
RC24668 (W0810-083) October 14, 2008
Computer Science

IBM Research Report

Measuring Proximity on Graphs with Side Information

Hanghang Tong
Carnegie Mellon University

Pittsburgh, PA

Huiming Qu, Hani T. Jamjoom
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Measuring Proximity on Graphs with Side Information

Abstract
This paper studies how to incorporate side informa-

tion (such as users’ feedback) in measuring node proxim-
ity on large graphs. Our method (ProSIN) is motivated
by the well studied random walk with restart (RWR). The
basic idea of the proposed ProSIN is to leverage side in-
formation to refine the graph structure so that the random
walk is biased towards/away from some specific zones on
the graph. Our case studies demonstrate that ProSIN is
well-suited in a variety of applications, including neighbor-
hood search, center-piece subgraphs, and image caption.
Given the potential computational complexity of ProSIN,
we also propose a fast algorithm (Fast-ProSIN) that ex-
ploits the smoothness of the graph structures with/without
side information. Our experimental evaluation shows that
Fast-ProSIN achieves significant speedups (up to 49x) over
straightforward implementations.

1 Introduction
Measuring proximity (i.e., relevance/closeness) between

nodes on large graphs is a very important aspect in graph
mining and has many real applications in ranking, anomaly
nodes indentification, connection subgraphs, pattern match-
ing, etc. Despite the successes of many previous work, most
existing proximity measurements consider only the link
structure of the underlying graph. For example, given an
author-conference bipartite graph, existing proximity mea-
surements may answer the question:What are the most sim-
ilar conferences to KDD?However, for a particular user,
he/she might have his/her own preferences:I dislike ICML
or I like SIGIR. These preferences are typically localized to
a particular search, and may not reflect a global sentiment
view by the user.

There are a wide range of scenarios where users’ feed-
back, both implicit or explicit, can be naturally integrated as
side information. For instance, in recommendation systems,
side information could be users’ ratings on items (e.g.,I like
Kung-Fu Panda). In blog analysis, it could be opinions and
sentiments. Additionally, for many real applications, users’
preferences can be estimated from click-through data. That
said, it is thus important to incorporate such side informa-
tion in the proximity measurement so that search results are
well-tailored to reflect a user’s individual preferences. In

the earlier example, the question will then become:What
are the most similar conferences to KDD, but dissimilar to
ICML?

In this paper, we address the above challenge by propos-
ing a novel method, called ProSIN, that incorporates such
like/dislike side information in measuring node proximity
on large graphs. Our method is based on random walk
with restart (RWR), where ProSIN uses the side informa-
tion to refine the graph structure so that RWR is biased
to avoid or to favor some specific zones on the graph ac-
cording to the users’ preferences. Additionally, ProSIN in-
herits existing capabilities from RWR, such as the ability
to summarize themultiple facetedrelationships, the inter-
pretation from the perspective ofsteady-state probability,
etc. Therefore, we expect ProSIN to enrich a broad range of
applications by replacing their original proximity measure-
ment. We evaluate ProSIN in three case studies: neighbor-
hood search, center-piece subgraph, and image caption. In
all cases, we show that ProSIN naturally reflects the users’
preference and/or improves the quality of the existing ap-
plications (e.g., boost the precision/recall of the image cap-
tions by more than 10%).

Because a straightforward implementation of ProSIN re-
quires significant computation, we propose a fast algorithm
(Fast-ProSIN) that computes the proposed proximity mea-
surement, while radically reducing the computational over-
head. Fast-ProSIN achieves the performance gains by ex-
ploiting the smoothness of the graph structures with/without
side information. Our experimental results show that it
achieves significant speedup (up to 49x) while maintaining
high approximation accuracy (more than 93.0%).

The paper has three key contributions:
• A novel method (ProSIN) to incorporate side infor-

mation (like/dislike) in measuring node proximity on
large graphs, enriching a broad range of applications;

• A fast algorithm (Fast-ProSIN) to compute the pro-
posed proximity measurement, achieving significant
speedup (up to 49x);

• Extensive experimental evaluations on several real
datasets.

The rest of the paper is organized as follows. we intro-
duce notations and formally define the problem in Section2.
We present proposed proximity measurement in Section3

1

Table 1. Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) element at theith row andjth column ofA
A(i, :) ith row of matrixA

A(:, j) jth column of matrixA
a,b, . . . column vectors
I,J , . . . sets (calligraphic)
n number of nodes in the graph
ni number of out links of nodei
c (1 − c) is the restart probability
ri,j proximity from nodei to nodej
ri = [ri,j] ranking vector for nodei (j = 1, ..., n)
P positive setP = {x1, ..., xn+}
N negative setN = {y1, ..., yn−}
n+ number of positive nodesn+ = |P|
n− number of negative nodesn− = |N |
ei n × 1 starting vector for nodei,

whereei(i) = 1 andei(j) = 0(j 6= i)

and the fast algorithm in Section4, respectively. We provide
experimental evaluations in Section5 and review the related
work in Section6. Finally, we conclude in Section7.

2 Problem Definitions
Table1 lists the main symbols that we use throughout

the paper. We represent a general graph by its adjacency
matrix. Following the standard notation, we use capital let-
ters for matrices (e.g.A), lower case for vectors (e.g.a),
and calligraphic fonts for sets (e.g.I). We use the symbol
“ ˜” to distinguish the setting with/without side information.
For example,A is the normalized adjacency matrix of the
graph without side information; and̃A is the normalized
adjacency matrix of the refined graph by side information.

We represent the elements in a matrix using a conven-
tion similar to Matlab, e.g.,A(i, j) is the element at theith

row andjth column of the matrixA, andA(:, j) is thejth

column ofA, etc.
We use a running example, depicted in Fig.1(a), to de-

scribe the problem statement. There, each node represents
a person (e.g., node 1 is ‘John’, node 2 is ‘Smith’, etc.)
and the existence of edge represents some social contact be-
tween the two corresponding persons (e.g., phone call). In
traditional settings of proximity measurement, the goal isto
quantify the closeness (i.e., relevance) between two nodes
(the source and target) based on the link structure of the un-
derlying graph. In our settings, we assume the existence
of side information, focusing primarily on like/dislike user
feedback as side information. In our running example, a
user might not want to see (i.e., dislike) node 6 but favors
(i.e., like) node 4.

Formally, we represent such side information by two sets
P andN . The setP contains the node indices that users

like (referred to as the positive set), where the correspond-
ing nodes are referred as positive nodes. The setN contains
the node indices that users dislike (referred as negative set),
where the corresponding nodes are referred to as negative
nodes. In our running example, both the positive setP and
the negative setN contain one single element, respectively:
P = {4} andN = {6}. Our goal is to incorporate such
side information to measure the node proximity (e.g., the
proximity from node 1 to the node 3 in our running exam-
ple).

(a) the graph (node 1 is the source.)

(b) column normalized adjacency matrixA
Figure 1. The running example.

With the above notations and assumptions in mind, our
problem can be formally defined as follows:

Problem 1 (Proximity with Side Information)

Given: a weighted direct graphA, a source nodes and a
target nodet, and side informationP andN ;

Find: the proximity scorẽrs,t from source nodes to target
nodet.

In problem1, if the target nodet is absent, we measure
the proximity scorẽrs,i(i = 1, ..., n) from the source node
s to all the other nodes in the graph. If we stack all these
scores into a column vector̃rs = [r̃s,i](i = 1, ..., n), it is
equivalent to saying that we want to compute the ranking
vector r̃s for the source nodes. In this paper, we assume
that there is no overlap between the positive set and negative
set (i.e.,P ∩ N = φ.1) Also, the positive and negative

1If this does not hold, we can remove the intersection from both positive
set and negative set.

2

side information do not need to exist simultaneously. For
example, if we only have positive side information, we can
simply set the negative set to be empty (i.e.,N = φ).

3 ProSIN
In this section, we introduce our proximity measurement

with side information, ProSIN. We begin by reviewing ran-
dom walk with restart (RWR), which is a good proximity
measurement for the case where there is no side informa-
tion. We, then, extend RWR to properly account for side
information.

3.1 RWR: Proximity without Side Information

Random walk with restart (RWR) is considered one of
the most successful methods for measuring proximity and
is receiving increased interest in recent years—see Section
6 for a detailed review. For a given graph, RWR is defined
as follows. Consider a random particle that starts from node
i. The particle iteratively transits to its neighbors with prob-
abilities proportional to the corresponding edge weights.At
each step, the particle can returns to nodei with some restart
probability(1−c). The proximity score from nodei to node
j is defined as the steady-state probabilityri,j that the par-
ticle will be on nodej [18]. Intuitively, ri,j is the fraction
of time that the particle starting from nodei will spend on
each nodej of the graph, after an infinite number of steps.

If we stack all the proximity scoresri,j into a columnri

(referred to as the ranking vector for the nodei), the equa-
tion (1) gives the formal definition of RWR:

ri = cAri + (1 − c)ei, (1)

whereA is the column normalized adjacency matrix for the
graph andei is the starting vector for nodei.

For our running example in Fig.1(a), its normalized ad-
jacency matrixA is shown in Fig.1(b). If we ignore any
side information, by setting the correct starting vector (e.g.,
e1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]′ for node 1), we can
solve the corresponding ranking vector using equation (1).
Fig. 2(a) plots the ranking vector (sorted from highest to
lowest) for node 1 of the running example. The scores are
consistent with our intuition: nearby nodes (e.g., nodes 9,2
and 5) receive higher proximity scores.

3.2 ProSIN: Proximity with S ide Information

Basic Ideas. Our goal is to incorporate side informa-
tion to measure the node proximity. Intuitively, for a given
source nodes, if positive nodes exist, the proximity score
from the source node to such positive nodes as well as their
neighboring nodes should increase, compared to the case
where such side information is unavailable. In our running
example, if we know node 4 belongs to the positive setP ,
we expect that the proximity score from the source node
1 to node 4 to increase and so will the proximity scores

from node 1 to node 4’s neighboring nodes (e.g., node 2
and node 3). Analogously, if negative nodes exist, the prox-
imity scores from the source node to such negative nodes as
well as their neighboring nodes should decrease, compared
to the case where such side information is unavailable. In
our running example, if we know that node 6 belongs to the
negative setN , we expect the proximity score from node
1 to node 6 to decrease, and so will node 6’s neighboring
nodes (such as nodes 5 and 7).

The basic idea of ProSIN is then to use side information
to refine the original graph structure so that the random par-
ticle (1) has higher chances of visiting the positive nodes as
well as their neighboring nodes, and (2) has lower chances
of visiting the negative nodes as well as their neighboring
nodes.

(a) the updated graph

(b) updated column normalized adjacency matrix

Figure 3. Adjustment on the original graph in
the running example in Fig. 1.

Dealing with Positive Nodes. For each nodex in the
positive set (P), we create a direct link from the source node
s to nodex. As in the running example, we add a direct link
from the source node 1 to node 4 (See Fig.3(a)). In this way,
whenever the random particle visits (or restarts from) the
sources, it has higher chances of visiting the nodes in the
positive set. Note that we are also implicitly increasing the
chance that the random particle will visit the neighborhood
of those positive nodes. The weight of each newly added
link is set to1/(ns + n+). For example, the newly added

3

0 2 4 6 8 10 12
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Rank

P
ro

xi
m

ity
 S

co
re

Node 9

Node 2

Node 5

Node 13

Nodes 3,4

Nodes 6,8 Nodes
7, 10, 11, 12

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Rank

P
ro

xi
m

ity
 S

co
re

Node 9

Nodes
8, 7, 6

Nodes
10, 11, 12, 5

Node 13

Node 4
Node 3

Node 2

(a) without side information (b) with side information

Figure 2. Ranking vector for node 1 in the running example in F ig. 1. (The proximity scores are
normalized so that they sum up to 1.)

edge (1,4) for the running example will receive a weight of
0.25 (sincen1 = 3 andn+ = 1).

Dealing with Negative Nodes.To deal with the nega-
tive nodes, we introduce a sink into the graph, which has
no out links. For each nodey in the negative set (N), we
put a direct link from nodey to the sink. Thus, whenever
the random particle visits this node, it can go to the sink
and never comes back (since there is no out links from the
sink). Therefore, this negative nodey is penalized and its
corresponding proximity score will decrease. In order to
penalize the neighborhood of nodey, we also put a direct
link from its neighboring nodes to the sink. In our running
example, besides the link from node 6 (the negative node) to
the sink, we placed a link from nodes 5 and 7 (the neighbor-
ing nodes of node 6) to the sink respectively (see Fig.3(a)).

There are two remaining questions: (1) how to choose
the neighborhood of a negative nodey and (2) how to de-
termine the weights to the sink. Let the index of the sink
node ben + 1, the procedure is summarized in Alg.1. In
Alg. 1, we use random walk with restart (on the original
graph) to determine (1) the neighborhood of the negative
nodey (steps 2-4), and (2) the weights of the newly added
links to the sink (steps 5-6). Notice that we eventually (step
9) discard the last row/column (which corresponds to the
sink node). We use it to simplify the description of the pro-
posed method without affecting the ranking vector in accord
to the property of a sink node.

ProSIN Algorithm. Based on the above preparations,
the complete algorithm to measure proximity with side in-
formation (ProSIN) is given in Alg.2. In Alg. 2, after ini-
tialization (step 1), we first use side information to refine
the graph structure (steps 2-7 for positive nodes,2 and steps
8-12 for negative nodes). Note that in step 10, we use the

2Note that step 3 is to insure that thes
th column ofÃ sums up to 1.

Algorithm 1 Add Links for One Negative Node
Input: The adjacency matrixA, the negative nodey, the

neighborhood sizek andc.
Output: The updated adjacency matrix̃A.

1: initialize Ã = A, Ã(n+1, :) = 0, andÃ(:, n+1) = 0.
2: get the ranking vector for the negative nodey by ry =

cAry + (1 − c)ey. Let ǫ := kth largest element inry.
3: for each nodei do
4: if ry,l ≥ ǫ then
5: setÃ(n + 1, l) = ry,i/ry,y

6: setÃ(1 : n, i) = (1 − ry,i/ry,y)Ã(1 : n, i)
7: end if
8: end for
9: outputÃ = Ã(1 : n, 1 : n).

sameA (i.e., the original graph) to add links for each nega-
tive nodey. This is because we assume that all the negative
nodes are obtained in a batch mode (i.e., there is no order-
ing among different negative nodes). Then, we perform a
random walk with restart on the refined graph (Ã) for the
source nodes (step 13) and output the corresponding steady
state probability as the proximity score (step 14). For exam-
ple, Fig.2(b) plots the ranking vector (sorted from highest
to lowest) for node 1 of the running example with side in-
foramtion (P = {4}, andN = {6}). Compared to the
case without side information (Fig.2(a)), it can be seen that
positive node (node 4) as well as its neighborhood (nodes 2
and 3) receives higher proximity scores; while the negative
node (node 6) as well as its neighboring nodes (nodes 5 and
7) receives lowers scores.

4 Fast-ProSIN
In this section, we introduce our fast solution for ProSIN.

We start by reviewing NBLIN, which is a fast algorithm to

4

Algorithm 2 ProSIN
Input: The adjacency matrixA, the source nodes and the

target nodet, the side informationP andN , the neigh-
borhood sizek, and the parameter c.

Output: the proximity scorẽrs,t from sources to targett.
1: initialize Ã = A

2: if n+ > 0 then
3: Ã(:, s) = ns/(ns + n+)Ã(:, s)
4: for each positive nodex in P do
5: Ã(x, s) = Ã(x, s) + 1/(ns + n+).
6: end for
7: end if
8: if n− > 0 then
9: for each negative nodey in N do

10: updateÃ by Alg. 1
11: end for
12: end if
13: solve the equatioñrs = cÃr̃s + (1 − c)es.
14: output̃rs,t = r̃s(t).

compute random walk with restart (the proximity without
side information) [25]. We then extend it to include side
information.

4.1 Background: NB LIN for RWR

According to the definition (equation (1)), we need to in-
vert ann×n matrix. This operation is prohibitively slow for
large graphs. On the other hand, the iterative method (iter-
ating equation (1) until convergence) might need many iter-
ations, which is also not efficient. In [25], the authors solve
this problem using a low-rank approximation, followed by a
matrix inversion of sizel× l (wherel is the rank of the low-
rank approximation) to get all possible proximity scores.
Their solution, called NBLIN, is the starting point for our
fast algorithm.

Alg. 3 summarizes NBLIN, where it is divided into
two stages: NB LIN Pre() and NB LIN OQ(). In
NB LIN Pre() (steps 1-3), a low-rank approximation is
performed for the normalized adjacency matrixA and a
matrix inversionΛ is computed. Next, inNB LIN OQ()
(steps 4-5), only a small number of matrix-vector multipli-
cations are computed to output the ranking vector.

4.2 Fast-ProSIN

To incorporate side information, we need to solve ran-
dom walk with restart in two places. First, we process the
original graphA (step 10 in Alg.4); and then we pro-
cess the refined graph̃A to get the ranking vector for the
source nodes (step 13 in Alg.4). If we utilize NB LIN
in a straightforward way, we have to call it twice (forA

and forÃ, respectively). Unfortunately, this does not fit the
expect usage model of side information, where it needs to

Algorithm 3 NB LIN
Input: The normalized adjacency matrixA, the source

nodes andc.
Output: The ranking vector for source noders.

1: Pre-Compute Stage(NB LIN Pre())
2: do low-rank approximation forA = USV

3: pre-compute and store the matrixΛ = (S−1−cVU)−1

4: On-Line Query Stage(NB LIN OQ())
5: outputrs = (1 − c)(es + cUΛVes)

reflect users’ real-time interests. Imagine a user is query-
ing an author-conference bipartite graph, and s/he wants to
know which conferences are most similar to KDD. After
the system gives the initial search results, s/he might further
give her/his own preference (e.g.,dislike ICML) and expect
updated search results that matches her/his interests. This
basically implies that callingNB LIN Pre() on the refined
graphÃ is part of the on-line cost, which may pose a huge
threat to the system’s performance.

Algorithm 4 Fast-ProSIN
Input: The adjacency matrixA, the source nodes, the side

informationP andN , the neighborhood sizek, and the
parameterc.

Output: the ranking vector̃rs for the sources.
1: Pre-Compute Stage
2: call [U,Λ,V] = NB LIN Pre(A, c)
3: On-Line Query (Feedback) Stage
4: initialize i0 = 1 andΘ = 0(kn−+1)×2

5: for each negative nodey in N do
6: call ry = NB LIN OQ(c,U,Λ,V, ey).
7: let ǫ := kth largest element inry.
8: for each nodei s.t. ry,i >= ǫ do
9: setΘ(i0, 1) = i andΘ(i0, 2) = 1 − ry,i/ry,y

10: increasei0 by 1
11: end for
12: end for
13: setΘ(i0, 1) = s andΘ(i0, 2) = ns/(ns + n+)
14: setŨ = U andṼ = V

15: for i = 1 : kn− + 1 do
16: setX(i, :) = U(Θ(i, 1), :)
17: setY(:, i) = V(:,Θ(i, 1))(Θ(i, 2) − 1)
18: setV(:,Θ(i, 1)) = V(:,Θ(i, 1))Θ(i, 2)
19: end for
20: computeL = (I − cXΛY)−1

21: updateΛ̃ = Λ + cΛYLXΛ

22: sete+ = 0n×1, e+(P) = 1/(ns + n+)
23: call r̂s = NB LIN OQ(c, Ũ, Λ̃, Ṽ, es)
24: call u = NB LIN OQ(c, Ũ, Λ̃, Ṽ, e+)
25: output̃rs = r̂s + cr̂s(s)/(1 − c − cu(s))u

To deal with such challenge, we propose Fast-ProSIN,

5

which is given in Alg.4. Here, we assume that we want
the whole ranking vector for a given source nodes since
a single proximity score can be read out from such rank-
ing vector. Also, we consider the most general case, where
both positive nodes and negative nodes are present. In Fast-
ProSIN, it first callsNB LIN Pre() on the original adja-
cency matrixA (step 2). Then it callsNB LIN OQ() to
determine the influence of the negative nodes (steps 5-12)
and partial influence (i.e., scaling thesth column of the ad-
jacency matrix by a factor ofns/(ns + n+)) of positive
nodes (step 13), both of which are used to update the low-
rank approximation (̃U andṼ) as well as matrix̃Λ (steps
14 - 21). This way, it avoids directly calling the function
NB LIN Pre() on the refined graph̃A, where it would need
to do a low-rank approximation and a matrix inversion, both
of which are not efficient as on-line costs. Finally, it calls
NB LIN OQ() twice (steps 23-24) and combines them as
the final ranking result (step 25). Note that the second call
one+ (step 24) is used to compensate for the remaining in-
fluence of the positive nodes (i.e., adding new links from
the source to the positive nodes).

The correctness of Alg.4 is guaranteed by theo-
rem 1. By theorem1, Fast-ProSIN will not introduce ad-
ditional approximation errors beyond the first time it calls
NB LIN Pre() on the original graph. Therefore, Fast-
ProSIN is expected to obtain ranking results similar to call-
ing NB LIN Pre() twice (one forA and the other for̃A).
On the other hand, Fast-ProSIN avoids the expensive steps
(low-rank approximation oñA and a matrix inversion of
sizel× l) in callingNB LIN Pre(). This, as we will show,
leads to significant on-line running cost savings.

Theorem 1 Correctness of Fast-ProSIN.If A = USV

holds, then Alg.4 gives the correct ranking vector for the
source nodes.

Proof: let ann × n matrixÂ s.t.,

Â(:,Θ(j, 1)) = A(:,Θ(j, 1))Θ(j, 1) (j = 1 : kn− + 1)

Â(:, i) = A(:, i) if i /∈ Θ(:, 1) (2)

First, we will show that̂rs in step 23 gives the correct
ranking vector on the matrix̂A if A = USV holds.

By the construction of matrix̂A, we have

Â(:,Θ(j, 1)) = USV(:,Θ(j, 1))Θ(j, 1) (j = 1 : kn− + 1)

Â(:, i) = USV(:, i) if i /∈ Θ(:, 1) (3)

Thus, in the matrix form, we havêA = ŨSṼ, where the
matricesŨ andṼ are as defined in steps 14-19 in Alg.4.

Define the matrix̂Q = (1− c)(I− cÂ)−1. By the prop-
erty of NB LIN algorithm [25], we have

Q̂ = (1 − c)(I − cÂ)−1

= (1 − c)(I − cŨSṼ)−1

= (1 − c)(I + cŨΛ̂Ṽ) (4)

whereΛ̂ = (S−1 − cṼŨ)−1.
Next, we will relateΛ̂ with the matrixΛ̃ (step 21 of

Alg. 4).
By the spectral representation, we have the following

equation:

S−1 − cṼŨ = S−1 − c
∑

i

Ṽ(:, i)Ũ(i, :)

= S−1 − c(
∑

i

V(:, i)U(i, :) + δ) (5)

whereδ satisfies

δ =
kn−+1∑

j=1

V(:,Θ(j, 1))U(Θ(j, 1), :)(Θ(j, 2) − 1)

= YX (6)

where the matricesY andX are defined as steps 16-17 of
Alg. 4.

Plugging equations (5) and (6) into the matrixΛ̂ and ap-
plying Sherman-Morrison Lemma [19], we have

Λ̂ = (S−1 − cṼŨ)−1

= Λ + cΛYLXΛ

= Λ̃ (7)

where the matrices̃Λ andL are defined as steps 20-21 of
Alg. 4.

Plugging equation (7) into equation (4), we can verify
the r̂s in step 23 satisfies:

r̂s = Q̂(:, s) (8)

Next, define the matrix̃Q = (1 − c)(I − cÃ)−1). We
will try to relateQ̃ with matrix Q̂.

By the construction of̃A andÂ, we have

Ã = Â + e+e′s (9)

where vectore+ is defined as in step 22. In other words,
there is only a rank-1 difference betweenÃ andÂ.

Now, applying Sherman-Morrison Lemma [19] to Q̃, we
have

Q̃ = (1 − c)(I − cÃ)−1)

= (1 − c)(I − cÂ − ce+e′s)
−1)

= Q̂ + bQ̂e+e′sQ̂

= Q̂ + buQ̂(s, :) (10)

where vectoru is defined as in step 24 and the scaleb satis-
fies

b =
c

1 − c − ce′sQ̂e+

=
c

1 − c − ce′su

=
c

1 − c − cu(s)
(11)

6

Table 2. Summary of data sets
dataset number of nodes number of edges

AC 421,807 1,066,816
ML 4,563 20,469

CoMMG 54,200 354,186

Putting equations (7), (10) and (11) together, we have
that the correct ranking vector for the source nodes on ma-
trix Ã must satisfies:

Q̃(:, s) = Q̂(:, s) + buQ̂(s, s)

= r̂s +
cr̂s(s)

1 − c − cu(s)
u

= r̃s (12)

wherẽrs is defined as in step 25, which completes the proof
of theorem1. �

5 Experimental Evaluations
In this section we present experimental results. All the

experiments are designed to answer the following ques-
tions:

• Effectiveness:What data mining observations does the
proposed ProSIN enable?

• Efficiency: How does the proposed Fast-ProSIN bal-
ance between speed and quality?

5.1 Experimental Setup

Datasets. We use three datasets in our experiments,
which are summarized in Table2.

The first dataset (AC) is from DBLP.3 It is an author-
conference bipartite graph, where each row corresponds to
an author and each column corresponds to a conference. An
edge weight is the number of papers that the corresponding
author publishes in the corresponding conference. On the
whole, there are 421,807 nodes (418,236 authors and 3,571
conferences) and 1,066,816 edges in the graph.

The second dataset (ML) uses author-paper information
from two major machine learning conferences (‘NIPS’, and
‘ICML’) to construct a co-authorship graph, where each
node represents an author and an edge weight is the num-
ber of co-authored papers between any two corresponding
authors. On the whole, there are 4,563 nodes and 20,469
edges.

The third dataset (CoMMG) is used in [18], which con-
tains around 7,000 captioned images, each with about 4 cap-
tioned terms. There are in total 160 terms for captioning. In
our experiments, 1,740 images are set aside for testing. The
graph matrix is constructed exactly as in [18], which con-
tains 54,200 nodes and 354,186 edges.

3http://www.informatik.uni-trier.de/˜ley/db/

Parameter Settings. There are two parameters in the
proposed ProSIN:c for random walk with restart, andk
for the neighborhood size of a given negative node. We
setc = 0.95 (as suggested in [25]). To determinek, a para-
metric study has been performed4 and ProSin shows little
sensitivity tok for a large range of settings (fromk = 2 to
k = 10). For the experimental results in this paper,k is set
to be 5.

Machine Configurations. For the computational cost,
we report the wall-clock time. All the experiments ran on
the same machine with four 3.0GHz Intel (R) Xeon (R)
CPUs and 16GB memory, running Linux (2.6 kernel). For
each experiment, we run it 10 times and report the average.

5.2 Effectiveness: Case Studies

In both the proposed ProSIN and the original random
walk with restart, the proximity score is defined as the
steady-state probability . Therefore, we expect it to enrich
a broad range of applications by replacing the original ran-
dom walk with restart with our ProSIN. In this subsection,
we present three applications as case studies: neighborhood
search, center-piece subgraphs, and image caption.

Neighborhood Search. By incorporating the users’
feedback, we can allow interactive neighborhood search on
the graph. Fig.4 gives one such example, where we want
to find the top 10 neighbors of ‘KDD’ conferences (i.e,
the 10 most similar conferences as ‘KDD’) from theAC
dataset. In Fig.4(a), we plot the initial results when there
is no side information (i.e,P = φ andN = φ). Sub-
jectively, the result makes sense, which reflects two ma-
jor sub-communities in ‘KDD’: the AI/statistic community
(e.g., ‘ICML’, ‘NIPS’, and ‘IJCAI’) and the databases com-
munity (e.g., ‘SIGMOD’, ‘VLDB’, ‘ICDE’ etc). Then, if
the user gives negative feedback on ‘ICML’ (i.e,P = φ
andN = {′ICML′}), all the AI/statistic related confer-
ences (‘NIPS’ and ‘IJCAI’) disappear (See Fig.4(b)). In
Fig. 4(c), we present the updated result if the user fur-
ther gives some positive feedback on ‘SIGIR’, which is one
of the major conferences on information retrieval. Again,
the result confirms the effectiveness of ProSIN: positive
feedback on ‘SIGIR’ brings more information retrieval re-
lated conferences (e.g, ‘TREC’, ‘CIKM’, ‘ECIR’,‘CLEF’,
‘ACL’, ‘JCDL’, etc).

Center-Piece Subgraphs. The concept of connec-
tion subgraphs, or center-piece subgraphs, was proposed
in [7, 22]: Given Q query nodes, it creates a subgraphH
that shows the relationships between the query nodes. The
resulting subgraph should contain the nodes that have strong
connection to all or most of the query nodes. Moreover,
since this subgraphH is used for visually demonstrating
node relations, its visual complexity is capped by setting an
upper limit, or abudgeton its size. These so-called con-

4We skip the details of the parametric study for brevity.

7

Figure 4. Interactive neighborhood search for
‘KDD’ conference.

nection subgraphs (or center-piece subgraphs) were proved
useful in various applications, but currently cannot handle
users’ interaction (i.e, feedback).

One of the building block in the original center-piece
subgraphs [22] is to use RWR to measure the proxim-
ity from the query nodes to the remaining nodes on the
graph. Therefore, by replacing the original random walk
with restart by the proposed ProSIN, we can naturally deal
with the users’ interactions (for details of center-piece sub-
graph, please refer to [22]).

Fig. 5 plots an example to find the center-piece sub-
graphs between two researchers (‘Andrew Mccallum’ and
‘Yiming Yang’) from ML dataset. In Fig.5(a), we plot the
initial results when there is no side information (i.e,P = φ
andN = φ). It can be seen that there are two major connec-
tions between ‘Andrew Mccallum’ and ‘Yiming Yang’: one
connection is on text mining/information retrieval (through
‘Rebecca Hutchinson’, ‘Xuerui Wang’, ‘Tom M. Mitchell’,
‘Sean Slattery’ and ‘Rayid Ghani’), and the other con-
nection in on AI/statistics (throught ‘John D. Laffterty’,
‘Zoubin Ghahramani’ and ‘Jian Zhang’). Fig.5(b) gives
the updated result if the user gives negative feedback on
‘Tom M. Mitchell’. It can be seen that the whole connection
on text mining/information retrieval disappears, and more
connection on AI/statistics (e.g. through ‘Andrew Ng’ and
‘Michael I. Jordan’) shows up.

Image Caption. Here, the goal is to assign some key-
words for a given image as its text annotation. In [18], the
authors proposed a graph based solution and showed its su-
periority over the traditional methods in feature space. The
key idea of [18] is to construct an image-keyword-region
graph and use RWR to measure the relevance between the
test image and the known keywords. Similar to center-piece
subgraphs, replacing RWR by ProSINcan easily incorporate
side information (if available) in such process.

Fig. 6 presents the average precison/recall onCoMMG
dataset. Here, the side-information is simulated as follow-
ing: for each test image, 5 keywords that are most rele-
vant to the test image based on the current proximity mea-
surement are returned for users’ yes/no (i.e., correct/wrong

(a) No feedback

(b) Negative feedback on ‘Tom M. Mitchell’
Figure 5. Interactive center-piece subgraphs
between ‘Andrew Mccallum’ and ‘Yiming
Yang’.

caption) confirmation. Here, we also compare two sim-
ple strategies: (1) ‘RemNeg’, where the negative nodes are
simply removed from the graph; and (2) ‘LinCom’ [13],
where the proximity scores from positive/negative nodes are
added/substracted from the score from the test image. From
the figure, it can be seen that our ProSIN largely improves
both precision/recall for image caption task by incorporat-
ing such side information. For example, it improves the
precision by 13.59% (44.02% vs. 30.43%) and the recall by
17.39% (57.54% vs. 40.15%) when the prediction length is
4. It is interesting to notice that if we simply remove the
negative nodes from the graph, it will actually hurts the per-
formance (‘RemNeg’). As for ‘LinCom’, it can be seen that
(1) the improvement is limited compared with the proposed
ProSIN for short prediction length; and (2) it might hurt the
performance with the increase of the prediction length.

5.3 Efficiency
In this subsection, we study the quality/speed trade-off

of the proposed Fast-ProSIN. We use theCoMMG dataset
(since it is the only one with ground truth among the three
datasets we used in this paper). Here, we fix the predic-
tion length to be 4 (the results with other prediction length
are similar and therefore skipped for brevity), and we com-
pare the precision/recall between Fast-ProSIN and ProSIN
where in ProSIN random walk with restart is performed by
the iterative method.5 Compared with ProSIN, there is one
more parameter in Fast-ProSIN, the rank of the low-rank
approximation forNB LIN Pre(). We vary this parame-

5An alternative choice for ProSIN is to runNB LIN Pre() onA and
Ã respectively. However, we find it needs more wall-clock timebut leads
to lower quality compared with the iterative method. Therefore, we only
compare the proposed Fast-ProSIN with that by iterative method.

8

4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Prediction Length

M
ea

n
P

re
ci

si
on

Initial
LinCom
ProSIN
RemNeg

(a) Mean precision

4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prediction Length

M
ea

n
R

ec
al

l

Initial

LinCom

ProSIN

Rem Neg

(b) Mean recall

Figure 6. Incorporate side information for im-
age caption.

ter from 100 to 600 (denoted as Fast-ProSIN(100), Fast-
ProSIN(200), etc in Fig.7). In order to put quality/speed
in the same figure, we normalized (1) precision/recall by
the largest value for ProSIN, and (2) time longest value for
ProSIN.

Figure 7. Quality/speed trade-off of Fast-
ProSIN.

From Fig.7, it can be seen that the proposed Fast-ProSIN
achieves significant speedup while maintaining high qual-
ity. For example, Fast-ProSIN(100) is 49x faster than
ProSIN (the most right one) while it preserves 93.6%
precision (41.2% vs. 44.0%) and 94.0% recall (54.1%
vs. 57.5%); Fast-ProSIN(400) is 16x faster than ProSIN
while preserving 96.1% precision (42.4% vs. 44.0%) and
96.7% recall (55.6% vs. 57.5%). Overall, Fast-ProSIN is

10∼49x faster than ProSIN, while preserving more than
93.0% quality (for both precision and recall). Note that
in all cases, Fast-ProSIN significantly improves the preci-
sion/recall when compared with the initial case (the left-
most dashed bar). As for the wall-clock time, ProSIN need
3.7 hours to annotate all the 1,740 images, while Fast-
ProSIN(100) only needs 4.5 minutes.

6 Related Work
In this section, we review the related work, which can be

categorized into two parts: node proximity and matrix low
rank approximation.

Node Proximity. One of the most popular proximity
measurements is random walk with restart [13, 18, 25],
which is the baseline of ProSIN. Other representative prox-
imity measurements include the sink-augmented delivered
current [7], cycle free effective conductance [16], surviv-
able network [10], and direction-aware proximity [24]. All
these methods only consider the graph link structure and ig-
nore the side information. Although we focus on random
walk with restart in this paper, our approach (i.e., to use the
side information to refine the graph structure) can be applied
to other random walk-based measurements, such as [7, 24].
In term of dealing with the side information on ranking, our
work is also related to [3], where the goal is to use partial
order information to learn the weights of different types of
edges. In term of computation, the fast algorithm (NBLIN)
for random walk with restart in [25] is most related to the
proposed Fast-ProSIN. Our Fast-ProSIN differs from that in
[25] in the sense that the graph structure in our setting keeps
changing by the side information, whereas it is fixed in [25].
The core idea behind the proposed Fast-ProSIN is to lever-
age the smoothness between graph structure with/without
side information. In [26], the authors has used the simi-
lar idea to track the proximity/centrality on a time-evolving
skewed bipartite graph. Other remotely related work in-
cludes [11], where the goal is to propagate the trust/distrust
to predict the trust between any two persons.

Graph proximity is an important building block in many
graph mining settings. Representative work includes con-
nection subgraphs [7, 16, 22], neighborhood search in bipar-
tite graphs [20], content-based image retrieval [13], cross-
modal correlation discovery [18], the BANKS system [2],
link prediction [17], pattern matching [23], ObjectRank [4],
RelationalRank [8] and recommendation system [5]. Note
that for the ranking-related tasks (such as neighborhood
search, image retrieval, etc.), we can also use a linear com-
bination strategy suggested in [13], which itself includes
personalized PageRank [12] as a special case when neg-
ative set is absent, to incorporate like/dislike type of side
information. Our experimental evaluation on image cap-
tion task shows that although it is effective for small predic-
tion lengths, its performance is not as good as the proposed
ProSIN and sometimes it actually hurts the performance.

9

What is more important, it is not clear how to use such strat-
egy (linear combination) for more complicated applications
(such as center-piece subgraphs, pattern match etc). This is
exactly one major advantage of the proposed ProSIN: it can
be easily plugged into such applications by simply replac-
ing the original proximity measurement by our ProSIN.

Low Rank Approximation. Low rank approxima-
tion [9, 6, 1] plays a very important role in graph min-
ing. For example, the low rank approximation structure
is often a good indicator to identify the community in the
graph. A significant deviation from such structure often
implies anomalies in the graph. For the proposed Fast-
ProSIN, we need the low rank approximation in the pre-
computational stage (in functionNB LIN OQ()). The
most popular choices include SVD/PCA [9, 15] and random
projection [14]. More recent methods includes CUR [6] and
its improved version CMD [21] to deal with the sparseness
of many real graphs. Notice that our Fast-ProSIN is orthog-
onal to the specific method of low rank approximation.

7 Conclusion
In this paper, we study how to incorporate like/dislike

type of side information in measuring node proximity on
large graphs. Our main contributions are in two folds. First,
we proposed a novel method (ProSIN) to incorporate side
information in measuring node proximity on large graphs
and showed its broad applicability through various case
studies. Second, to enhance the efficiency of ProSIN, we
also took advantage of the smoothness of the graph struc-
tures with/without side information and proposed a fast al-
gorithm (Fast-ProSIN). We demonstrated that Fast-ProSIN
achieves significant speedup (up to 49x) in our evaluation
on real datasets. Overall, we expect the proposed algorithms
to enrich a broad range of applications that receive online
feedback/side information.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low-
rank matrix approximations.J. ACM, 54(2), 2007.

[2] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,
and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. InVLDB, pages 1083–1086, 2002.

[3] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to
rank networked entities. InKDD, pages 14–23, 2006.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-
trank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[5] H. Cheng, P.-N. Tan, J. Sticklen, and W. F. Punch. Rec-
ommendation via query centered random walk on k-partite
graph. InICDM, pages 457–462, 2007.

[6] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a compressed

approximate matrix decomposition.SIAM Journal of Com-
puting, 2005.

[7] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov-
ery of connection subgraphs. InKDD, pages 118–127, 2004.

[8] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. InVLDB, pages 552–563, 2004.

[9] G. H. Golub and C. F. Van-Loan.Matrix Computations.
The Johns Hopkins University Press, Baltimore, 2nd edition,
1989.

[10] M. Grötschel, C. L. Monma, and M. Stoer. Design of surviv-
able networks. InHandbooks in Operations Research and
Management Science 7: Network Models. North Holland,
1993.

[11] R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propa-
gation of trust and distrust. InWWW, pages 403–412, 2004.

[12] T. H. Haveliwala. Topic-sensitive pagerank: A context-
sensitive ranking algorithm for web search.IEEE Trans.
Knowl. Data Eng., 15(4):784–796, 2003.

[13] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-
ranking based image retrieval. InACM Multimedia, pages
9–16, 2004.

[14] P. Indyk. Stable distributions, pseudorandom generators, em-
beddings and data stream computation. InFOCS, pages 189–
197, 2000.

[15] K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensional-
ity reduction for similarity searching in dynamic databases.
In SIGMOD Conference, pages 166–176, 1998.

[16] Y. Koren, S. C. North, and C. Volinsky. Measuring and ex-
tracting proximity in networks. InKDD, pages 245–255,
2006.

[17] D. Liben-Nowell and J. Kleinberg. The link prediction prob-
lem for social networks. InProc. CIKM, 2003.

[18] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[19] W. Piegorsch and G. E. Casella. Inverting a sum of matrices.
In SIAM Review, volume 32, pages 470–470, 1990.

[20] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs. In
ICDM, pages 418–425, 2005.

[21] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs. In
SDM, 2007.

[22] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. InKDD, pages 404–413, 2006.

[23] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, pages 737–746, 2007.

[24] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware
proximity for graph mining. InKDD, pages 747–756, 2007.

[25] H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: Fast solutions and applications.Knowledge and In-
formation Systems: An International Journal (KAIS), 2008.

10

[26] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Prox-
imity tracking on time-evolving bipartite graphs. InSDM,
pages 704–715, 2008.

11

	Introduction
	Problem Definitions
	ProSIN
	RWR: Proximity without Side Information
	ProSIN: Proximity with Side Information

	Fast-ProSIN
	Background: NB_LIN for RWR
	Fast-ProSIN

	Experimental Evaluations
	Experimental Setup
	Effectiveness: Case Studies
	Efficiency

	Related Work
	Conclusion

