that is submitted
to the system, which model should be used by the scheduler?
(b) given an observation of the resource usage of a specific
PE instance, which models should be updated, and how?

To facilitate the model management, each PE is associated
with a multi-part signature. We learn and maintain an RF
for each signature. For a specific PE, the scheduler uses the
signature to decide which RF should be used. In our system,
we use the following four parts of the signature, in order of
increasing specificity:

• PE type: source, transform or sink, as described in
Section 3.1. In the future, it is possible to envision a
much finer granularity of PE classification into types.

• Executable: the second part of the signature is the
most general, consisting of an MD5 hash of the PE’s
executable. If the PE has been run before in any con-
text, a learned model will be available. This will likely
be better than a default model based only on PE type.

• Arguments: the third part is a MD5 hash of the ar-
guments. A PE’s command-line arguments may alter
its behavior, so this piece attempts to capture this de-
pendency. For simplicity, the arguments are simply
treated as unique, unrelated categories.

• Flowspec: the fourth part is a representation of how
the PE is connected to its upstream PEs, which is
known as the flow specification or flowspec. In Sys-
tem S, streams themselves can be annotated by oper-
ations (such as filtering) which are performed by the
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infrastructure rather than the PE at either end of the
stream. The flowspec captures the specific intercon-
nection of a PE to its senders and receivers, in terms
of both the identity of PEs at the other end of each
input/output stream, as well as the in-stream opera-
tions. It thus represents the most specific attribute of
a particular instance of a PE that is connected in a
specific way to other PEs.

The signature captures some key attributes of the PE which
are knowable at job submission time. This allows the sched-
uler to choose an RF before the PE even begins execution.
After execution, the PE RF may be refined further based on
ongoing observations, but the initial lookup addresses the
bootstrap problem.

The collection of signatures constitutes a hierarchical or-
ganization, as depicted in Figure 9. There is an RF for each
node in this hierarchy. The node labeled ‘bGlm’ represents
all PEs whose executable hashes to that string. Its two child
nodes represent that PE executable being run with two dif-
ferent command-line arguments. Thus each node in the tree
represents a “generalization” of all its children. To lookup
the RF for a specific PE, we find the most specific node which
matches the PE signature. In the figure, the lookup for ‘bGlm
| ABCD | EFGH’ stops at the PE level node ‘bGlm’ because the
rest of the signature represents entries that are not in the
database (yet). Thus, if specific information about the PE
in that context was available, that is the information that
would be used. If no specific information was available, the
system uses information based on only the executable. In
the case of a brand new PE that has never been run before
in any configuration, the system uses either (a) a general-
ized RF based on the root node (PE type), or (b) a default
type-based RF which is hand-populated by us based on our
calibrations from some earlier System S applications.

Analogously, a new data point is used to update the model
at each of these three levels, starting at the most specific
node and propagating up the tree. Thus, an observation
< rI

j ,mp, r
O
k > for PE p with input port j and output port

k, whose signature is ‘bGlm | BTI5 | WMor’ can update not
only the model at the most specific node, but at every gen-
eralization above it in the path to the root, namely ‘bGlm
| BTI5’ and ‘bGlm’. This approach allows the most specific
models to reflect observations about the PE in the most spe-
cific context, while the more generalized models gather data
from several sub-models. When a known PE is encountered
in a new context, we can obtain a better approximation of

Level
Application Executable Arguments Flowspec

DAC 40 64 81
SKA 27 102 102
VWAP 25 365 365

Table 1: Count of signatures by level for application
PEs

that PEs behavior by using this generalized information.
To highlight the possibility of reuse in actual applications,

Table 1 shows the number of unique paths at each level in
the tree for our applications. SKA and VWAP (and most
SPADE-based applications) do not use flowspecs on their
streams, so each argument-level node has only one child
node (the ‘null’ flowspec). However, these applications con-
tain several replicas of the same PE, executing with different
arguments. This indicates that maintaining the executable-
level information is likely to be useful if we encounter a new
PE with a different set of arguments than what is seen be-
fore.

5. RELATED WORK
In the literature on resource allocation and scheduling in

distributed systems, the resource requirements are typically
assumed to be known or given. Much of the other known
modeling work has occured in the context of single and
multi-tier distributed systems. In [13], the authors develop
and use linear models for CPU, disk and memory demands
based on incoming workload rates, similar to our models. A
more complex, analytical queueing model of multi-tier ser-
vices is developed in [14]. However, this model is difficult to
apply to streaming systems which are not neatly organized
into tiers – in general they are directed graphs, may have
cycles and little identifiable substructure.

In general cluster environments, [15] use kernel-based mon-
itoring tools to learn application profiles in terms of stochas-
tic token-bucket models of CPU and network usage. This
approach builds an application-level workload-independent
usage profile, and schedules to the tail of the distribution. In
our case, for streaming applications, the workload data rates
are expected to vary widely, and the system is expected to
be quite dynamic. As we see, PEs are very sensitive to the
incoming data rates, so a rate-sensitive model is needed to
ensure responsiveness to changes in resource demands.

For streaming systems, a cost-per-tuple model is also pro-
posed [21] in the context of the Borealis system. In their
case, however, the operators modeled are much simpler (like
SPADE operators) compared to the PEs in our system. We
improve on their work by showing that even complex PEs
can be modeled using a similar approach, and further we
propose a scheme for managing and generalizing these mod-
els.

[13] also raises the issues that models may become inac-
curate due to interference caused by colocation of PEs on
a node. They mention that developing models in heteroge-
neous clusters is a challenge, but others [9] have suggested
a solution involving parametric cross-architecture models.

Model management is an even less discussed topic. For
the profiling step, some authors [5, 13] suggest running the
applications on idle nodes for accurate measurements.



6. CONCLUSION AND FUTURE WORK
In this paper, we have presented the challenges of predict-

ing the CPU and network usage of PEs in System S appli-
cations. An empirical study of PEs from applications in a
System S testbed reveals that simple piecewise linear models
based on their input rates are sufficient for modeling these
PEs, which is encouraging given that some of these PEs per-
form relatively complex analytics. We have also presented
an approach based on hierarchical PE signatures for man-
aging and updating these models that addresses the issues
of getting usable models for new PEs and allowing one PE’s
model to be used effectively for another PE. Although not
discussed in this paper, our RFs are dynamically updated
based on new observations from the running PEs, this al-
lows the SODA scheduler to respond to dynamic changes in
resource demands of the applications.

Although we find that many PEs can be modeled using
these linear models, there will be PEs that do not fit into this
scheme. Although our initial attempts with non-parametric
approaches were not very successful, we aim to refine them
and pursue other advanced techniques that can capture a
larger set of PEs. Our current models also are limited to
handling CPU and network, and may even be generalizable
to disk resources [13]. However, the issue of modeling mem-
ory consumption is still an open issue. In general, since
PEs can arbitrarily allocate memory at runtime, this is a
difficult issue. Currently SODA relies on PE developers to
provide hints about the memory needs of their applications,
but an automated RF-based approach would allow even the
memory demands to be taken into account during schedul-
ing. Finally, our use of the MIPS metric does not general-
ize well across architectures. For clusters of truly heteroge-
neous nodes, especially ones containing specialized resources
(such as the Cell processor), a more generalizable metric and
model (for example, [9]) would be very useful.
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