
RC24669 (W0810-084) October 15, 2008
Computer Science

IBM Research Report

Bridging the Gap between Legacy Procedural Code and the
Automated Extraction of Design

Jason McC. Smith
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Bridging the Gap Between Legacy Procedural Code and the Automated
Extraction of Design

Jason McC. Smith
IBM T. J. Watson Research

Hawthorne, NY 10562
jasonmsm@us.ibm.com

Abstract

Automated design extraction from object-oriented source
code has been demonstrated in the System for Pattern Query
and Recognition, a static analysis tool and accompany-
ing Elemental Design Pattern definitions that can identify
instances of known design patterns in a flexible manner.
SPQR concentrates on the concepts embodied in code in-
stead of the constructs that form the code. This paper
demonstrates an extension of this concept-based approach
to embedded procedural code. Various common idioms in
the C language are mapped to object semantics. The re-
sulting model is then analyzed by SPQR. Presented are the
results of applying a tool implementing this new concept to
a production firmware codebase, with results and new pre-
dictive metrics of maintainability of code.

1 Introduction

Program comprehension is a difficult problem that has
spawned a wide array of partial solutions. Finding a solu-
tion in the domain of embedded firmware is particularly dif-
ficult due to several unique constraints. Generally speaking,
modern programming languages use semantically-rich ab-
stractions to convey the intent of a developer at a high level.
In theory, this increases both the readability and comprehen-
sibility of the code. Embedded systems, however, are gen-
erally written in lower-level, earlier-generation languages
such as C; they cannot take advantage of recent abstractions
to simplify the code or make the developer’s intent more ex-
plicit. Recently, most software engineering research seek-
ing to improve program comprehension has been inapplica-
ble to systems created using older languages because those
research attempts have relied on the high-level abstractions
available in modern languages such as Java[12], C++[2], or
C#[14].

Techniques aimed at comprehension of legacy sys-

tems frequently limit themselves to the semantics available
within the implementation languages. These techniques
use call graphs, data flow analysis, and other such low-
level inspections, but do not address the intent behind these
mechanical manipulations in the project’s solution space.
While providing a fine-grain highly-detailed view of the in-
ner workings of the code, they do not give the developer a
faster working knowledge of the system by raising the level
of abstraction.

This paper describes a novel approach to forming a
bridge between legacy code written in older procedural
languages and modern abstraction analysis techniques de-
signed for object-oriented languages. The target technique
in this case is embodied in the System for Pattern Query
and Recognition (SPQR), a suite of tools designed to iden-
tify and document instances of design patterns directly from
object-oriented source code in a language- and domain-
independent manner[18, 20]. This paper presents the gen-
eral problem of program comprehension and the specifics of
the embedded domain that make the problem more difficult.
A short survey of existing techniques for legacy embed-
ded procedural source comprehension is provided, with an
overview of SPQR for comparison. Then, the particulars of
the analyzed project are presented, followed by the method-
ology used for the analysis. Next, the contributions of this
paper to procedural semantics detection are discussed. The
results of the analysis are described, as well as the insights
they were able to give the project’s team members. This
paper concludes with areas identified for further refinement
based on team feedback.

2 Problem

Program comprehension is a difficult problem in any
sense. Much of the history of programming languages can
be viewed as incremental efforts to encapsulate the lessons
and best practices of the prior language generation. It is
rare, however, to be able to take advantage of these learned

1

lessons when working with legacy code. In particular, pro-
cedural languages are unable to enforce many of the best
practice policies that are inherent in object-oriented lan-
guages. Abstractions such as containers, decomposable al-
gorithms, and contextual method behavior (polymorphism)
are manually implemented with varying degrees of success
and clarity. This lack of consistent abstraction clarity leads
in many cases to poorly comprehended code. Incompre-
hensible code is unmaintainable code[3, 23, 24]. At a mini-
mum, poorly-understood code leads to perceived fragility.

An inherent tension between refactoring and stability
complicates legacy systems , but there is an additional ten-
sion that prevents legacy projects from advancing more
rapidly. Much of the current research in software engi-
neering that is abstraction-aware focuses on modern object-
oriented languages. It is difficult to argue with this choice.
There is a plethora of OO source code to be analyzed, and
the nature of OO languages makes them simpler to analyze
for key abstractions.

The bulk of code currently in operation, however, is still
procedural[7]. Much of our basic infrastructure depends
on legacy projects that cannot, for various reasons, be re-
implemented in modern languages. There is a chasm be-
tween the needs of the legacy practitioner, and the analysis
techniques of the modern researcher. A way for existing
code to gain benefits from the latest research is necessary.

The situation for embedded and firmware legacy systems
is even more dire. Not only are the assumptions of the
domain vastly different from those of most software com-
prehension researchers, there are further constraints in play.
These are both technical and management related.

On the technical front, performance and correctness are
critical in embedded systems. Updates are frequently very
costly. The design methodology is usually much closer
to hardware than software, further widening the gap with
modern software comprehension research. Non-co-locality
of cause and effect by use of hardware-defined control
blocks is common. Attempts to apply current ‘common wis-
dom’ from mainstream development, such as modularizing
a control-block driven system, can make the comprehensi-
bility worse, not better.

From a management perspective, there is a further press-
ing issue. Legacy projects are frequently staffed by em-
ployees who have been around as long as the code. They
may be the only members of the company who truly under-
stand the source code, and enough time has passed in our
industry that many of them are now retiring. This means
that the knowledge that they have in their heads will leave
with them. New trainees have been educated using modern
languages, design principles, and techniques, and require a
large time and training investment before they are able to
take over significant duties. The code may not be fragile,
but the teams are.

The research described in this paper is intended to bridge
the issues facing legacy systems and the most recent soft-
ware comprehension research, without requiring risky al-
teration of the existing systems.

3 Prior Research

There have been numerous attempts to improve compre-
hension of legacy procedural code, but few have attempted
to raise the level of abstraction beyond low-level details of
execution and memory layout.

Advanced techniques such as slicing analysis[9, 16],
and tools which combine static and dynamic analyses in
a user-directed fashion[8] are highly useful for tracing
through specific code features and performing impact anal-
ysis. They do not, however, effectively raise the level of
abstraction for the developer. They maintain a close corre-
spondence with the primitives of the languages and domains
in which they operate.

At the other end of the spectrum are pattern and ab-
straction detection systems such as PEC[13], FUJABA[15],
and Similarity Scoring[22], which address pattern valida-
tion and detection to varying degrees of success. They are
all, as with most research in this realm, Java only.

It should be obvious at this point that there is a funda-
mental mismatch between the two groups of tools, despite
their successes in their own realms. The procedural tools
provide a wealth of information, but it is at a very low
level, inappropriate for trying to raise the level of abstrac-
tion and comprehension. The pattern and abstraction de-
tection systems are all Java-specific, and do not work with
other languages. Their applicability to the embedded do-
main is therefore non-existent.

Finally, there is my prior research in program ab-
straction detection, the System for Pattern Query and
Recognition[18, 20, 21]. Three main pieces comprise
SPQR: rho- or ρ-calculus, a formal denotational semantics
for relationships among the entities of object-oriented lan-
guages; a set of tools and a common intermediate represen-
tation to perform static analysis around those relationships;
a suite of formalized building blocks of implementation and
design principles called Elemental Design Patterns.
ρ-calculus is based on sigma- or ς-calculus[1], and

extends that body of work to describe the relationships
between the fundamental entities of object-oriented lan-
guages. ρ-calculus encompasses call graphs, data flow de-
pendencies, state changes, cohesion, coupling, and other
such relationships and dependencies within a single over-
arching concept, reliances. The only formal reliance ap-
pearing in this paper is the kappa-reliance, indicating that
one variable relies on another variable. In the expression
a = b, where a and b are variables of compatible types,
a relies on b, and this can be written a <κ b. ρ-calculus

also defines the various ways in which these reliances can
interact through transitivities and reduction rules suitable
for inferencing by a deductive database, automated theo-
rem prover, or graph-walking solver. Finally, ρ-calculus
includes an open-ended n-tuple composition technique for
the expression of n-ary relationships that fall outside of the
standard binary relationships of the reliances. These rela-
tionships correspond to higher-order abstractions which de-
scribe the source, and may be anything from simple pro-
gramming concepts to design or architectural patterns. As
with the reliances, ρ-calculus states how the n-tuples inter-
act to form higher-level abstractions.

The tools of SPQR include front-end parsers to con-
sume source code. They produce an intermediate represen-
tation as files in an XML schema named the Pattern Object
Markup Language[17]. POML is a practical and concrete
representation of ρ-calculus, expressed for human readabil-
ity and machine manipulation. As indicated by the name,
patterns and objects are the focus of POML. After pro-
duction from the front-end parsers, various transformations
for visualization and reporting can be performed on POML
files, including the production of many standard software
engineering metrics via simple XSLT transformations. For
pattern detection analysis, SPQR transforms the POML files
into input suitable for an inferencing engine. When com-
bined with the rules of ρ-calculus, the facts extracted from
the source code are a rich soup of information that can be
quickly queried for the presence of known design patterns
or other abstractions.

A suite of low-level abstractions corresponding to the
basic elements of software implementation and design was
created to make the query process more interactive and par-
allelizable. I named these Elemental Design Patterns[19].
These are binary relationships defined by the reliances of
ρ-calculus, refined by semantic cues in their context within
the source code. Creating software without using the EDPs
is impossible. As both natural programming concepts and
formalisms for automated manipulation, the EDPs bridge
the raw reliances and the n-tuple abstractions of ρ-calculus.
Additionally, they are the fundamental building blocks of
the remainder of the design patterns literature. Through in-
cremental composition, even the largest described patterns
are definable with a combination of EDPs and ρ-calculus.

SPQR has been successfully demonstrated to detect
high-level abstractions such as the Gang of Four design pat-
terns directly from source code in an automated and prac-
tical manner[18]. This paper describes the application of
these techniques to procedural code.

4 Methodology

This section presents the analysis methodology, dis-
cussing the practical and theoretical steps taken to per-

form the research. The goal of this experiment was not to
find high-level design patterns, such as the Gang of Four
literature[10], that SPQR has previously been used for in
object-oriented languages. Satisfying such a goal would re-
quire that the appropriate patterns already appear in the test
code. Because the status of inherent abstractions in an un-
documented test project is necessarily unknown, the goal of
establishing the presence of the Elemental Design Patterns
in the code was chosen. This target is possible to validate
manually, raises the level of abstraction for the developers,
and provides a platform for further analysis and research
with SPQR.

4.1 Test case

The selected test case is part of a product line at IBM,
referred to as Project A. As such, it is covered under
some information restrictions. Project A is the driver code
for an embedded hardware controller that has rigorous re-
quirements for performance and reliability. Updates to the
firmware necessitate a dynamic update while the system
is running due to contractually-obligated uptime require-
ments. In short, the presence of a defect is extremely un-
desirable. These performance and reliability needs coupled
with the extreme downside of requiring a patch, lead to a
belief that change introduces more risk than it may in most
development environments.

Project A is approximately 300kLOC of highly complex
but finely tuned C code. Development on Project A has
spanned decades. The core team members are long-time
employees, who have spent much of their careers maintain-
ing this code. The retirement of these core developers and
maintainers is now an imminent event. IBM’s goal is to
capture as much of the undocumented knowledge of the
system as possible for verification before their retirement.
Additionally, management faces a situation where new hires
brought into the team face a comprehension gap: the seman-
tics and language that recent graduates have been educated
in is extremely dissimilar to the semantics and assumptions
which the career developers operate under. Training is a
long process due to the perceived fragility of the code.

Several attributes of Project A make it a good candidate
for this research. First, it is in a procedural language, C.
Second, it is in the embedded domain, where core assump-
tions are far removed from current software engineering
research assumptions of abstraction extraction. Third, the
team is small enough to be approachable, and is willing to
be part of the research process. Finally, it is of sufficient
size to give a rich data set, while still being small enough
that results could be hand-verified if necessary.

4.2 Approach

This section describes the approach for analyzing Project
A. First, the adoption of a new front-end for SPQR is pre-
sented, followed by the adaptations of an existing tool to
make it appropriate for use with SPQR. Next, the seman-
tic mapping from procedural C code to the conceptual re-
lationship model in SPQR is described. This section con-
cludes with a discussion of the required manipulations of
the resulting output to make it suitable for delivery to the
development team.

4.2.1 BEAM

SPQR required a new front-end for static analysis of Project
A due to legacy restrictions of the prior implementation.
The BEAM tool (Bugs, Errors and Mistakes) [4, 5, 6] is
a static analysis tool that is currently used in several prod-
uct groups within IBM for bug detection. BEAM can an-
alyze C, C++, Java, PL/1, PL/X and other languages, and
was therefore a natural fit for SPQR’s language-independent
approach. Because BEAM was already integrated into the
workflow of Project A, the transition to the new analysis
techniques was smooth.

4.2.2 BEAM Extensions

The extensions to BEAM consist primarily of a library, im-
plemented in C++, that performs the semantic mapping, and
a significant amount of glue code to access the internal AST
representation in BEAM. Because the AST representation
in BEAM is language agnostic, adding support for the addi-
tional languages BEAM analyzes, such as C++, is expected
to be straightforward. BEAM was also extended to produce
POML on request. This combined solution is referred to
as BEAM/POML. This means that BEAM is now a pro-
ducer for the rest of the SPQR toolchain, and projects that
have adopted BEAM can get the benefits of SPQR with lit-
tle overhead.

Several enhancements to the original SPQR analysis
methodology were made, including improved temporal or-
dering validity and loop-conditional propagation. In the
prior SPQR incarnation, relationships were created on a per-
method basis as a logical set, without regard for the sequen-
tial ordering of statements or control flow. Both are now
taken into consideration when applicable, producing more
refined results.

4.2.3 Procedural Semantic Mapping

The conversion of source code from procedural language
semantics to the semantics of ρ-calculus is straightfor-
ward, but not trivial. There are two classes of semantic
mappings from C to ρ-calculus: language, and idiomatic.

Language-based mappings transform language constructs
in C to equivalent concepts in an object-oriented design
space. Idiom-based mappings transform standard usage pat-
terns of C into OO concepts. Each is addressed in turn next.

Language Features
There are two types of language-based mappings: those

dealing primarily with structural language features that can
be mapped to object scoping semantics, and those that re-
flect semantic language features that can be mapped to ob-
ject abstractions. I will discuss each in turn.

Structural language features dictate how a procedural
system is laid out according to file and scoping. For exam-
ple in C, structs provide a scope for internal variable names,
and the static keyword, which indicates linkage, alters vis-
ibility semantics. The latter concepts of linkage visibility
are naturally considered as additional scoping issues. I will
discuss scoping in general before introducing the individual
language features.

Scoping is a semantic partitioning of a potential names-
pace which both prevents clashes from the reuse of names,
and provides a hierarchical set of abstractions through
which a developer may reason about software. As with
most procedural languages, C has primitive scoping through
grouping constructs such as struct. Considering procedural
code as an object-oriented system, however, requires that a
more stringent and rich scoping system be used. This leads
to two core mismatches that must be resolved.

The first mismatch is with the concept of global entities.
In C, any variable or function may be placed in the global
scope and given external linkage. Any other appropriately
linked-in code may refer to these entities directly. In ρ-
calculus, as with other purely object-oriented semantics,
raw or floating fields and methods are disallowed. To sat-
isfy this constraint, an GLOBAL artificial object named
GLOBAL is created. It is provided as a scoping ‘home’

for raw global entities from the original C code. A function
previously called through myFunction() would now be
called as GLOBAL .myFunction(). Top-level ob-
jects are handled differently in the semantics of ρ-calculus
than objects and fields created during the execution of the
code, and they map well to compiler- and runtime-actions
in traditional procedural systems.

The second mismatch occurs with the mapping of static
file-level entities. In C, a function or variable may be re-
stricted to access by a particular translation unit’s members
by way of the static keyword. This is one way in which C
developers reduce the pollution of and maintain the global
namespace. Conceptually, this is a scoping to the file in
which the entity is defined. We can emulate this by cre-
ating an object much like GLOBAL for each translation
unit. If an entity is given external linkage, it is placed in
GLOBAL . If an entity is given internal linkage and tied

to a particular file, it is placed in that translation unit’s ob-

ject. A convenient way to add traceability is to name these
TLU objects as [source file name] TLU.

There will be one TLU object for each translation unit,
but there will be only one GLOBAL object per analyzed
codebase. Because each object must have a type, a type is
generated for each TLU object, and for GLOBAL , that
matches each object’s semantics.

In C, structs, unions, and enums all map, at a fundamen-
tal level, to the concept of a class type in ρ-calculus. This
is not surprising, as classes and structs in C++ differ only
in default visibility, private or public respectively. A struct
is therefore handled as if it were a data-only class. A union
poses a slight permutation of this, in that the storage for
the elements in a union is unified. Setting one name within
a union scope results in altering the value for all names
within that scope. This is handled by creating reliances be-
tween all names within a particular union. A change to one
is therefore propagated as a change to all. The code be-
low demonstrates one conceptual implementation of a two-
member union in a C++-like pseudo-language, with set/get
accessors.

class myUnion {
public:

int getFirst(){ return int(*storage); };
char getSecond(){ return char(*storage); };
void setFirst(int val) {
memcpy(storage, val, sizeof(int)); };

void setSecond(char val) {
memcpy(storage, val, sizeof(char)); };

private:
void* storage;

};
...
MyUnion aUnion;
aUnion.setFirst(5);
char c = aUnion.getSecond();
...

Were the accessors replaced with generated properties,
as in Objective-C or C#, the use of this myUnion class
would look and perform identically to a C union. Imitat-
ing the properties approach, new reliances can be generated.
The resulting semantic is similar to that below, in a pseudo-
language implementation.

class myUnion {
public:

property int first;
property char second;

private:
void* storage;
gettor first { return int(storage); };
gettor second { return char(storage); };
settor first {
memcpy(storage, val, sizeof(int)); };

settor second {
memcpy(storage, val, sizeof(char)); };

};
...
MyUnion aUnion;
aUnion.first = 5;
char c = aUnion.second;
...

This can be further simplified using simple reliances
from ρ-calculus, because we are not concerned with the im-
plementation details of memcpy or the casting of return val-
ues. We only need to know that when any one name in the
union is modified, all are modified. We can demonstrate
this refinement, as ρ-calculus, by expressing these cross-
reliances as the data-to-data kappa-reliance: MyUnion =

[intfirst, charsecond], first <k second, second <k first

Note that the reliances directly generated by this mapping
from union to ρ-calculus are all inferable from the reliances
in the implementation. The intervening steps have been
eliminated as unnecessary implementation details.

C enums are another special case of a class type, in that
they provide physical, but not logical, scoping. In a C file,
an enum looks much like a struct with default initialization
values: it defines a type, and defines members of that type.
We can treat it as such in ρ-calculus as well. One difference
is that the enum does not provide a name scoping around its
members. Instead, they are hoisted up to the surrounding
namespace. For instance, if enum { first, second
} is declared at global scope, then first and second have
global scope.

There are two ways to map this to object semantics. One
is to create a number of similarly scoped constant objects of
a new type reflecting the enum, and give them static persis-
tent storage. This allows code that uses the enums to remain
unaltered but it creates an encapsulation issue. There is
nothing barring a developer from using this equivalent im-
plementation to create new instances of the enum type, and
assigning them new values, effectively extending the enum
type dynamically. While the scoping for this approach is
correct, the potential behavior is not.

The second approach, and the one taken in this research,
is to change the scoping and restrict this behavior. This is
accomplished by considering the enums as the equivalent of
a C++ construct: static const members of a class whose con-
structors and assignment operator are restricted to remove
extension of the possible values. A primitive implementa-
tion equivalent is shown below.

class MyEnum {
public:

static const MyEnum first = 1;
static const MyEnum second = 2;

};

Reference to the enum members is accomplished by al-
tering the reference point of an enum to include the type
scoping. What once was a use of first becomes a use
of MyEnum::first in C++, or MyEnum.first in ρ-
calculus. This preserves typing of the enums and establishes
clear encapsulation principles.

Anonymous unions in C are a special case, requiring an
alteration of the scoping on a fundamental level. While not
supported in ANSI C, they are supported in IBMs xlc com-
piler suite, and were required for this analysis. Following
the model of ANSI C++, the members of a union are con-
sidered to be members of the encompassing scope, but have
shared storage. We can accomplish this by following the
example of a standard union above, generating appropriate
reliances among the members, but placing those members
into the surrounding scope.

Similarly, the use of the static keyword forces a change
of scoping for entities in C during this mapping. For local
variables, which have persistence within a particular func-
tion, an equivalent field can be created as a field in the scope
that contains the resulting method corresponding to the
original function. The most common mapping is that this
resulting field will be in the translation unit object holding
the mapped method. To help prevent name clashes and to
increase traceability, the function name is prepended to the
variable name for uniqueness. In the rare cases of clashes
after this name manipulation, further steps can be taken to
ensure uniqueness. References to the variable within the
function are altered to refer to this new name. Below we
see this mapping in pseudo-code.

In sourcefile.c:
void f() {

static int a = 0;
a++;

};

Maps to:
object sourcefile_c_TLU {
int f_a = 0;
void f() {

f_a++;
};

};

In addition to the structural and scoping mappings, there
are several semantic mappings from the C language to the
object semantics of ρ-calculus and SPQR. Object initial-
ization, container semantics, and abstract methods all have
analogues within C. These concepts go beyond the simple
scoping semantics discussed so far, and are not directly ex-
pressible within ς- or ρ-calculus. They need to be expressed
as higher-level abstractions. The Elemental Design Patterns
from SPQR form a base lexicon of such abstractions, and
we can map these particular features to EDPs.

Object initialization is a core concept, and considered
by some to be the defining concept, of object-oriented lan-
guages[ref cardelli]. There is no native initialization lan-
guage feature for non-primitive types in C. Instead, the dy-
namic allocation of memory is deferred to a standard library
function, malloc(). This does not cover all allocation
cases, however, as local and const variables with initializ-
ers must be handled by the compiler and language runtime.
Automatic initialization is addressed first, then the dynamic
allocation issue.

In the catalog of semantics and abstractions used in
SPQR, object instantiation is encapsulated as the CreateOb-
ject Elemental Design Pattern. It encompasses object in-
stantiation in all its forms, and provides a simple unifying
abstraction for higher level abstraction manipulation.

Local variables that are not pointers or of a primitive type
in C can be considered instances of CreateObject. In C++, a
local non-primitively-typed, non-pointer variable is created
at runtime initialization by calling the appropriate construc-
tor. This is obviously an instance of CreateObject. In C,
a similar action occurs, when local variables are allocated.
While a constructor is not called, as would be the case in
C++, the allocation should be recognized as such. Because
of this, a CreateObject EDP instance is created for each
appropriate variable in C. This example shows the various
types of C constructs that generate CreateObject instances.

typedef struct MyStruct {...} MyStruct;
void f() {

int a; // Primitive no CreateObject
MyStruct s; // CreateObject for s
MyStruct *sp; // Pointer, no CreateObject

};

Containers are another higher-level abstraction that is in-
creasingly common as a core concept in many languages,
and are a fundamental piece of many design abstractions
such as design patterns. C has two mechanisms for basic
containers. The first, arrays, are a direct expression of a con-
tainer. The second, pointers, sadly are not, and are used for
many purposes, including interaction with arrays in some-
times indirect and odd ways. Each of these mechanisms is
discussed in turn.

As a direct expression of a container, arrays give us a
simple way to detect a Container EDP and mark a variable
as such. On seeing a variable declared as an array of another
type, we can immediately create an instance of Container
for the corresponding field. The interaction of the contents
of that container with other variables and methods, however,
is a bit more interesting. Consider the following C code.

int a[10];
a[5] = b;
c = a[5];

c should rely on b indirectly through the transitivities of
ρ-calculus, but there is no way to indicate this without hav-
ing the reliance pass through the array a first. This inter-
mixing of the reliances between the container and the items
it contains, however, can lead to some rather surprising and
semantically vague conclusions, as shown next.

void g(int arg[]) { arg[0] = arg[9]; };
void f(int arg[]) { g(arg); };
int a[10];
a[5] = b;
f(a);

If a relies on b, (a <κ b) as required in the first exam-
ple, then we infer that f() also relies on b through the call
to f(a). Inspection of the body of f, however shows no
point at which the internals of a are accessed or otherwise
relied upon. a should be considered an opaque container, or
invalid inferences begin to creep in.

The solution is to create a placeholder for the elements
of a container. Full dynamic analysis can deduce many of
the runtime interactions and relationships between the items
placed within a container, but such an analysis is expensive,
and we seek a fast static analysis solution. We can consider
the container as a new pseudo-type, and provide a scoped
field container elem as a proxy for all items that may
be placed into, or extracted from, the container.

From our example code above, we would have
a.container elem <κ b, and c <κ a.container elem.
Now c <κ b as expected, but we can not infer that f re-
lies on b. a.container elem does not appear in the
facts expressed about f(), and we cannot follow through
to b.

This simple distinction between the container and the
mocked up entity for the items stored in the container is
fast, easy, and satisfies many of the logical inconsistencies
that crop up otherwise.

With a model for a Container that includes a distinct
container elem entity, pointers as containers can be
addressed. Unlike arrays, we cannot detect container se-
mantics for a pointer at the point of variable declaration.
Instead, they must be detected at the point of container be-
havior, when the pointer is used as either an iterator into a
dynamically-allocated memory block, or manipulated and
dereferenced in such a way as to imply container seman-
tics. These are not tremendously difficult behaviors to de-
tect, and they help distinguish how a pointer is being used.
Below are a few of the relevant constructs and their map-
pings.

int a[10]; // Container
int *b; // Unknown
int c;
c = (*b); // b may be Container
c = (*b++); // b may be Container & Iterator

c = a[c]; // c is index, but not Iterator
c = a[c++]; // c may be Iterator

In addition to the basic Container semantics, we can also
deduce when variables are being used as iterators into a con-
tainer. In the case of the array above, if we have a variable
that is being used as the index into the array, and that vari-
able is being manipulated repeatedly through either loop de-
tection, or by the variable being local-static in a repeatedly
called function, then we can state with strong certainty that
the variable has Iterator semantics in addition to being used
as an index. An instance of an Iterator EDP can then be
made.

With pointers, the situation is again a bit more difficult.
We can, however, leverage the above Container semantics
detection. When a pointer is being incremented or decre-
mented before being dereferenced, it is acting as both the
container and the iterator into that container. In such cases,
an Iterator EDP would be noted as well as the Container
EDP, for the same pointer. Note that if a pointer is not act-
ing as a Container or an Iterator, it is considered a plain
variable.

Abstract methods would seem to be a concept that has
no analogue within C, but in many ways, function pointers
fit well. In object-oriented languages, a pure or virtual ab-
stract method is a promise of a later method body definition.
When that method is overridden in a subclass or subtype,
that promise is fulfilled. By breaking the concept of an ab-
stract method into these two pieces, it becomes possible not
only to more cleanly describe many behaviors in OO sys-
tems, but it becomes possible to apply these sub-concepts
to C function pointers.

A function pointer is a promise of a later function def-
inition. The assignment of a function to the pointer is the
fulfillment of that promise. When a function pointer is de-
clared, or assigned to, we can create instances of Abstract
Dynamic Method and Fulfill Dynamic Method EDPs, re-
spectively. These are dynamic twins to the Abstract Method
and Fulfill Method EDPs used in SPQR’s previous OO anal-
ysis. Adding these into the EDP collection enables SPQR
to analyze not only code using function pointers, but also
dynamic languages with runtime-composable types.

The function pointers themselves pose a problem in ρ-
calculus, however, being neither a field nor a method, but
something in-between. We solve this by creating a method
that corresponds to the function pointer as a callable entity,
and a matching field that represents the function pointer in
non-call expressions. The two are then tied together with
the appropriate reliances, as were the members of a union,
at the beginning of this section.

I expect that this function pointer analysis will lead to
a more robust way of detecting subtypes within C, as a
method for mapping groups of function pointers into hierar-
chies of pseudo-inheritance. Containers of function pointers

will likely be the key here.
As would be expected, the standard features in a proce-

dural language are not sufficient to capture many object se-
mantics. Object-oriented languages, after all, were intended
to codify best practices in procedural languages. We must
turn to the practices and idioms of procedural languages for
further mappings.

4.2.4 Usage Idioms

In addition to the standard language features, there are sev-
eral development idioms that map well to object semantics:
file layout, including directories, preprocessor macros as
functions or variables, and the use of malloc for dynamic
memory allocation.

Using directories to partition a conceptual space is an
established idiom in most languages and development envi-
ronments. They are used to encapsulate and contain simi-
lar source files into discrete units. In some languages there
is a one-to-one mapping of directory layout to language
semantics, such as Java’s use of directories to delineate
packages[12]. This idea can be mimicked to use file lo-
cation information to create a namespace partitioning in ρ-
calculus. Namespaces in ρ-calculus are indicated by an ob-
ject, of which GLOBAL and the TLU objects discussed
in the previous section are special cases. The resulting scop-
ing is modified at a reference point such as a function call,
or variable access, to conform. In C, there is a small issue
in that declarations and definitions need not be within the
same directory. It is not uncommon to see headers gathered
into a single directory for easy access, with corresponding
source files scattered in other directories based on behavior.
This can cause erroneous scoping, as the uses of the header-
declared entities and the definition from the .c file is placed
in separate namespaces. This is solved in BEAM/POML
by providing a user option at the command line to control
namespace partitioning. While a more automatic solution
could be created, it would require a re-resolving of the scop-
ing at a large scale on a whole-system basis. While suitable
for future work, it is not within the scope of this project.

Preprocessor macros in C are commonly used as stand-
ins for functions, in an effort to remove the overhead of a
function call for performance reasons, or for read-only con-
stant variables. Embedded systems with direct access to
hardware frequently use them for a third reason: flexible
mapping of hardware memory locations for direct access,
so that it appears as a variable. BEAM/POML treats these
macro directives as if they were normal functions or con-
stant variables, placing them in the namespace in which the
macro is defined.

Finally, dynamic allocation is handled in C through the
use of the library call malloc(). These are simple to de-
tect and convert to a CreateObject EDP, when surrounded

by an appropriate cast, and used in an assignation to a vari-
able. The idiomatic mappings described in this section are
shown below.

#include ’’subdir/myHeader.h’’
// declares void g(void);

typedef struct MyStruct { ... } MyStruct;
#define A_CONST 5; // const int A_CONST = 5;
void f() {

g(); // subdir::g();
sp = (MyStruct*)(malloc(sizeof(MyStruct)));

// CreateObject for sp
};

4.3 Output Transforms

The individual POML files for each TLU were aggre-
gated using a custom XSLT, into per-directory (and there-
fore namespace) POML files. These in turn were aggre-
gated into a single, holistic system-wide POML file suitable
for analysis of the entire codebase. This approach produces
a series of POML files at varying levels of detail, allowing
a developer to focus solely on the current area of interest.

Visualization of the data was performed in two stages.
First, the POML files from the above aggregation step were
manipulated by an XSLT that transforms a POML file to
a DOT[11] file suitable for rendering by any number of
graph layout tools, such as the GraphViz package from
AT&T[11]. The data in the base diagram is the set of all
types in the system, partitioned by namespace, and dis-
played as a UML class diagram, complete with aggregation,
dependency, and composition indicators. Several options
can be passed to the XSLT, to have it include call graphs,
data flow, and pattern instances.

5 Lessons Learned

This section discusses the results and lessons from the
analysis of Project A with BEAM/POML and SPQR, which
can be summarized in two phases: research-oriented, and
project-oriented. The research-oriented results are con-
cerned with the overall scalability and performance of the
analysis, while the project-oriented lessons are those that
were identified by the development team.

As stated in Section 4.1, Project A is approximately
300kLOC of C in 187 source and 109 header files, which
is broken into 12 major modules partitioned by directo-
ries, and five minor modules (defined only by the build
system’s behavior) gathered into one directory. In total,
BEAM/POML detected 619 distinct class types, and 96
namespaces. Of those 96 namespaces, 17 were directory-
derived namespaces, one was GLOBAL , and the remain-
ing 78 were the translation unit namespaces for the source

Figure 1. Information and Abstraction Density

files which required them. Total analysis time was 206.8s
on a 2.4GHz MacBook Pro, indicating good scalability.

As expected at the outset, the higher-level abstractions
corresponding to the standard design patterns literature
were not detected. The embedded firmware domain is not
heavily represented in mainstream patterns literature. The
large number of detected EDPs, however, did provide an in-
teresting view into the inner workings of the code that the
team had not considered before. Anecdotally, the patterns
of function pointer declaration and assignment were con-
sidered ‘interesting’ and prompted a discussion on a pos-
sible refactoring more closely aligned with traditional OO
abstract methods and subtyping mechanisms.

The density of concepts extracted from the code was
noteworthy. Figure 1 shows the ‘conceptual density’ of the
thirteen modules, measured in two ways: as the number of
overall entities detected per kLOC of code, and as the num-
ber of EDPs detected per kLOC of code. The first measures
the ratio (in thousands) of constructs, relationships, and ab-
stractions statically detected per kLOC. It is a measure of
the overall density of facts within the module, an Informa-
tion Density. A high ID indicates code that, without abstrac-
tions, will require more work on the part of a developer to
comprehend completely due solely to the density of raw in-
formation. A low ID indicates code that is simple.

The second measure concerns only the number of EDPs
per kLOC, indicating the relative richness of abstraction in
the module, or Abstraction Density. A high AD indicates
code that is more likely to be expressible in higher-level
abstractions such as design patterns. A low AD indicates
that the code may suffer from a lack of abstraction, or it may
be that the proper abstractions to describe that code have

Figure 2. Relative Abstraction Density

not yet been defined. In either case, it points at code that
may be more difficult to understand through either inherent
complexity that is indescribable in common terms, or a lack
of proper working concepts.

If we take the ratio of the above two measures, such that
we have the number of EDPs per thousand POML entities
detected, as in Figure 2, we arrive at an Relative Abstraction
Density measure. When the RAD is high, you may expect
that the code will be easier to understand, regardless of the
ID. A module with a lower ID, such as module 6, will sim-
ply have less information to comb through, and is likely to
have a relatively high number of abstractions. Code with a
high ID but a high AD, such as module 11, should similarly
be more maintainable if those abstractions are understood.
When the RAD is low, as in the case of module 9, you may
expect that comprehension will suffer. The Project A team
was able to anecdotally confirm these relative findings in a
broad sense. More data will be required before guidelines
based on quantitative values can be created.

The results concerning one EDP should be noted. Cre-
ateObject is a ubiquitous part of any OO system, yet a brief
scan of Project A’s analysis results showed not a single Cre-
ateObject being triggered from a dynamic allocation. This
was considered a bug, until further checking revealed that
the source code did not contain even one call to malloc.
All memory in this hardware controller is by necessity hard-
wired to specific addresses at compile time, and there is no
dynamic allocation. This reveals yet again a fundamental
mismatch between embedded software development and the
core assumptions of most of the current software engineer-
ing research in design abstraction. BEAM/POML along
with SPQR is able to bridge this conceptual gap.

The visualizations created were of mixed utility. They
did provide an innovative view into the code, as a UML

class diagram of procedural C, but the scope was simply too
large for easy consumption. As a raw metric, the base UML
diagram, rendered by GraphViz using 10pt font, exceeded
8m by 24m in size. Even this, while poor in scalability
and showing only a fraction of the available data, provided
the team with several new insights. Multiple cross-module
connections were shown on the visualizations that the team
was unaware of, but a few minutes of code checking con-
firmed their existence. The team was able to verify several
instances of key types that had a large number of depen-
dency connections from wide-spread code, as ‘hot-spots’,
yet were surprised not to see certain expected connections
to particular modules. Again, this was confirmed quickly in
the code, validating the data.

6 Validity Threats

This section addresses the limitations of this work with
respect to the data set, the methodology from Section 4, and
to the interpretation and predictive power of the results.

The data set for this research is currently limited to one
codebase, Project A. Asserting unequivocally the generality
of the insights gained from this project is difficult. It is not
in contention, however, that the research was able to quickly
provide the development team new and useful understand-
ings of their own code. From a practical standpoint, these
preliminary results showed the success of the research.

Simply put, too much data was extracted by SPQR to
present to the development team in an easy to use manner.
While manual validation of a random sample of code re-
liances and abstractions was performed with no false posi-
tives, more precise visualization techniques must be devel-
oped to quickly convey the larger lessons within the data to
developers.

The core abstractions defined in the EDPs are already
of too high a level to be properly expressed using stan-
dard UML diagrams. While a small number of them can
be shown, the larger collections of abstraction patterns are
of primary interest. They very often span large regions of
the system, tying together disparate portions with simple
connections that are lost in a larger diagram when it is dis-
played as a physical layout such as a UML class notation.
While rich data is extractable, it is difficult to sift through at
this time.

7 Future Iterations

In this section I will discuss future improvements to the
research, based on project partner feedback. BEAM/POML
+ SPQR in its current state is already producing meaningful
results for the development team on Project A. There are,
however, several possible enhancements to the workflow.

The static analysis in BEAM/POML described in Section
4.2.3 would benefit from some key refinements: first, macro
support, second, temporal ordering of statements, and third,
subtyping relationship detection. Additionally, the visual-
ization tools and techniques are primitive.

While there is some macro support in BEAM/POML, it
has difficulties with deeply nested mock function macros,
and extraction of a mock function body from the AST some-
times leaves unresolved address references. This is a known
issue, but it means that code with ubiquitous macro replace-
ment of functions that are being deeply nested may lose rel-
evant relationships. Very little such code was detected in
Project A, and BEAM/POML was enhanced to accommo-
date Project A’s instances of this behavior. A more robust
solution will be required for the general case.

Although the temporal ordering of statements is com-
monly taken into account when producing reliances, a sub-
stantial improvement over the original SPQR implementa-
tion, the results are still not as precise as possible. A full im-
plementation of temporal calculus would require substantial
reworking of ρ-calculus, and SPQR would lose much of the
practical inference speed it currently has. I believe there
is a middle ground defined by partitioning method bodies
into backward-slices seeded from statements that have ex-
ternal side effects. These slices would then become the in-
put for not only improved reliance inferencing, but would
stand ready for assisted refactoring opportunities.

Finally, the lack of subtyping within C and other proce-
dural languages is a significant block to a rich and detailed
extraction of higher level abstractions, such as is possible
in object-oriented languages. Many of the identified best
practices abstractions in OO rely fundamentally on subtyp-
ing relationships. There is an interesting possibility, how-
ever. In OO, subtyping is used to tie together abstract meth-
ods with their points of fulfillment in the child classes. By
identifying the Abstract Dynamic Method and Fulfill Dy-
namic Method EDPs in C’s use of function pointers, we
can reverse this scenario, and use the presence of the ab-
stract methods and their points of fulfillment as seeds for
determining subtypes. This would represent a significant
enhancement to SPQR’s ability to analyze procedural code
at a high level.

It was quickly obvious to both myself and the Project
A development team that the visualizations currently used
are not up to the task of presenting in a meaningful way
the wealth of information SPQR was able to extract. The
scope is simply too large to produce a diagram that pro-
vides both the desired high-level abstractions, and the fine
structure detail demanded by a UML-based approach. We
are collectively investigating new methods for data presen-
tation that will allow the development team to scale up or
down as needed, and disconnect the semantic map from the
physical code, while maintaining strong traceability.

8 Conclusion

This paper described the novel application of the abstrac-
tion and design pattern detection of SPQR to procedural
code in a production environment. The BEAM tool was
selected as a parsing front-end for the C language, and it
was modified to emit POML files suitable for SPQR con-
sumption. This BEAM/POML tool was run on approxi-
mately 300kLOC of C source from a production embed-
ded firmware system at IBM. SPQR was then used to iden-
tify instances of the Elemental Design Patterns catalog from
the POML files, as a way of establishing a first benchmark
for higher level abstraction detection in procedural code.
The results of this effort quickly provided the development
team with new insights in the realms of refactoring oppor-
tunities, code clarity, and general comprehension of their
code, but suffered from a lack of appropriate presentation
techniques. We will continue working together to establish
a collection of visualization methods applicable to multi-
scale abstractions in source code. This work establishes that
legacy systems in highly specialized environments can ben-
efit from modern software engineering research, with the
proper bridge.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag New York, Inc., 1996.

[2] Accredited Standards Committee X3 (Information Process-
ing Systems) – Working Group 21. Working paper for draft
proposed international standard for information systems –
programming language C++. Technical Report X3J16/96-
0225 WG21/N1043, American National Standards Institute,
Dec 1996.

[3] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig.
Software complexity and maintenance costs. Communica-
tions of the ACM, 36(11):81–94, 1993.

[4] D. Brand. A software falsifier. In Proceedings of the 11th In-
ternational Conference on Software Reliability Engineering,
2000.

[5] D. Brand, M. Buss, and V. C. Sreedhar. Evidence-based
analysis and inferring preconditions for bug detection. In
IEEE International Conference on Software Maintenance,
2007.

[6] M. Buss, D. Brand, and V. C. Sreedhar. Flexible pointer
analysis using assign-fetch graphs. In Proceedings of the
2008 ACM Symposium on Applied Computing, 2008.

[7] T. Chan, S. L. Chung, and T. H. Ho. An economic model
to estimate software rewriting and replacement times. IEEE
Transactions on Software Engineering, 22(8), 1996.

[8] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. In
Software Maintenance, 2001. Proceedings. IEEE Interna-
tional Conference on, pages 602 – 611, 2001.

[9] R. Ettinger. Refactoring via Program Slicing and Sliding.
PhD thesis, Oxford University, 2006.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, 1995.

[11] E. R. Gansner and S. C. North. An open graph visualization
system and its applications. Software - Practice and Experi-
ence, 30:1203–1233, 1999.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
JavaTMLanguage Specification. Addison-Wesley Profes-
sional, 3rd edition, Jun 2005.

[13] H. C. Lovatt, A. M. Sloane, and D. R. Verity. A Pattern En-
forcing Compiler (PEC) for Java: Using the compiler. In
S. Hartmann and M. Stumptner, editors, Conferences in Re-
search and Practice in Information Technology, volume 43.
Appeared at The Second Asia-Pacific Conference on Con-
ceptual Modeling (APCCM2005), 2005.

[14] Microsoft Corporation, editor. Microsoft Visual C# .NET
Language Reference. Microsoft Press, 2002.

[15] J. Niere, L. Wendehals, and A. Zündorf. An interactive and
scalable approach to design pattern recovery. Technical Re-
port tr-ri-03-236, University of Paderborn, Paderborn, Ger-
many, January 2003.

[16] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper.
Faster wcet flow analysis by program slicing. In LCTES
’06: Proceedings of the 2006 ACM SIGPLAN/SIGBED con-
ference on Language, compilers, and tool support for em-
bedded systems, pages 103–112, New York, NY, USA, 2006.
ACM.

[17] J. M. Smith. Pattern/Object Markup Language (POML): A
simple XML schema for object oriented code descripton.
Technical Report TR04-010, University of North Carolina
at Chapel Hill, 2004.

[18] J. M. Smith. SPQR: Formal Foundations and Practical Sup-
port for the Automated Detection of Design Patterns From
Source Code. PhD thesis, University of North Carolina at
Chapel Hill, Dec 2005.

[19] J. M. Smith and D. Stotts. Elemental Design Patterns: A
formal semantics for composition of OO software architec-
ture. In Proc. of 27th Annual IEEE/NASA Soft. Engineering
Workshop, pages 183–190, Dec 2002.

[20] J. M. Smith and D. Stotts. SPQR: Flexible automated design
pattern extraction from source code. In 18th IEEE Intl Conf
on Automated Software Engineering, pages 215–224, Oct
2003.

[21] J. M. Smith and D. Stotts. Intent-Oriented Design Pat-
tern Formalization Using SPQR, chapter 7, pages 123–155.
IDEA Group, Inc, 2007.

[22] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis. Design pattern detection using similarity scoring.
IEEE Transactions on Software Engineering, 32(11):896–
909, nov 2006.

[23] A. von Mayrhauser and A. M. Vans. Program compre-
hension during software maintenance and evolution. IEEE
Computer, 28(8), aug 1995.

[24] A. von Mayrhauser and A. M. Vans. Identification of dy-
namic comprehension processes during large scale main-
tenance. IEEE Transactions on Software Engineering,
22(6):424–437, jun 1996.

