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Abstract

We present a new model selection criterion that can be easily approximated by a Monte Carlo sam-
pling algorithm. It is shown that under certain conditions the new criterion is related to both the
deviance and the Akaike information criteria. The new criterion can be easily extended to an arbi-
trary non-negative objective function using the extended Baum-Welch procedure.
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Model Inference Criterion

Let θn be an Rnl-valued random parameter vector where l is some integer (e.g., θn is a vector
constructed out of n Rl-valued random parameters, θn =

[
ϑT1 , . . . , ϑ

T
n

]T , ϑj ∈ Rl). Let also £(θn | z)
be some likelihood function of θn given the data set z = {zi}Ni=1. Assuming that the conditional
expectation E[θn | z] is akin to the maximum likelihood (ML) estimate of θn (e.g., £(θn | z) is a
Gaussian likelihood) we propose the following criteria for finding n, the model dimension

min
n
−2 log £ (E[θn | z] | z) + 2Eθn|z

[(
log £(θn | z)− Eθn|z [log £(θn | z)]

)2] (1)

the second term above which penalizes the ML estimate is the variance of the log likelihood function
computed for a given n, that is

Eθn|z

[(
log £(θn | z)− Eθn|z [log £(θn | z)]

)2] = Var [log £(θn | z)] (2)

The expectations in (1) are evaluated with respect to the conditional probability density function
(pdf)

p(θn | z) ∝ £(θn | z)p(θn) (3)

and can be numerically approximated by means of a Monte Carlo sampling algorithm (e.g., Markov
chain Monte Carlo, particle filtering) [1, 2].

Relation to Other Criteria

Providing that the conditions given below are satisfied we show that the new criterion in (1) coincides
up to the second order terms with both the deviance information criterion (DIC) [3] and the Akaike
information criterion (AIC) [4].

Proposition 1. If the following is satisfied

1
£
∂2£
∂θ2n
|θn=E[θn|z] = 0 (4)

then the new criterion (NC) (1) coincides up to the 2nd-order terms with the DIC

DIC := −4Eθn|z [log £(θn | z)] + 2 log £(E[θn | z] | z) (5)

Proof. Let us write the 2nd-order Taylor expansion of the log likelihood around E[θn | z]

log £(θn | z) ≈ log £(E[θn | z] | z) +
∂ log £
∂θn

|θn=E[θn|z] (θn − E[θn | z])

+
1
2

(θn − E[θn | z])T A (θn − E[θn | z]) (6)

where A := ∂2 log £
∂θ2n

|θn=E[θn|z]. Taking the expectation of (6) yields

Eθn|z[log £(θn | z)] ≈ log £(E[θn | z] | z) +
1
2

tr
[
Cov[θn | z]

∂2 log £
∂θ2n

|θn=E[θn|z]

]
(7)

Substituting (7) into (5) gives

DIC ≈ −2 log £(E[θn | z] | z)− 2tr
[
Cov[θn | z]

∂2 log £
∂θ2n

|θn=E[θn|z]

]
(8)

Now, substituting (6) and (7) into (1) while neglecting the 3rd and higher-order terms yields

NC ≈ −2 log £(E[θn | z] | z) + 2tr

[
Cov[θn | z]

(
∂ log £
∂θn

|θn=E[θn|z]

)(
∂ log £
∂θn

|θn=E[θn|z]

)T]
(9)

The proposition follows straightforwardly from (4), (8) and (9) upon recognizing that

∂2 log £
∂θ2n

=
1
£
∂2£
∂θ2n

−
(
∂ log £
∂θn

)(
∂ log £
∂θn

)T
(10)
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Corollary 1. In the case where £(θn | z) is Gaussian and the condition (4) is satisfied the criterion
(1) coincides with the AIC

−2 log £(E[θn | z] | z) + 2nl (11)

Proof. For Gaussian likelihood

Cov[θn | z] = R, R ∈ Rnl×nl (12)

and
∂2 log £
∂θ2n

= −R−1 (13)

Substituting the above into (8) yields

NC ≈ DIC ≈ −2 log £(E[θn | z] | z) + 2tr
[
RR−1

]
= −2 log £(E[θn | z] | z) + 2nl (14)

Gaussian Likelihoods

It was already noted that the condition (4) is equivalent to (see (10))

∂2 log £
∂θ2n

= −
(
∂ log £
∂θn

)(
∂ log £
∂θn

)T
(15)

The above condition may hold in the Gaussian scalar case, that is for

£(µ | z) = c exp
{
−1

2
(z − µ)2

σ2

}
(16)

Thus,
∂ log £
∂µ

=
(z − µ)
σ2

(17a)

−∂
2 log £
∂µ2

=
1
σ2

(17b)

Substituting the above into (15) yields
µ− σ = z (18)

In other words, if the linear relationship (18) is satisfied then both Proposition 1 and Corollary 1
hold. In what follows we elaborate on the implication of (4) in the multivariate normal case.

Multivariate Normal Distributions

Consider the following likelihood pdf

£(µn | z) =
N∏
i=1

1
(2π)n/2 det(R)1/2

exp
{
−1

2
(zi − µn)TR−1(zi − µn)

}
(19)

where z = {zi}Ni=1 and R ∈ Rn×n is a positive definite covariance matrix. Let us assume also that a
single observation zi is related to the model parameters µn by

zi = µn + ηi (20)

Here {ηi}Ni=1 is a zero-mean white sequence, i.e., Cov[ηi, ηj ] = Rδij where δij denotes the Kronecker
delta.

Proposition 2. If the likelihood is specified by (19), and (20) holds then the condition

1
£
∂2£
∂µ2

n

|µn=E[µn|z] = 0 (21)

is equivalent to
∂ log £
∂R

|µn=E[µn|z],R=R∗ = 0 (22)

for large enough number of observations N . In other words, the proposition holds for R = R∗, the
ML estimate of R given µn and z.

2



Proof. Explicitly writing (21) yields

1
£
∂2£
∂µ2

n

= R−1

[
N∑
i=1

(zi − µn)

][
N∑
i=1

(zi − µn)

]T
R−1 −NR−1 = 0 (23)

Multiplying both sides of (23) by R gives

R =
1
N

[
N∑
i=1

(zi − µn)

][
N∑
i=1

(zi − µn)

]T
(24)

which approaches the sample covariance for large enough N (see (20)), that is

R ≈ 1
N

N∑
i=1

(zi − µn)(zi − µn)T (25)

Finally, it can be easily shown (see appendix) that the sample covariance in (25) is the ML estimate
of R satisfying (22) which thereby completes the proof.

Modification of the New Criterion

Letting
θn = {θ(1)n , θ(2)n } (26)

while assuming that the following is satisfied{
∂ log £

∂θ
(2)
n

|
θ(1)=E[θ

(1)
n |z],θ(2)=θ(2)n

∗ = 0
}

=⇒

{
1
£

∂2£

∂θ
(1)
n

2 |θ(1)=E[θ
(1)
n |z],θ(2)=θ(2)n

∗ = 0

}
(27)

allows writing the new criterion as follows

min
n
− log £(E

θ
(1)
n |z

[θn | z] | z) + E
θ
(1)
n |z

[(
log £(θn | z)− Eθ(1)n |z

[log £(θn | z)]
)2
]

(28)

s.t.
∂2£

∂θ
(1)
n

2 |θ(1)=E[θ
(1)
n |z],θ(2)=θ(2)n

∗ = 0

or

min
n
− log £(E

θ
(1)
n |z

[θn | z] | z) + E
θ
(1)
n |z

[(
log £(θn | z)− Eθ(1)n |z

[log £(θn | z)]
)2
]

(29)

s.t.
∂ log £

∂θ
(2)
n

|
θ(1)=E[θ

(1)
n |z],θ(2)=θ(2)n

∗ = 0

or

min
n
− log £(E

θ
(1)
n |z

[θn | z] | z) + E
θ
(1)
n |z

[(
log £(θn | z)− Eθ(1)n |z

[log £(θn | z)]
)2
]

(30)

s.t. θ(2)n

∗
= arg max

θ(2)
log £

Generalization to an Arbitrary Objective Function

Let F (θn, z) be an arbitrary non-negatve objective function. Then

min
n
− logF (E

θ
(1)
n |z

[θn | z], z) + E
θ
(1)
n |z

[(
logF (θn, z)− Eθ(1)n |z

[logF (θn, z)]
)2
]

(31a)

s.t. θ(2)n

∗
= arg max

θ(2)
logF (31b)

where (31b) can be solved via extended Baum-Welch [5–7].
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Appendix A

ML Estimate of the Covariance Matrix R

Let us write down the log likelihood function

log £(µn | z) = c− 1
2

N∑
i=1

log det(R)− 1
2

N∑
i=1

(zi − µn)TR−1(zi − µn)

= c− 1
2
[
N log det(R) + tr

(
SR−1

)]
(A.1)

where S :=
∑N
i=1(zi − µn)(zi − µn)T . Defining

B = S1/2R−1S1/2 (A.2)

while recognizing that

tr(SR−1) = tr(B), det(R) = det(S) det(B)−1 (A.3)

allows rewriting (A.1) as

log £(µn | z) = c− N

2
log det(S)− 1

2
[−N log det(B) + tr (B)] (A.4)

Now, the symmetric matrix B can be decomposed as B = V ΛV T where Λ = diag(λj) and V V T = I
(i.e., V is an orthogonal matrix). Therefore (A.4) can be expressed as

log £(µn | z) = c− N

2
log det(S)− 1

2

−N∑
j

log λj +
∑
j

λj

 (A.5)

Observing (A.5), the condition (22) is equivalent to

∂ log £
∂λj

= −N/λj + 1 = 0 (A.6)

which yields the solution λj = N and

R∗ = S1/2B−1S1/2 =
S

N
=

1
N

N∑
i=1

(zi − µn)(zi − µn)T (A.7)
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