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Abstract
Application problem diagnosis in complex enterprise en-
vironments is a challenging problem, and contributes sig-
nificantly to the growth in IT management costs. While
application problems have a large number of possible
causes, failures due to runtime interactions with the sys-
tem environment (e.g., configuration files, resource limi-
tations, access permissions) are one of the most common
categories. Troubleshooting these problems requires ex-
tensive experience and time, and is very difficult to auto-
mate.

In this paper, we propose a black-box approach that
can automatically diagnose several classes of application
faults using applications’ runtime behaviors. These be-
haviors along with various system states are combined to
create signatures that serve as a baseline of normal be-
havior. When an application fails, the faulty behavior is
analyzed against the signature to identify deviations from
expected behavior and likely cause.

We implement a diagnostic tool based on this ap-
proach and demonstrate its effectiveness in a number of
case studies with realistic problems in widely-used ap-
plications. We also conduct a number of experiments to
show that the impact of the diagnostic tool on application
performance (with some modifications of platform trac-
ing facilities), as well as storage requirements for signa-
tures, are both reasonably low.

1 Introduction

Since the advent of the notion of “total cost of owner-
ship” in the 1980s, the fact that IT operation and man-
agement costs far outstrip infrastructure costs has been
well-documented. The continuing increase in IT man-
agement costs is driven to a large extent by the growing
complexity of applications and the underlying infrastruc-
ture [6]. A significant portion of labor in these complex
enterprise IT environments is spent on diagnosing and

solving problems. While IT problems that impact busi-
ness activities arise in all parts of the environment, those
that involve applications are particularly challenging and
time-consuming. In addition, they account for the ma-
jority of reported problems in many environments and
across a variety of platforms [12].

Many factors can cause incorrect application behav-
ior, including, for example, hardware or communication
failures, software bugs, faulty application configurations,
resource limitations, incorrect access controls, or mis-
configured platform parameters. Although some of these
are internal to applications, i.e., bugs, failures are more
commonly caused when an application interacts with its
runtime environment and encounters misconfigurations
or other types of problems in the system [22]. Trou-
bleshooting these problems involves analysis of problem
symptoms and associated error messages or codes, fol-
lowed by examination of various aspects of the system
that could be the cause. Application programmers can
leverage signal handlers, exceptions, and other platform
support to check for and manage system errors, but it
is impossible to anticipate all such failures and create
suitable error indications [7]. As a result, solving these
application problems requires a great deal of experience
from support professionals and is often ad-hoc, hence it
is very difficult to automate this process.

In this paper, we present a black-box approach to au-
tomatically diagnose several types of application faults.
Our system creates a signature of normal application be-
haviors based on traces containing an extensive set of in-
teractions between the application and the runtime en-
vironment gathered during multiple runs (or for a suffi-
ciently long run). When an application fault occurs, we
compare the resultant trace with the signature to charac-
terize the deviation from normal behavior, and suggest
possible root causes for the abnormal operation. Using
output from our analysis, a system administrator or user
can significantly reduce the search space for a solution to
the problem, and in some cases pinpoint the root cause



precisely.
We represent an application’s runtime behaviors using

a variety of information, including its invocation con-
text (e.g., user id, command line options), interactions
with the platform during execution (e.g., system calls,
signals), and environment parameters (e.g., environment
variables, ulimit settings, shared library versions).
Our approach makes extensive use of the ptrace facil-
ity [8] to collect system call and related information, and
other interfaces to gather additional data. Traces con-
taining such information are created during application
runtime. After observing multiple runs of an application,
information from these traces are summarized (into sig-
natures) and stored in a signature bank. If the application
misbehaves, normal behavior of the application stored in
the signature bank is compared with the faulty execution
trace to find the root cause.

We evaluate the effectiveness of our tool using a series
of real problems from three popular applications. Our
case studies show that the tool is able to accurately di-
agnose a number of diverse problems in these applica-
tions, and its accuracy can be improved as our tool ob-
serves more traces to increase the number (and diver-
sity) of normal execution paths reflected in the applica-
tion signatures. For each of the applications we also per-
form detailed evaluations of the time and space overhead
of our approach, in terms of the application response
time degradation due to trace collection, and the storage
needed to store trace data and signatures. Our initial re-
sults showed that the time overhead is very noticeable for
the applications we tested, up to 77% in the worst case
using standard tracing facilities. However, with some
modifications and optimizations, we can reduce this to
less than 6%, which is a promising indication that this
tool can be used in production environment. In terms of
space, we observe that signatures grow to nearly 8MB
in some cases, which is quite manageable for modern
storage systems. Moreover, the space dedicated to traces
and signature data can be controlled according to desired
trade-offs in terms of diagnosis accuracy or application
importance.

A precise definition of an application signature is
given in Section 2. In Section 3, we describe the toolset
we have implemented to automate the collection of trace
information, construction of signatures, and analysis of
faulty traces to diagnose application problems. In Sec-
tion 4, we describe several case studies in which we ap-
ply the tool to diagnose realistic application problems in
a Linux environment. In Section 5, we propose a tech-
nique of optimizing ptrace to significantly reduce the per-
formance overheads incurred by trace collection. In Sec-
tion 6, we discuss related works. Limitations of this work
are discussed in Section 7, and finally we conclude the
paper in Section 8.

2 Application Signatures

Our approach heavily relies on our ability to capture ap-
plications’ various runtime behaviors (ingredients of a
signature), and using which to differentiate normal be-
haviors from abnormal ones. These runtime behaviors
can be largely captured by recording how an application
interacts with the external environment. In the following
sections, we describe how to capture application’s run-
time behaviors and how they can be used for building a
signature, which can be more easily applied for diagnos-
ing application problems than the raw runtime behaviors.

2.1 Capturing Application Behaviors

An application interacts with its external environment
through multiple interfaces. A major channel is through
system calls to request hardware resources and interact
with local and remote applications and services. By col-
lecting and keeping history information on system calls,
such as call parameters and return values, runtime invari-
ants and semi-invariants can be identified1. Attributes
that are invariant and semi-invariant are important in
finding the root cause of a problem, as we will see later.

Factors that have an impact on an application’s be-
havior can be mostly captured via information collected
from system calls. However, there are some factors that
can influence an application’s behavior without ever be-
ing explicitly used by the application (and therefore, can-
not be captured by monitoring system calls.) For exam-
ple, resource limits (ulimit), access permission settings
(on executables and on users), some environment vari-
ables (e.g., LD PRELOAD), etc. cannot be observed in
the system call context, but nevertheless, have important
implications on applications’ runtime behaviors. Addi-
tionally, asynchronous behaviors such as signal handling
and multi-processing cannot be captured by monitoring
system calls, and yet, they are intrinsic to an application’s
execution behavior. Therefore, to have a comprehensive
view of an application’s behavior, we collect the follow-
ing information.

• System call attributes: we collect system call
number, call parameters, return value, and error
number. On a number of system calls, we also
collect additional information. For example, on an
open call, we make an extra stat call to get the meta-
data (e.g., last modified time and file size) of the

1Invariants are attributes with a constant value, e.g., when an appli-
cation calls open to read its configuration file, the name of the file, given
as a parameter to the call, is almost never changed. Semi-invariants are
attributes with a small number of possible values, e.g., the return value
of the open call normally returns any small positive integer but does not
have to be a fixed number.
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……

Env vars

$CVSROOT: /cvsroot

$OLDPWD: /

$SHELL: bash

…

User info

UID: 501   GID: {501, 701}  …

System calls

Signals

SIGCHLD  SIGUSR1

…
Open()

param1: “/cvsroot/CVSROOT/config”

param 2: O_RDONLY

return value: 3

error number: 0

…

…

Env vars

$CVSROOT: /cvsroot

$OLDPWD: /home/joe

$SHELL: ksh

…

User info

UID: 501   GID: {501, 701}  …

System calls

Signals

SIGHUP  SIGUSR1…

…
Open()

param1: “/cvsroot/CVSROOT/config”

param 2: O_RDONLY

return value: 5

error number: 0

…

Normal  executions Application signatures

Env vars

$CVSROOT: {/cvsroot}

$OLDPWD: {/, /home/joe, ..., /tmp, /usr/shared}

$SHELL: {bash, ksh}

…

User info

UID: {501}   GID: {501, 701}  …

System calls

Signals

{SIGHUP  SIGCHLD  SIGUSR1}

…
Open()

param1: {“/cvsroot/CVSROOT/config”}

param 2: {O_RDONLY}

return value: {3, 5}

error number: {0}

…

Figure 1: A simple example to show how an application signature is built from its runtime behaviors.

opened file. Or, on a shmat call, we make an extra
shmctl call.

• Signals: we collect the signal number and represent
information collected during signal handling sepa-
rately from the synchronous part of the application.
This is discussed along with how to handle multi-
process applications in more detail later.

• Environment variables: we collect the name and
value of all the environment variables at the appli-
cation startup time by parsing the corresponding en-
viron file in /proc.

• Resource limits: we collect ulimit settings and
other kernel-set parameters (mostly in /proc) that
might have impacts on applications.

• Access control: we collect the UID and GID of the
user and access permissions of the application exe-
cutables.

This is not meant to be a complete list, but from our
experience working in the system administration field,
we believe this is a reasonable starting point and the in-
formation that we are collecting here will be useful in
diagnosing most problems. In the next section, we de-
scribe how the collected information is summarized to
build a signature.

2.2 Building Application Signatures
We use a simple example in Figure 1 to illustrate how
signatures are constructed from application’s runtime be-
haviors. These runtime behaviors can be broken down to
their elemental form as attributes, e.g., an environment
variable is an attribute, uid is an attribute, and each of the
parameters in a system call and its return value is an at-
tribute. Distinct values that we have seen for an attribute

are stored in a set structure, which is what we called a
signature of that attribute. For example, the environment
variable $SHELL in the above example changed from
“bash” to “ksh” between runs. Therefore, the signature
of the $SHELL attribute is represented as a set {“bash”,
“ksh”}. On the other hand, the errno of the open call
in the above example is always zero. Therefore, its sig-
nature is simply a set with one item {“0”}.

Some attributes always change across runs (i.e., nor-
mal runtime variants), e.g., PID, temporary file created
using mkstemp, the return value of gettimeofday, etc.
These are not useful attributes that we can leverage dur-
ing problem diagnosis. We identify non-useful runtime
variants with one-sample Kolmogorov-Smirnov statisti-
cal test (KS-test) [5]. It is a “test of goodness of fit” in
statistics and is often used to determine if values in two
datasets follow same distribution. KS-test computes a
distance, called D statistic, between the cumulative dis-
tribution functions of the values in two datasets. KS-test
provides a critical value Dα for a given significance level
α, which represents the probability that the two datasets
follow same distribution but KS-test determines they are
not. If the D statistic is greater than Dα, the two datasets
can be considered to have different distributions with the
possibility of 1 − α. Obviously, if an attribute is a run-
time invariant (i.e. only one value in its signature), we do
not perform KS-test on it.

We apply the KS-test to test only attributes with more
than one distinct value. For such attributes, we moni-
tor the changes in their signature size (i.e., the set size).
Thus, we have a series of set sizes (as many as the col-
lected values) for that attribute across runs. We then hy-
pothesize that the attribute is a runtime variant, and its
value changes in each run. This hypothesis will generate
another series of set size, and the set contains all distinct
values. We then use the KS-test to determine if the distri-
butions of the set sizes in the two series are same. If so,
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Figure 2: A simple example illustrating KS-test.

the attribute is considered to be a runtime variant. As an
example, we assume we have collected 4 values (and 3
are distinct) for an attribute. When we build its signature
by merging these 4 values into a set one by one, we ob-
tain 4 set sizes (1, 2, 3, 3)—the last 2 values are the same
and did not increase the size of the set. If the attribute is
a runtime variant, we expect the set sizes are (1, 2, 3, 4).
We use KS-test to compare the cumulative distribution
functions of the set sizes as shown in Figure 2. For this
example, the D statistic is 0.25. If we set the significance
level α to 10%, the critical value Dα of KS-test is 0.564.
As the D statistic is less than Dα, KS-test determines
that the difference between the two distributions is not
significant, thus, we consider this attribute as a runtime
variant.

When an application fault arises, we compare the val-
ues of the attributes collected in the faulty execution
against the values in their signature. Attributes that are
considered as runtime variant are not used in comparison.
If a value of an attribute cannot be found in its signature,
the attribute is considered to be abnormal and is iden-
tified to be a possible root cause. With the signatures
built in Figure 1, if a process receives an extra signal
SIGXFSZ in a faulty execution, which cannot be found
in the signal signature, the signal can be identified to be
abnormal. According to the semantics of the signal, only
a process writing a file larger than the maximum allowed
size receives this signal. Thus one can find the root cause
by checking the size of the files used by the application.
Since each file accessed is monitored, the over-sized file
can be easily identified using our tool.

2.3 Building Signatures for System Calls

We have shown the method of building signatures for at-
tributes in the previous section. However, building sig-
natures for attributes in system calls, e.g., parameters,
return value, error number, is not as simple. Before at-
tributes in a system call can be built into signatures, we

first need to find other invocations of this system call that
are also invoked from the same location within the tar-
get application, either in the same run or in a previous
run. However, this is a very difficult task when trying
to find these correlated system calls among hundreds of
thousands of system calls that are collected.

…

fd = open(“pg.log”, flag);

if( nmsg >0) {

/* write messages */

for(i=0; i<nmsg; i++)

write(fd, msgs[i],

size[i]);

}

else {

write(2, “error!\n”, 7);

}

…

open()

write()

write()

…

Run 1 (nmsg>0)

…
open(“pg.log”,…)

write(5, …)

write(5, …)

write(5, …)

…

Run 2 (nmsg=0)

…
open(“pg.log”,…)

write(2, …)

…

Figure 3: A sample system call graph built for the system calls
shown in the middle. The program is shown on the left.

To understand the difficulty, we use an example shown
in Figure 3. In this snippet of code, there are two write
calls. Either one or the other will be invoked, depending
on the value of nmsg, but not both. It makes no sense for
us to merge the attributes of the first write call with those
of the second write call when generating signatures, as
these two write calls perform very different functions.
The first is to write messages to a file, and the second
is to print an error message to stderr. Therefore, at-
tributes of the first write will only be merged with those
of other invocations of the first write, i.e., within the for
loop. One can imagine how difficult it would be to differ-
entiate the first write call from the second when looking
at a trace of a flat sequence of system calls as shown in
Figure 3.

We address this problem by converting a flat sequence
of system calls to a graph representation, which we called
a system call graph. Each node in the graph represents a
unique system call in the target application, and the edges
are uni-directional and representing the program execu-
tion flow from one system call to another. The right part
of Figure 3 shows such an example graph, where the two
write calls are clearly differentiated. As we can see, only
those system calls invoked from the same place within
the target application are collapsed into the same node,
e.g., the open from the two runs and the 3 invocations of
the first write call in the for loop from the first run. At-
tributes associated with each system call are appended to
the node in the graph the system call corresponds to, as
shown in Figure 4.

A vital step in the construction of the system call graph
is to collapse system call invocations that are invoked
from the same location in the program to a single node
in the graph, either within a single run or across multiple
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Param 1: 

{5}

Param 2: 

{0x8AFF79B0, …}

Param 3: 

{25, 32, …, 23}

Return value: 

{25, 32, …, 23}

Error number: 

{0}

Syscall type: 

write

...

open()

write() write()

…
Figure 4: An example system call graph.

runs. Though the locations in an application can be rep-
resented by their virtual memory addresses, we use the
stack of return addresses by collecting and analyzing the
call stack information of the target process during each
system call invocation. This gives system calls an in-
vocation context in a more accurate way. The program
in figure 5 illustrates this point. For the statements in
the program, their memory addresses are shown on the
left side of them. In the program, open and write sys-
tem calls are wrapped in low level functions openfile and
writestr. As these functions are used in different places
in the program for different purposes, the system calls
wrapped in them are also invoked for different purposes.
Take function openfile as an example. It is used in two
places in the program. In one place, it is to open an log
file, and in the other place, it is to open a temporary file.
Thus open is indirectly called two times for two different
purposes. It is necessary to differentiate the open invoca-
tions for opening the log file and invocations for opening
a temporary file because the names of temporary files are
randomly generated and change across different runs. To
clearly differentiate these two types of open invocations,
we need not only the address where open is called, but
also the addresses where openfile is called. This example
illustrates that a “stack” of addresses of the functions in
the calling hierarchy are needed to accurately differenti-
ate the system call invocations.

We show the algorithm for collapsing a flat sequence
of system call invocations to a system call graph in Fig-
ure 6. On line 6, the algorithm searches a matching node
for a system call invocation following the edges in the
system call graph. On line 14, when a node in the system
call graph is found for the system call invocation, the at-
tributes of the invocation, e.g., parameters, return values,
and error numbers, are merged with existing attributes of
the node. For each system call attribute, we again use a
set to represent its distinct values among different invo-
cations. This is illustrated in a write node of Figure 4.

main() {

…

0x08048154 f1 = openfile(“pg.log”, 

O_RDWR);

0x08048162 for(i=0; i<nmsg; i++)

writestr(f1, msgs[i]);

… …

0x08049456 mkstemp(fname);

0x08049464 f2 = openfile(fname,

O_CREATE|O_WRONLY);

0x08049472 …

}

… …

int openfile(name, flag){

0x0805332a fd = open(name, flag);

0x08053232 if(fd<0) { … } else { … }

…

}

int writestr(fd, str){

0x08059236 write(fd, str, strlen(str));

0x08059244 …

}

…

open()

write()

write()

…

write()

open()

…

0x08053232

0x08048162

0x08059244

0x08048162

0x08053232

0x08049472

open

write

open

Figure 5: An example shows building system call graph with re-
turn addresses in call stack.

1: prev node = NULL
2: for each system call in the flat sequence do
3: if the graph is empty
4: curr node = NULL
5: else
6: search the nodes pointed by edges starting on prev node using context
7: set curr node as the node having the same context or NULL
8: endif
9: if curr node = NULL
10: add a new node (referred as curr node)
11: populate system call attributes in curr node
12: add an edge from prev node to curr node
13: else
14: update system call attributes in curr node
15: add an edge from prev node to curr node
16: endif
17: prev node = curr node
18: end

Figure 6: Algorithm to convert a system call sequence to a system
call graph.

2.4 Dealing with Multiple Processes

Applications, especially server applications, may have
multiple processes running concurrently. We collect data
for each process separately for two reasons. The first rea-
son is that the causal relations between system calls can
only be correctly reflected after separating interleaving
system calls. Both building system call graphs and diag-
nosis require to know correct causal relations between
system calls. While building system call graphs need
the causal relations to form correct paths, diagnosis need
causal relations to trace back to system calls ahead of the
anomalies to get more information. For example, if we
identify that a write call is an anomaly, we want to get
the pathname of the file it handles by tracing back to an
open call with the file descriptor. The second reason is
that some attributes like signals, UIDs and GIDs are spe-
cific to a process. It is necessary to collect their values in
a per-process mode to build accurate signatures for these
attributes.
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When we build signatures for a multi-process appli-
cation, we divide its processes into groups based on the
roles they play in the application, and build signatures
separately for each process group. For example, a Post-
greSQL server may create one or more back-end pro-
cesses, one daemon process, and one background writer
in each run. We build a system call graph and form a
set of signatures for back-end processes, and we do the
same for the daemon processes and background writers.
When we build signatures for each process group, we
treat the data collected for a process just like that col-
lected in an execution of a single process application,
and build signatures in a similar way. To identify which
group a process belongs to, we use the stack information
(return addresses) of the system call creating the process
as a context of the process. Processes with same context
are considered to be in the same group.

For multi-threaded applications, we collect data and
build system call graphs and signatures for threads in
the same way as we do for processes by treating each
thread just like a process. While we can differentiate na-
tive threads through ptrace and /proc interfaces, which
are managed by OS kernel, we cannot differentiate user-
level (green) threads, which are managed at user space
and thus transparent to OS kernel. As user-level threads
have not been widely used, our current approach does not
handle user-level threads.

We handle signal handler functions similarly to child
processes, except that we collect only signal number
and system call attributes for signal handler functions.
When we build signatures for signal handlers, we use
a 2-element tuple <process context, signal number> as
the context of a signal handler. Thus, only data col-
lected for signal handlers that handle same type sig-
nals for processes with same context are summarized to
form signatures, e.g., we build a set of signatures for
the SIGHUP signal handlers in the back-end processes
of PostgreSQL.

3 Toolset Design and Implementation

In this section, we describe the architectural design and
implementation of our diagnostic toolset for capturing
applications’ runtime behaviors, building signatures, and
using which to find root cause of problems when they
arise.

Figure 7 shows the overall architecture of our diag-
nostic toolset. First, a tracer tool (Section 3.1) is used to
monitor the runtime behaviors of applications and record
a log of these behaviors. Logging is started by having
the tracer tool fork-execute the target application, e.g.,
‘tracer sample program‘. However, the tracer tool can
be used more seamlessly if we attach it to the shell pro-
cess and have it monitor all of the child processes created

File system

Signals
Syscalls

Kernel

/proc …

Target 
app

env.
vars

ulimit cmd line

Tracer

Normal 
execution 

traces

Signature
Bank

Signature 
extraction

Faulty
execution 

traces

Signature generation Problem diagnosis

Classifier

Possible 
root causes

Figure 7: System architecture

by the shell. Since this tool is intended to run alongside
of applications at runtime, having low overheads is cru-
cial. We will see a detailed study of time and space over-
heads in Section 4.

On each run of the target application, the tracer tool
will record and summarize its runtime behavior into a
trace file. Multiple traces are then aggregated into a sig-
nature bank, a central repository where the target appli-
cation’s runtime signatures are distilled and built. We
give an in-depth explanation of the steps involved in
building runtime signatures in Section 3.2.

The last part of the toolset, called the classifier (Sec-
tion 3.3), is used when an application is misbehaving.
It is used for comparing the faulty execution trace (col-
lected by the tracer) with the application’s signature bank
and classifying what differing features of the faulty trace
from those in the signature bank might be the root cause
of the problem. It is possible that sometimes multiple
differing features are found. Since there is usually only
one root cause, others are false positives. In Section 4.5,
we discuss how to reduce the number of reported false
positives.

3.1 Application Tracer

The tracer tool monitors an application’s runtime be-
haviors via the ptrace interface, which is widely imple-
mented on Linux and most UNIX variants. This ap-
proach has the benefit of not requiring instrumenting the
target application or having access to its source code, and
also does not need kernel modifications. Each time the
target application invokes or finishes a system call or re-
ceives a signal, the application process is suspended and
the tracer is notified of the event by the kernel and col-
lects related information, e.g., call number, parameters,
and return value. For a small set of system calls, we also
collect some additional information that might be useful
during problem diagnosis. These information are col-
lected usually by having the tracer making extra system
calls. For example, when open is called on a file, we
make an extra stat call on the opened file to get its last
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modified time, which will become a part of the informa-
tion we collect for that open call. In addition to files,
we also collect additional information for other system
objects such as shared memory, semaphore, sockets, etc.
As explained in Section 2.3, to construct a system call
graph from a sequence of system calls, the tracer also
takes a snapshot of the call stack of the target application
in the context of each system call.

As mentioned in Section 2.1, not all runtime behaviors
can be captured by monitoring system calls, e.g., envi-
ronment variables, ulimit, uid/gid of the user, etc. These
information are collectively obtained by the tracer at the
startup time of the target application, and they may be
updated by monitoring system calls such as setrlimit, se-
tuid, etc. at runtime.

For a single-process application, tracer puts all the
monitored data into a single trace file. The trace file is
logically separately into multiple sections to hold differ-
ent categories of runtime data, similarly to that shown in
Figure 1. The largest section by far is usually the sys-
tem call section. To reduce space overheads, instead of
saving a flat sequence of system calls, we convert it into
a system call graph on-the-fly using the algorithm de-
scribed in Figure 6. The conversion removes much re-
dundant information by collapsing multiple system calls
invoked in a loop into the same system call graph node.
To reduce I/O overheads, the system call graph is kept in
tracer’s memory space via memory mapping of the trace
file.

For a multi-process application, we keep one trace file
per process (by detecting fork/exec), so we can separate
the interleaving system calls made by different processes
and maintain process-specific state information in each
trace file. Ancestry relationships between processes are
also kept in the trace file so we know exactly how the
trace files are related and also at which point in the parent
process the child process is spawned. Signal handlers are
handled the same way by the tracer as ptrace can also trap
on signals.

If a long-running application has large variations in
its execution, its trace files may be filled with large vol-
umes of data collected for runtime variants. By not sav-
ing these data into traces, we can reduce space overhead
without influencing diagnosis. For a attribute having
been considered as a runtime variant, we set an upper
limit (512 in our current implementation) on the size of
the set holding its distinct values. Thus new values of
a runtime variant are not collected into traces or merged
into signature bank when the set size has reached 512.
512 is chosen so it is sufficient to cover semi-invariants
with large number of distinct values, yet small enough
for it not to be a storage burden.

3.2 Signature Bank
For single-process applications, signature bank is simply
an agglomerate of one or more normal execution trace
files. When adding the first trace file to an empty sig-
nature bank, the trace file simply becomes the signature
bank. As illustrated in Figure 8, when adding new trace
files to the signature bank, values of attributes (e.g., an
environment variable) in theses traces are compared to
those in the signature bank. If the value of an attribute in
the new trace is different from that of the signature bank,
the new value is added to the set of possible values of
that attribute in the signature bank. Otherwise, the sig-
nature bank remains unchanged. Since most attributes
do not change between runs, the size of a signature bank
grows very slowly over time. When merging the system
call graph in a trace file into the signature bank, we use a
similar algorithm as that described in Figure 6.

…

Syscall dependency graph

open()

param 1: 

{“/CVSROOT”}

param 2: 

{O_RDONLY}

ret val: {3}

Env vars

$CVSROOT: /CVSROOT

$PWD: /root

…

New trace

…

Syscall dependency graph

open()

param 1: 

{“/CVSROOT”}

param 2: 

{O_RDONLY}

ret val: {5}

Env vars

$CVSROOT: /CVSROOT

$PWD: /home/joe

…

Old signature bank

+

…

Syscall dependency graph

open()

param 1: 

{“/CVSROOT”}

param 2:

{O_RDONLY}

ret val: {3, 5}

Env vars

$CVSROOT: /CVSROOT

$PWD: {/root, /home/joe}

…

New signature bank

=

… … …

Figure 8: An example showing how a trace file is merged with the
signature bank.

All attribute values and system call graph paths are
versioned in the signature bank. This is useful when a
faulty execution trace is inadvertently added to the sig-
nature bank. Versioning allows this action to be easily
reverted.

For a multi-process application, its signature bank is
consisted of multiple sub-banks, each of which describ-
ing a separate process group. These sub-banks are or-
ganized to reflect the ancestry relationships between the
processes they are associated with. Merging of the trace
files of a multi-process application into the sub-banks is
performed following the algorithm described in Figure 9.

Our current approach has to re-build application sig-
natures after some administrative changes. For example,
updating the application or the shared libraries changes
the return addresses of the functions which invoke sys-
tem calls directly or indirectly. Because these addresses
are used as context to build system call graphs and to
match system call invocations, system call graphs and
signatures built before an update cannot be used any
more after the update because we cannot find the signa-
tures correctly with the return addresses in a new context.
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1: FUNCTION aggregate(trace file, sub bank)
2: add trace file into sub bank;
3: FOR each child process DO
4: let trace file child be its trace file
5: look for a child of of sub bank using the context

of the child process (referred as sub bank child);
6: IF such child does not exist
7: create a new sub bank (referred as sub bank child);
8: make sub bank child a child of sub bank;
9: END IF
10: aggregate(trace file child, sub bank child);
11: END DO
12: END FUNCTION
13:
14: IF signature bank is empty
15: create a new sub bank (referred as sub bank root);
16: END IF
17: trace file root = trace file of the main process;
18: sub bank root = root of the sub bank tree;
18: aggregate(trace file root, sub bank root);

Figure 9: Algorithm to aggregate trace files into signature bank
for a multi-process application.

3.3 Fault Diagnosis

When an application fault occurs, a classifier tool is
used to compare the faulty execution trace with the ap-
plication’s signature bank. The comparison is straight-
forward. Application and system states in the faulty exe-
cution trace are first compared with those in the signature
bank. Mismatched attributes are then identified. The sys-
tem call graph in the faulty execution is next compared
with that in the signature bank, a node at a time. For each
node, its attributes are compared with those on the corre-
sponding node within the signature bank. We do not list
all the mismatched attributes as potential root causes—
this might result in too many false positives.

To highlight the more likely root causes to the person
diagnosing the problem, the classifier ranks the results.
If an attribute from the faulty execution mismatches a
signature that is either an invariant or has a very small
cardinality, it is more like to be the root cause than if the
signature were to a higher cardinality value. Addition-
ally, among the mismatched attributes found in the sys-
tem call graph, we give more weight to those attributes
located closer to the “head” of the graph. The reason be-
ing, due to causal relationship, the mismatched attributes
that are closer to the top of the call graph are likely to be
the cause of the mistaches found toward the bottom.

4 Case Studies

In this section, we evaluate our approach using real-
world application problems. We would like to observe
how effectively and accurately the tool is able to handle
these problems and also identify some of its limitations.

4.1 Experimental Methodology

Our evaluation covers three popular applications:
Apache web server [1], CVS version control system [15],
and PostgreSQL DBMS server [14]. Rather than inject-
ing contrived faults to test our system, we evaluated ac-
tual problems faced by users of these applications, drawn
from problem reports on Internet forums and from bug
reporting tools such as Bugzilla. Our target problems
include configuration files, environment variables, re-
source limitations, user identities, and properties keep
persistent information such as log files. Software bug de-
tection is not our goal in this work. We describe a subset
of our experiments in this section, with the representative
problems shown in Table1.

For each application, our general approach was to first
collect traces by running it with a series of standard op-
erations or workloads that represent its normal usage and
operation. In some cases, we also change some system
settings to emulate administrators tuning the system or
modifying configurations. For example, when collecting
traces for CVS, we perform the commonly used CVS op-
erations such as import, add, commit, checkout etc. mul-
tiple times on different modules in both local and remote
CVS repositories. The CVS repositories are changed by
resetting shell environment variable $CVSROOT. We in-
tegrate these normal operation traces into the signature
bank to generate the runtime signatures of the applica-
tion. After these two steps, we inject the selected fault
manually and collect the faulty execution trace for each
problem scenario. Afterward, the system is returned to
the non-faulty state. Finally, we use the classifier to iden-
tify possible root causes by comparing the faulty execu-
tion traces with the application’s signatures.

In each case we discuss the ability of the classifier to
effectively distinguish erroneous traces from normal sig-
natures to aid in diagnosing the problem. In addition,
since the applications being diagnosed (and their threads)
must be launched from our tracer tool, the performance
impact as well as space overhead due to trace and signa-
ture storage are important measures of the feasibility of
our diagnosis approach. Therefore, for each application
we estimate overhead in execution time or response time
slow down by repeating the execution without tracer. We
also record the size of the individual traces and the sig-
nature bank. Trace file size is less important than the size
of the signature bank since trace files can be deleted af-
ter they are inserted into the signature bank. However, if
the size of trace files is reasonably small, we can retain
several recent traces and batch the aggregation operation
to amortize the cost of insertion into the signature bank.

All the experiments below are performed on a Dell Di-
mension 3100 desktop computer with a 3GHz Intel Pen-
tium 4 CPU and 1GB memory running Red Hat Enter-
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Apache problems
Index Symptom Root cause

1 Intermittent failures of httpd processes Log file size is getting too large, close to 2GB
2 Httpd cannot start File system containing httpd log files is mounted as read-

only
3 Httpd cannot start, being unable to load share libraries in correct

version.
Paths are re-ordered in $LD LIBRARY PATH.

4 Httpd crashes when the number of connections is large. Httpd loaded by crond has more restrict resource limit.
5 Web clients cannot access contents pointed by symbolic links User removed the FollowSymLinks directive from

httpd.conf

CVS problems
Index Symptom Root cause

6 User cannot checkout a specified CVS module $CVSROOT is pointing to a directory that is not a CVS
repository

7 CVS client cannot connect to CVS server A non-default ssh port number is specified in
/etc/ssh/ssh config

8 Accesses to CVS repository are denied User is not added to CVS group
9 User cannot connect to CVS server with an error message ”tem-

porary failure in name resolution”
Network cable is disconnected

PostgreSQL problems
Index Symptom Root cause

10 DBMS accepts only connections from local machine Config file pg hba.conf is mistakenly changed
11 Server cannot start A stale postmaster.pid file is left undeleted after improp-

erly shutting down the server

Table 1: Description of the problem symptoms and their root causes for Apache, CVS, and PostgreSQL.

prise Linux WS v4 and Linux kernel version 2.6.9.

4.2 Apache

For tests with Apache, we use WebStone 2.5 [19] to
emulate multiple clients which concurrently access web
pages through Apache. Besides generating workloads,
we also use WebStone to measure the average response
time of Apache. The web pages served by Apache
are generated by LXR [13] (Linux Cross-Reference),
which is a widely used source code indexer and cross-
referencer. We use LXR to serve user queries for search-
ing, browsing, or comparing source code trees of three
versions of Linux kernels.

We repeat the following operations ten times to gen-
erate ten corresponding traces of Apache server: start
the server with tracer, run WebStone on another machine
for 45 minutes generating HTTP requests, and stop the
server.

We use the signature bank built from the traces to diag-
nose the Apache problems listed in Table 1. Both prob-
lems 1 and problem 2 are related to log files. Because
the contents and the sizes of log files usually change fre-
quently, problems related to log files are difficult to diag-
nose by directly comparing persistent states without cap-

turing the run-time interactions of the application. Our
classifier identifies the root causes by finding out abnor-
mal system calls in the faulty execution traces, write for
problem 1 and open for problem 2. The abnormally be-
haved system calls are identified because their error num-
bers do not match their signatures captured in the signa-
ture bank. Figure 10 illustrates the difference between
the values of these attributes in the faulty execution and
their signatures in signature bank for problem 1. In prob-
lem 1, system call write in faulty execution cannot write
access logs into log file access log successfully. The root
cause is revealed from its error number (EFBIG, which
means file is too large). Similarly, in problem 2, system
call open in faulty execution cannot open file error log
successfully. The root cause is revealed from the return
value(-1, which means the system call fails) and its error
number (EROFS, which means read-only filesystem). In
addition to abnormally behaved system calls, the clas-
sifier also identifies that some httpd processes receive
SIGXFSZ signals in the faulty execution in problem 1.
The SIGXFSZ signal is only thrown by the kernel when
a file grows larger than the maximum allowed size.

Figure 11 illustrates the command used and the out-
put of our tool in diagnosing problem 1. The classifier
command usually has two parameters, the faulty exe-
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[sigexp@sysprof ˜]$ classifier sigbank/Apache traces/Apache_problem1.trace

** Record_ID: 58 Node_ID: 58 Graph_ID: 6 System call: write
Fails to write file /m/logs/access_log.
Note: File too large.

** Signal SIGXFSZ received by process 8259, 8260, 8261, 8262, 8267, 8268, 8269, 8271
Signal appears only in faulty execution.
Note: application appends a file larger than maximum allowed size.

Figure 11: Command line and console output of Classifier diagnosing Apache problem #1

close()

write()

read()

writev()

close()

poll()

Param 1: {7, 6}, Y

Param 2: {0x8F…}, N

Param 3: {25, 36, …}, N

Return value: {25, 36, …}, N

Error number: {0}, Y 

write()

Param 1: {7}

Param 2: {0x8A…}

Param 3: {128}

Return value: {-1}

Error number: EFBIG

write() in faulty execution

…

… …

…

Figure 10: Signatures of the attributes in a write system call
and the values of these attributes in faulty execution in problem
1. The “Y” or “N” after each signature (set) indicates
whether the signature is an invariant or a semi-invariant
that passes KS-test and thus can be used for diagnosis.
The abnormal attribute in faulty execution is in italic
font.

cution trace (“traces/Apache problem1.trace”), and the
signature bank of Apache (stored in a file named “sig-
bank/Apache”). The messages under the command are
console output of the classifier. The first line of the
console output shows one of the possible root causes
of this problem—the abnormal write system call invoca-
tion. Record ID, Node ID and Graph ID indicate where
the signatures are located in the signature bank so users
can manually check the entire system call graph if neces-
sary. The second and the third lines show how the system
call invocation behaves abnormally. The remainder of
the console output reports a second possible root cause,
namely the new signals which don’t appear in normal ex-
ecutions.

Problem 3 of Apache is caused by a modified en-
vironment variable. The classifier identifies the envi-
ronment variable ($LD LIBRARY PATH) by comparing
the value of the environment variable in the faulty execu-
tion trace against those in the signature. When Apache
performs normally, paths in the environment variable are
in the right order, and Apache can load correct libraries.
Since this variable usually does not change in normal ex-
ecutions, we capture the value of $LD LIBRARY PATH
as a signature in the signature bank. In the fault execu-
tion, paths in $LD LIBRARY PATH are reordered. As a

result, when comparing the faulty execution trace against
the signatures, the classifier finds the new value does not
match the value in the signature bank and reports it as
a possible root cause. Besides the changed environment
variable, the classifier further identifies that the fault is
caused by opening incorrect files in faulty execution be-
cause the pathnames of these files are different with those
in the signatures. Based on the pathnames, administra-
tors may identify these files are shared libraries.

Problem 4 is caused by a restricted resource limit set-
ting on the maximum number of processes owned by the
same user. Our classifier diagnoses this problem by ob-
serving the abnormal return values and error numbers
of the setuid system calls made by the httpd processes.
The setuid system call increases the number of processes
owned by the user which Apache runs as. The return val-
ues indicate that the system calls did not succeed, and
error numbers indicate that the failure was caused by un-
available resources. In addition, since we keep resource
limit as an attribute of the shell environment signature.
The new resource limit value in the faulty execution dif-
fers with that in the signature, which is another indication
of the root cause.

Problem 5 is caused by a change in a config file
httpd.conf. In building application signatures, file meta-
data such as file size, last modification time are collected,
usually when an open call happens. When comparing the
faulty execution trace to the signatures, our classifier dis-
covered that attributes of httpd.conf such as file size, last
modification time etc. do not match those in the signa-
tures. Thus our classifier can attribute the application
failure to the change in httpd.conf.

In these experiments, the response time of Apache ob-
served by WebStone is increased by 22.3% on average.
The performance overheads are non-negligible. We pro-
pose a method to reduce performance overheads in Sec-
tion 5.

Figure 12 shows the change in size of an Apache trace
in a 45 minutes period when Apache is serving requests.
In the first a few minutes, the system call graphs are small
and the value sets for the attributes do not include so
many distinct values. The trace grows quickly as new
system call graph nodes and new values are added into
the trace. Afterward, the growth slows down with the
system call graphs becoming more and more complete
and the value sets covering more variations of the at-
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Figure 12: The size change of an Apache trace.

tributes. This trend is apparent especially after the 30th
minute due to redundancy across requests. At the end of
the execution, the trace occupies 6.3MB space, recording
nearly 11 million system call invocations.
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Figure 13: Sizes of traces and the signature bank for Apache.

Figure 13 shows the size of the traces, and the change
in the size of the signature bank after aggregating each of
the traces. Though the size of each trace is around 6MB,
the size of the signature bank grows very slowly when a
new trace is inserted because redundant data are merged.

4.3 CVS

As we have explained, we collect traces of commonly
used CVS operations on different modules including the
source code of our diagnostic tools, strace, Gnuplot, and
PostgreSQL in both local and remote CVS repositories.

Similar to problem 3, problem 6 is also caused by a
modified environment variable. The symptom of prob-
lem 6 is that a user cannot checkout a specified CVS
module. Figure 14 illustrates the command used and
the console output of our tool. The first line of the con-
sole output shows one of the possible root causes of this
problem—a new $CVSROOT’s value has been used in
the faulty execution. When CVS performs normally,
the environment variable $CVSROOT has been changed
several times and pointed to different repositories. These
repositories include a local one at /home/cvs/repository
and several remote ones, from which we checked out the
source code of strace, Gnuplot and PostgreSQL. Though
this variable has been changed multiple times, our tool

determines with KS-test that this attribute is not a run-
time variant, and uses its signature in diagnosis because
the D-statistic of this variable is 0.42, which is far above
the corresponding critical value Dα = 0.22. In the faulty
execution, $CVSROOT is changed to /home/cvs. As a
result, the classifier finds the new value does not match
the signature and reports it as a possible root cause.

Our tool also discovers (2-4 line of the output in
Figure 14) an abnormal access system call invoca-
tion. The access system call is made by CVS to
check the access permission of the CVSROOT direc-
tory. In normal executions, the “pathname” parameter
is “/home/cvs/repository/CVSROOT”, the return value
is 0, and error number is 0. However, in the faulty ex-
ecution, the access call has a different “pathname” pa-
rameter (“/home/cvs/CVSROOT”) because $CVSROOT
has been changed to /home/cvs. /home/cvs/CVSROOT
is a non-existent directory. Thus the system call returns
-1 and the error number is set to ENOENT accordingly.
Our classifier interprets the semantics of the return value
and error number so users can understand easily.

This simple example demonstrates how our tool helps
to pinpoint the root cause of the problem and reveals de-
tailed information for users to examine and verify, while
the error message printed by CVS is simply “cannot find
module ’strace’ - ignored”, which is not very descriptive
and may be misleading.

Problem 7 is about a failed CVS server connection be-
cause of a non-default SSH port number in the config-
uration file. CVS usually makes connections with the
remote CVS server via SSH using its default port num-
ber (number 22). In this scenario, the configuration file
of the SSH client, /etc/ssh/ssh config, has been modified
to use a customized port number. Therefore, all SSH
client requests will use this customized number instead
of the default port number. However, the SSH server on
the CVS server is not changed accordingly to accept this
new port. Our tool identifies the config file to be one of
the root causes in a similar way as in problem 5. When
comparing the faulty execution trace to the signatures,
our classifier discovers that the file was modified when
the application is doing an open call, since the file size,
last modification time etc. do not match. Beside the con-
fig file, our classifier also reports that a connect system
call invocation is having a different port number as its pa-
rameter. This information indicates the cause might be a
bad port number.

Problem 8 is one of the problems used to evaluate Au-
toBash [17], we revisit this problem with our approach.
AutoBash solves this problem by looking for the causal-
ity between the group identifiers (gids) of the user and
the access permissions of CVS repository. Our approach
builds a signature for gids used in CVS normal execu-
tions. In our signature bank, the signature of this attribute

Owner
Inserted Text
 (space)

Owner
Inserted Text
a 



[sigexp@sysprof ˜]$ classifier sigbank/CVS traces/CVS_problem6.trace
Environment variable $CVSROOT has been changed to a new value "/home/cvs".

** Record_ID: 158 Node_ID: 95 Graph_ID: 1 System call: access
Faulty execution checks user permission of a file/directory "/home/cvs/CVSROOT".
System call fails.
Note: No such file or directory.

Figure 14: Command line and console output of Classifier diagnosing CVS problem #6

always takes one value since the CVS client always uses
the CVS group. When comparing the faulty execution
trace against the signatures, the classifier cannot find the
gid of CVS group in the set of gids used by the faulty
execution, thus it classifies it as the root cause. Similar
to problem 6 and problem 7, the classifier observes ab-
normally behaved system calls in faulty execution trace
and prints out diagnosis messages of the errors.

From the problems we present here, the only problem
for which the classifier cannot provide accurate diagno-
sis is problem 9. The classifier observes the abnormal be-
havior of poll system call recorded in the faulty execution
trace and concludes that system call poll gets timeout as
the root cause. The classifier fails to identify the real
root cause because we do not collect information about
hardware states of network card. Though the classifier
cannot exactly locate the root cause, it discovers that the
anomaly was caused by timeout on network communi-
cations. The information may be helpful because it can
reduce the scope of investigation for the exact root cause.

While the tracer slows down CVS operations by dif-
ferent percentages, we observe an average slowdown of
29.6%. The smallest slowdown is less than 1%. It is
observed when we checkout Gnuplot from the remote
repository gnuplot.cvs.sourceforge.net because network
latencies dominate the delays. The greatest slow-down
is 77.1%, which is observed when we commit a version
of a small module to the local repository. We collected 26
traces for CVS in total. Their sizes range from 0.1MB to
1.6MB. They record about 1.8 millions system call invo-
cations, and the largest trace file records over 219 thou-
sands system call invocations. The size of the signature
bank is 6.5MB after these traces are aggregated.

4.4 PostgreSQL

For PostgreSQL, we collect 16 traces as it processed
queries generated by the TPC-H [18] benchmark for de-
cision support systems.

In PostgreSQL, access control configurations are spec-
ified in pg hba.conf. PostgreSQL loads this config file
when it is started, and also does a reload when receiv-
ing a SIGHUP signal. Thus with a reload command
which sends PostgreSQL a SIGHUP signal, users may
make the changes to pg hba.conf take effect immediately
without restarting PostgreSQL. In evaluating problem
10, we injected faults by modifying pg hba.conf when

PostgreSQL was running and let PostgreSQL reload
pg hba.conf with reload command. We run reload com-
mands to let PostgreSQL load pg hba.conf in its signal
handler, which we have exercised in normal execution.
Our classifier can identify the root causes in a similar
way as it diagnoses problem 5 and problem 7. The con-
sole output is shown in Figure 15.

In problem 11, the shell script which loads Post-
greSQL checks for the existence of the postmaster.pid
file. If the file exists, it stops loading PostgreSQL as-
suming it has been started already. In normal executions,
an access system call is used to check the existence of
this postmaster.pid file, and usually returns -1 with the
error number set to ENOENT. In faulty execution, the
system call returns 0 indicating the existence of the file.
Our classifier discovers the root cause by comparing the
error numbers and return values of the access call.

We observed that, using the tracer, the queries are
slowed down by 15.7% on average. Tracing causes
less performance overhead for PostgreSQL than for the
other two applications because most TPC-H queries are
computation-intensive and thus PostgreSQL makes sys-
tem calls infrequently. The traces are from 0.6MB to
2.1MB, and the signature bank is 3.2MB after aggregat-
ing the traces.

4.5 Accuracy and Effectiveness

Our approach identifies root causes of problems by com-
paring a faulty execution with the application’s normal
runtime signatures. Having “good-quality” runtime sig-
natures is critical to the identification of root causes.
From our experience, identifying the root cause is usu-
ally not difficult using our approach as we are compre-
hensively capturing the interactions between the applica-
tion and the system states, whether or not they are per-
sistent or non-persistent (the root causes of the above
problems are all correctly identified using our tool). In
addition to being able to identify root causes, it is also
important, if not more, to limit the number of false pos-
itives. Having too many false positives will render the
tool useless to its user in practice.

False positives are generally caused by two reasons.
One reason is related with KS-test. Some normal run-
time variants may not be ruled out from diagnosis if the
significance level is set too high. User may reduce false
positives by decreasing the significance level. However,
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[sigexp@sysprof ˜]$ classifier sigbank/postgresql traces/postgresql_problem10.trace

** Record_ID: 45287 Node_ID: 11 Graph_ID(SIGHUP): 3 System call: open
File /home/pgsql/db/pg_hba.conf has been changed since last run.

Figure 15: Command line and console output of Classifier diagnosing PostgreSQL problem #10.
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Figure 16: Number of false positives decreases when more traces are aggregated into signature bank.

if the level is set too low, attributes useful for diagnosis
may be mistakenly identified as runtime variants and thus
lead to false negatives. From our experience, setting the
level to 10% works well for all the problems in our ex-
periments (the numbers of false positives in diagnosing
the problems are as shown in Figure 16). Nevertheless,
we have set the significance level as a knob, in case users
may need to adjust it in real-world environments to re-
duce false positives without causing false negatives. The
other reason is that signature bank cannot cover all the
possible normal variations of the attributes. For exam-
ple, in problem 7, if the client has never connected to
a CVS server before, the signature of $CVSROOT does
not include the name of the new repository. Thus the
name of that new repository in $CVSROOT may be iden-
tified as one of the possible root causes false-positively.
Aggregating more traces may make signature bank more
“complete”, and thus is helpful in reducing such false
positives. To illustrate this, for each problem, we also
show the number of false positives in Figure 16 when we
increase the number traces aggregated into the signature
bank.

5 Optimization

Our experiments in Section 4 show that the performance
overheads of tracing are quite noticeable when using on
real systems. In this section, we propose a technique
of optimizing ptrace to significantly reduce these over-
heads.

Most of the performance degradation comes from in-
formation collection and trace file updating when a sys-
tem call happens. To reduce the context switches and
memory copies introduced by updating trace files, we
have used direct memory-mapping to map trace files into
the memory space of the tracer. However, for each each

system call made by the traced application, the following
overheads are still incurred.

• 4 additional context switches, switching from ker-
nel to tracer and back from tracer to kernel both
at system call entry and exit. Time consumption is
about 20.2 microseconds in total.

• Getting system call number, return value, error
number, or each parameter would incur two addi-
tional context switches of 0.9 microseconds.

• Peeking into the user stack of the target application
to get the content of its stack frames would require
the OS to read the application’s page table to re-
solve virtual addresses. Each of these operations
takes about 2.0 microseconds.

Since most system calls usually take only a fraction
of a microsecond, in the same time scale or even shorter
than these activities, these overheads may significantly
slow down the traced application. To reduce these over-
heads, we modified several ptrace primitives and added
two primitives in Linux kernel. These improvements
only require slight modifications to the current ptrace im-
plementation. Less than 300 lines of new code are added.
The new ptrace actions/primitives we added are:

• PTRACE SETBATCHSIZE: Set the number of sys-
tem calls to batch before notifying the tracer.

• PTRACE READBUFFER: Read and then remove
data collected for the system calls in same batch
from a reserved buffer space.

The improved ptrace interface reduces overheads by
decreasing the number of ptrace system calls the tracer
needs to call and the number of context switches. This
is done by having the kernel reserve a small amount of
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buffer space for each traced process (40KB in the current
implementation) so it can be used by ptrace to store data
it has collected on behalf of tracer without interrupting
the traced application on every system call. Instead, the
traced application is only interrupted when (i) the buffer
space is approaching full, (ii) a user-defined batch size
(of system calls) is reached, or (iii) a critical system call
is made, e.g., fork, clone, and exit. By batching the col-
lection of information on system calls, the costs of con-
text switches and the additional ptrace system calls are
dramatically reduced.

We repeated the trace collection operations for
Apache, CVS, and PostgreSQL in Section 4 with the im-
provements introduced above. The slowdowns of these
applications are shown in Figure 17 with the batch size
varying from 1 to 64.
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Figure 17: Slowdowns for Apache, CVS, and PostgreSQL, with
batch size varying from 1 to 64.

Even when batch size is equal to 1, the applica-
tions have smaller slowdowns with improved ptrace than
they do with original ptrace. There are two reason.
One reason is that OS invokes tracer only once with
improved ptrace for each system call on its exit, in-
stead of twice with original ptrace on both system call
entry and system call exit. The other reason is that
the tracer needs only one improved ptrace system call
(PTRACE READBUFFER primitive) to get the required
data, instead of multiple ptrace system calls with original
ptrace. With the increasing of batch size, the slowdowns
are reduced significantly for all applications. When batch
size is increased to 64, the slowdowns of Apache, CVS,
and PostgreSQL with improved ptrace are reduced to
1.9%, 0.8%, and 0.5% respectively. For normal appli-
cations, such small slowdowns are acceptable.

6 Related Work

As systems are becoming more complex and problem
diagnosis is taking longer and requiring more expertise,

quite a few number of related works, that we describe in
Section 6.1, have attempted to automate problem diagno-
sis and resolution. The general approach we have taken
to automate problem diagnosis in this work—capturing
and utilizing application’s runtime behavior—has also
been applied to other areas such as debugging and intru-
sion detection, which we cover in Section 6.2 and Sec-
tion 6.3, respectively.

6.1 Problem Diagnosis and Resolution

A general approach to diagnosing and solving applica-
tion problems, especially those caused by misconfigura-
tion, is to regularly checkpoint system states and keep
track of state changes. For example, Strider [23] takes
periodic snapshots of the Windows Registry. When a
problem occurs, recently changed or new registry entries
are presented as potential root causes. Chronus [25] and
FDR [20] also take into account of changes in other sys-
tem states, not just in the Windows Registry. FDR actu-
ally records every event that changes the persistent state
of a system. While such system-wide approach is gen-
erally fairly comprehensive when it comes to recording
changes, filtering out noises (i.e., unrelated changes) and
pin-pointing the exact root cause can sometimes be dif-
ficult. On the other hand, the approach we have taken
is very application-specific. We only consider those
changes that are known to have an impact on the appli-
cation that we are diagnosing.

Yuan et al. [26] is the closest work related to ours.
They try to match the system call sequence of a faulty
application with that of a set of known (Top100) prob-
lems. When a match is made, the pre-cooked solution to
that problem is presented to the user. One problem with
this approach is that there is a huge number of differ-
ent applications, and for each application, there are many
possible problems. As a result, the 80-20 rule might not
hold true here, which means building a knowledge base
of only the Top100 problems might not be sufficient.
Additionally, there are a few problems with comparing
only system call sequences, which we have discussed
in Section 2. In our work, we address these problems
by converting system call sequences to graph structures.
PeerPressure [22] is closely related to the Strider work,
also looking at the Windows Registry. It goes a step fur-
ther and uses statistical methods to compare application-
specific Windows Registry entries across many machines
to detect abnormal entries. However, this work is limited
to only Windows platform and problems caused by mis-
configuration in the Windows Registry.

AutoBash [17] is a set of interactive tools to deal with
misconfiguration problems. It uses OS-level speculative
execution to track causal relationships between user ac-
tions and their effect on the application. Fundamentally

Owner
Cross-Out

Owner
Replacement Text
increase in 

Owner
Cross-Out

Owner
Inserted Text
most closely

Owner
Cross-Out

Owner
Inserted Text
work 



different from other related works in this section and
ours, AutoBash does not monitor historical changes in
system and application states in order to find root cause.
Instead, it relies on the user to have sufficient amount of
expertise in finding the root cause and records the actions
taken, in case the same problem occurs again in the fu-
ture. Users are also required to define predicates specify-
ing what is the correct behavior of an application. These
can sometimes be difficult and time consuming to define.
In our approach, the correct behavior of an application is
already captured by its runtime signatures.

6.2 Debugging
Capturing and discovering program runtime invariants
are important to programmers when debugging. Vari-
ous tools [2, 9, 10, 16, 7] are developed for this purpose.
Daikon [2] detects invariants based on the values of a set
of tracked expression at various program points such as
reading or writing a variable, procedure entries and ex-
its. DIDUCE [9] hypothesizes invariants that a program
obeys in its execution and gradually relaxes the hypoth-
esis when it observes a violation. These tools usually in-
strument an application at a very fine granularity to track
its “internal” problems. As a result, slowdown can be as
much as a hundred times slower or more, which is still
acceptable during debugging.

Our tool focuses on diagnosing problems after an ap-
plication has been released and works while the applica-
tion is being used. Therefore, low overhead is the key for
such tool to be pragmatic, which we have demonstrated
in the evaluation of our tool. Furthermore, we do not re-
quire having application’s source code and monitor the
application using a black-box approach. This allows our
tool to work also with commercial software which almost
always do not have accompanying source code available.

6.3 Intrusion Detection
In security area, system calls are commonly traced to de-
tect intrusions [4, 11, 24, 21, 3], where patterns detected
in a system call sequence are most important, and other
information, such as return value, parameters, and error
code, are less so. Intrusion patterns are relatively easier
to detect than that of a functional problem of an applica-
tion, which can happen anywhere in the application and
caused by almost anything. Therefore, for problem diag-
nosis, more detailed information and more types of infor-
mation are needed to perform accurate diagnosis. And,
at the same time, we need to incur as little overheads
as possible; like intrusion detection systems, our tool is
meant to run alongside of applications. David and Drew
build non-deterministic pushdown automata for system
calls made by applications [21], which are very similar

to system call graphs in our approach. However, they
build the automata to have a complete coverage of all the
possible execution paths to avoid false alarms. In our ap-
proach, we only need to have common execution paths
in our signature bank to detect anomalies.

7 Limitations

Our application diagnosis approach and implementation
does have a number of limitations. For example, we do
not currently address the problem of how to label a par-
ticular application execution trace as faulty. Currently,
we rely on a manual indication from the user that in-
vokes the problem diagnosis process. We also adopt a
somewhat conservative approach in the amount of infor-
mation that is collected in application traces. More anal-
ysis is needed to identify the minimum set of data that
provides a high degree of accuracy for diagnosing com-
mon problems. More complete information in signature
data is likely to improve the chances that new problems
can be diagnosed. Finally, our results, while representa-
tive of widely used applications and real problems, are
nevertheless limited to a few case studies.

Despite these limitations, we believe that this ap-
proach for problem diagnosis represents a promising
step toward automating application problem solving, and
could lead to significant time (and hence, cost) savings in
enterprise IT environments.

8 Conclusions and Future Work

We have proposed an automatic approach to diagnose ap-
plication faults. Our approach finds problem root causes
by capturing the run-time features of normal application
execution in a signature and examining the faulty exe-
cution against the signature. We have implemented our
approach in a user level tool and evaluated it using real
application problems that demonstrate that the approach
can accurately diagnose most of these problems. We
have tested both the space and time overheads of deploy-
ing the diagnosis tool, and though the impact on applica-
tion response time is high, we have proposed and tested
a method that significantly reduces it.

Currently our approach builds application signatures
on each individual computer system. It is difficult for
a user to obtain complete signatures for an application.
By exchanging and sharing signatures built on multiple
computer systems, users can have more complete signa-
tures to cover more problems. As future work, we plan to
explore approaches to share signatures across hosts (e.g.,
inspired by [22]). Paper [22] has introduced a method
to build signatures for Windows registries, which can
be shared across hosts, by identifying and excluding in-
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formation subject to change across hosts. However, the
method can hardly be applied with our approach. When
we build signatures for an application on each host, much
information specific to that host is included into its signa-
ture, such as UID and GID the application is running as,
size and last modification time of its configuration files,
etc. To share signatures across hosts, some conversion
is required. For example, if GID has been considered as
a piece of signature in a host, and we want to share the
signature to another host, we have to replace it with the
GID on that host.

We have evaluated our approach with a number of real
problems in a testbed setting, but also plan to evaluate
its effectiveness and costs in live deployments, such as
campus computer labs.
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