
RC24673 (W0810-101) October 16, 2008
Computer Science

IBM Research Report

CFE - A System for Testing, Evaluation and Machine Learning
of UIMA Based Applications

Igor Sominsky, Anni Coden, Michael Tanenblatt
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

CFE – a system for testing, evaluation and machine learning of UIMA based
applications

Igor Sominsky, Anni Coden, Michael Tanenblatt
IBM Watson Research Center

19 Skyline Dr., Hawthorne NY, 10532 USA

E-mail: sominsky@us.ibm.com, anni@us.ibm.com, mtan@us.ibm.com

Abstract

There is a vast quantity of information available in unstructured form, and the academic and scientific communities are increasingly
looking into new techniques for extracting key elements - finding the structure in the unstructured. There are various ways to identify
and extract this type of data; one leading system, which we will focus on, is the UIMA framework. Tasks that are often desirable to
perform with such data after it has been identified are testing, correctness verification (evaluation) and model building for machine
learning systems. In this paper, we describe a new Open Source tool, CFE, which has been designed to assist in both model building
and evaluation projects. In our environment, we used CFE extensively for both building intricate machine learning models, running
parameter-tuning experiments on UIMA components, and for evaluating a hand-annotated "gold standard" corpus against annotations
automatically generated by a complex UIMA-based system. CFE provides a flexible, yet powerful language for working with the
UIMA CAS - the results of UIMA processing - to enable the collection and classification of resultant data. We describe the syntax and
semantics of the language, as well as some prototypical, real-world use cases for CFE.

1. Introduction

A wealth of information is captured in unstructured

sources, ranging from text to streaming video. Analysis of

these sources and extraction of knowledge from them is

the goal of several frameworks currently in use within the

research community. Two open source frameworks, the

Gate system (http://www.gate.ac.uk) and the UIMA

framework (http://incubator.apache.org/uima) have

gained popularity. Although different in several aspects,

both systems are modular, providing a mechanism for

creating and executing a pipeline of components, known

as “annotators”. These annotators implement various

algorithms, each of which performs a specific analysis

task. In this paper, we will focus on textual unstructured

data sources. Hence, examples of annotators are natural

language processing (NLP) components, such as

part-of-speech taggers and parsers, rule based annotators

or named entity annotators based on a variety of

machine-learning algorithms.

One of the challenges faced by all application developers

is the testing and evaluation methodology. At a high level,

the issues typically are regression testing and computation

of accuracy metrics (e.g. precision/recall) against a “gold

standard”. There are many tools available (e.g.,

Knowtator (http://knowtator.sourceforge.net) and Callisto

(http://callisto.mitre.org)) for manually annotating

documents, both for building machine learning training

data and for creating “gold standard” corpora to be used as

a reference set in testing. Evaluation and testing involves

comparing annotations from different executions. Within

the UIMA framework, this can be accomplished by

extracting and comparing values of properties of UIMA

annotations. These annotations can be arbitrarily complex.

Extraction of these properties, called features, is also one

of critical sub-tasks in creating machine learning models,

as the feature vectors for building the models can be

generated from features values of UIMA annotation.

It should be noted that the term features, which is

frequently used throughout this paper, is often used in

different contexts. This term may refer to properties of

UIMA annotation types or features that are used to

build/evaluate models for machine learning algorithms. In

this paper we will use the term features in relation to

properties of UIMA annotations, while values of models

for machine learning will be referred as ML features.

What we needed, but were not able to discover, was a tool

that could be configured to extract specific portions of a

UIMA CAS (Common Analysis Structure: the

object-based data structure in which UIMA represents

objects, properties and values), specifically a set of

features from some set of annotations based on user

specified conditions. Traditionally, application-specific

“CAS Consumers” have been written to satisfy this

requirement. While this approach is reasonable for a fixed

(or nearly fixed) set of output requirements, it can be

unwieldy when experimenting with different sets of

features to be extracted, an underlying annotation model

is in flux, or if two or more differing (yet equivalent)

models need to be extracted and aligned. For these

reasons, we created a system to perform these kinds of

extraction tasks, and which provides a powerful

declarative extraction specification language. The same

functionality is also needed to generate ML features to

build models that underlie machine learning algorithms.

To accomplish the final steps of evaluation tasks, we

combine the generalized feature extractor with a system

within which accuracy metrics can be computed.

This paper is organized as follows. In section 2, we will

describe the challenges of testing and evaluating UIMA

pipelines in detail and discuss why other testing and

evaluation environments proved to be inadequate. The

feature extraction specification language (FESL) – is

introduced in section 3. Section 4 will describe a

real-word use case of FESL performance evaluation of an

NLP system and section 5 will demonstrate how FESL

can be used for machine learning related processing. We

conclude in section 6 with proposing some potential

extensions.

2. Problem statement

Evaluation of an information extraction system consists

of several steps: defining a baseline against which to

compare, defining the comparison criteria, extracting

relevant information from sources (e.g., the baseline and

the system to be evaluated) and subsequent comparative

analysis.

At a very general level, for a given textual document, a

UIMA pipeline executes as shown in Figure 1.

Figure 1: UIMA pipeline

First, the document is read into a Common Analysis

System (CAS) structure. Next, a set of analysis engines

(AEs) mark up this piece of text, producing annotation

objects, each of which is usually associated with a span of

text in that document. Finally, one or more CAS

Consumers read these annotations, perform any necessary

processing, and then output results.

Figure 2: An abstract view of typical UIMA annotation

Each annotation (as shown for example in Figure 2) has

properties associated with it. These properties contain

specific information about the annotation, and as

described in the introduction, are called features.

Although the actual implementation of UIMA annotation

objects is much more complex, this abstract view reflects

information stored in these objects. The values of features

are set by AEs and could either be modified or used

without modification by subsequent annotation engines.

In the example in Figure 2, the annotations are created

with a dictionary lookup mechanism against a medical

terminology, the attributes being the begin and end offsets

of the relevant piece of text in the document that this

annotation object is associated with, the semantic class of

the named entity that is described by the annotation, the

terminology name and code associated with it from that

dictionary, and the actual text fragment.

The first step in the process of evaluation is the definition

of equality between two types to be compared. This

necessitates a specification of a set of features from both

the test and reference sets that should be compared, and

the criteria for the comparison. In the next step, the

annotations of those types and their significant properties

are extracted. We developed the language FESL to specify

the details of this extraction. FESL contains sufficient

semantics for expressing rules for generation of

parameters for building machine learning models. The

extraction can be implemented as part of a standard

UIMA component (AE or CAS consumer) depending on

particular application requirements. For the evaluation

environment, we developed a tool that extracts required

feature values using a CAS consumer. It performs the

extraction from two CAS structures that are to be

compared and loads the extracted information into a

Microsoft Excel spreadsheet, where the final stages of the

evaluations are executed, as described in section 4.

3. The Feature Extraction Specification
Language (FESL)

To enable a high degree of flexibility and extensive

functionality, we defined an XML-based specification

language that expresses semantic rules for feature

extraction. One of the key concerns in defining the

language was to avoid any dependency upon any

particular application of the extraction process. This

allows reusing the same extraction semantics for different

purposes, whether for comparative analysis, subsequent

algorithm execution or machine learning related

processing. The feature extraction process is independent

of the representation of the feature in the final output. This

enables different output formats for different use cases,

such as machine learning or testing. As a simple example,

extracted values for comparison could contain spaces in

their representation, while the same values extracted for

machine learning could replace spaces with underscore

characters. The component also defines a destination for

output. For instance, the analysis engine (AE) could store

the extracted features values within a CAS structure

and/or a subsequent CAS Consumer might output them to

an external source such as a disk file or database.

The semantics of the specification language allow the

definition of complex multi-parameter criteria that could

identify a particular concept of interest. Such criteria

allow locating the information expressed by any

particular UIMA annotation and/or its features in a CAS

structure, evaluating its value against one or more

Collection Reader

Source Structured
Information

Analysis Engine

Analysis Engine

Analysis Engine

CAS Consumer

CAS Consumer

CAS Consumer

conditions and recording the results in an internal

depository for post processing. The criteria for such

search can be specified by a combination of the following

conditional expressions, written with FESL:

a. type of an annotation object that contains the feature

(in the general case, the feature does not have to be a

property of the object, but should be accessible (i.e on

the path) from its properties, as will be shown further

down in this section)

b. surrounding (enclosing) annotation type and relative

location of the object within the enclosure, as

indicated by the enclosingAnnotation attribute of the

targetAnnotations XML tag, shown in Figure 3 (the

significance of the enclosing annotation is explained

below)

c. path to the feature from the annotation object, as

indicated by the featurePath attribute of the

featureMatchers XML tags, as shown in Figure 3

d. type and value of the feature itself; the feature value

can be evaluated against different constraints

expressed with FESL, as explained further down in

this section

e. values of any public Java get-style methods (methods

that accept no parameters and return a value)

implemented by the underlying class of the feature

f. location of the object or the feature on a specific path

(in cases when it is required to select/bypass

annotations if they are features of certain annotation

types)

One of the key capabilities of FESL mentioned in items

(a), (c) and (f) is an ability to specify a “path” to a feature

from an annotation object. This path is a sequence of

feature/method names, separated by the colon character,

that mimics the sequence of Java method calls required,

starting at the annotation object, in order to extract the

feature value. It should be noted that, as UIMA

annotations support arrays as feature types, FESL also

provides the ability to extract values of features that are

arrays or properties of annotations that are contained in

arrays. Figure 5 contains a sample of how arrays are

specified in FESL. In addition, special array semantics

allow accessing elements of arrays by index and sorting

them by offset before extraction.

Some applications require performing an extraction of

information relevant to a certain concept within sentence

boundaries; other may extend the scope of the extraction

to a paragraph. As mentioned in item (b) FESL has the

ability to define such a scope by specifying an enclosing

annotation as illustrated in Figure 3.

Typically, values of UIMA annotation features are

required to be extracted, but FESL also enables an

extraction of non-UIMA properties of an object by using

Java reflection mechanism. As specified by item (e), a

value returned by any public method that has no

arguments can be extracted and treated in the same way

UIMA features are processed. As shown in Figure 3,

getCoveredText is not a property of a UIMA Annotation

type, but rather a method that this type defines.

As previously mentioned in item (d) the feature values

can be evaluated by conditional expressions stated in

FESL. Particularly, the feature values can be evaluated

whether they:

i. are of a certain type

ii. belong to a specific set of values (vocabulary), where

the set of values, as shown on Figure 3, is defined by

the enumFeatureValues XML tag

iii. belong to a range of numeric values (inclusively or

non-inclusively) as defined by the

rangeFeatureValues XML tag

iv. match certain bits of a bit mask (integer values only);

the bitmaskFeatureValues XML tag will contain an

integer bitmask along with a flag indicating whether

the bitmask should exactly match to a feature value

v. match a Java regular expression pattern, where the

patternFeatureValues XML tag will contain a regular

expression against which a feature value will be

evaluated

The evaluation of the search criteria can be specified in

disjunctive normal form. Conjunctions are bounded by

FESL groupFeatureMatcher XML tags and are referred to

as groups. Disjunction is implicit between multiple

groups. This gives a powerful and flexible way of

defining fairly complex criteria for a search of a required

annotation and/or its value.

It should be noted that the semantics of FESL, as shown in

Figure 3, separate the concept and specification of target

annotations (TA) from feature annotations (FA). Although

they use identical semantic rules for specifying the search

criteria, the ways the results of the search are processed

are different. In particular, TAs are used to locate a

concept, while FAs are the annotations upon which the

extraction of features is performed. Target annotations are

specified by the targetAnnotationMatcher XML tag, and

feature annotations by the featureAnnotationMatcher

XML tag. During the extraction process, a TA is located

according to its search criteria. Once the TA is found, FAs

that correspond to the TA, and match to their own search

criteria, are located and feature values are extracted from

them. Additionally, the semantics allow the extraction of

features from multiple FAs, where each FA is located by

its specific context relative to the TA. This is particularly

useful in machine learning related processing where it is

often required to select features from annotations that are

located “near” another annotation with certain properties.

Let us consider a quite common example taken from the

machine learning domain: extracting “a bag of words

within a window of size 5 centered around the word

‘tumor’, excluding prepositions, conjunctions, articles

and punctuation”. This could be understood as: search for

token-based annotations that corresponds to the word

“tumor” (TA), and on every match consider the 5 nearest

token-based annotations (FAs) on both sides, and

excluding tokens that have associated part-of-speech tags

indicating they are of one of the following categories:

preposition, conjunction, article or punctuation, then

extract the token that corresponds to that FA. The FESL

semantics allow the unambiguous specification of criteria

for such a search that is shown in Figure 3.

<targetAnnotations className="BOW5Tumor"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="TokenAnnotation">
 <groupFeatureMatchers>
 <featureMatchers featurePath="getCoveredText" featureTypeName="String">
 <enumFeatureValues>
 <values>tumor</values>
 </enumFeatureValues>
 </featureMatchers>
 </groupFeatureMatchers>
 </targetAnnotationMatcher>
 <featureAnnotationMatchers annotationTypeName="TokenAnnotation"
 windowsizeLeft="5" windowsizeRight="5">
 <groupFeatureMatchers>
 <featureMatchers featurePath="getCoveredText" featureTypeName="String"/>
 <featureMatchers featurePath="pennTag" featureTypeName="String"
 exclude="true">
 <enumFeatureValues caseSensitive="true">
 <values>IN</values>
 <values>CC</values>
 <values>DT</values>
 <values>null</values>
 </enumFeatureValues>
 </featureMatchers>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>

Figure 3: Bag of words extraction sample

In this figure, short versions of UIMA annotation type

names are shown for better readability. In the example, all

extracted feature values are assigned a label

“BOW5Tumor” (the value of the targetAnnotation’s

“className” attribute). The label could be used in

subsequent processing for the grouping of related results

of extraction. The search is limited to token annotations

(TokenAnnotation) within the same sentence

(SentenceAnnotation), as specified by

enclosingAnnotation attribute. Also, annotations of type

TokenAnnotation have a property called pennTag that

contains their part-of-speech tags. As illustrated in this

example, the TokenAnnotation’s getCoveredText attribute

is evaluated if, and only if, that same TokenAnnotation’s

pennTag contains a value in the set specified under

enumFeatureValues XML tag.

Figure 4: Tokenized sentence

To demonstrate how this FESL specification is applied

consider the sentence from Figure 4. Each box on this

figure corresponds to a single TokenAnnotation. These

TokenAnnotations are all enclosed within a single

SentenceAnnotation. Each TokenAnnotation contains a

unique label, a text string covered by this annotation and a

POS tag. According to the FESL specification in Figure 3,

first a TA of a TokenAnnotation type with covered text

tumor is searched for. Once it is found (T7), a search is

performed for 5 FAs of a type TokenAnnotation to the left

from T7. Only annotations whose POS tag is not IN, CC,

DT or null are selected during the search. Thus the

selected FAs will be T6, T4, T2 and T1. The same

algorithm applied on the right context of T7 will produce

a selection of FAs labeled T8, T9 and T10. As has been

mentioned earlier, the search for FAs is limited by

sentence boundaries. For this reason, even though a

windowSizeRight and windowSizeLeft are specified with

the value 5, fewer than five TokenAnnotations are actually

selected.

As opposed to this previous example for machine learning,

in the case of feature extraction for a comparative analysis

(e.g. evaluation), the TA and FA usually are the same.

To demonstrate another set of capabilities of FESL,

consider a case where it is necessary to process

annotations that implement hierarchical models, (i.e.,

annotations containing other annotations, which may

themselves contain annotations, etc.), with multiple levels

of containment. The set of particular features that are

required for extraction depend on where in the hierarchy

the annotation is located and how it is related to the higher

level annotation. As an example, we consider a case

where it is required to distinguish between a dimension of

a surgical margin and dimensions of a tumor. Figure 5

illustrates these capabilities, where the requirement is to

extract values of features of Dimension annotations that

are constituents of Size annotations which in turn are

properties of two different containing UIMA annotations:

PrimaryTumor annotations and MetastaticTumor

annotations. An additional requirement is to extract

feature values of all other Dimension annotations under a

separate label. Figure 5 illustrates how these complicated

requirements can be specified with FESL:

<targetAnnotations className="PrimaryTumorDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Size" fullPath="
 PrimaryTumor:Size"/>
 <featureAnnotationMatchers annotationTypeName="Size"
 windowsizeInside="1">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Dimensions:toArray:Unit"
 featureTypeName="String"/>
 <featureMatchers featurePath="Dimensions:toArray:Extent"
 featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>
<targetAnnotations className="MetastaticTumorDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Size"
 fullPath="PrimaryTumor:Size"/>

T1
Multiple

NNP

T2
serosal

JJ

T3
,

null

T4
mesenteric

JJ

T5
and

CC

T6
omental

JJ

T7
tumor

NN

T8
studs

NNS

T9
are

VBP

T10
present

JJ

T11
.

null

 <featureAnnotationMatchers annotationTypeName="Dimension"
 windowsizeInside="3">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Unit" featureTypeName="String"/>
 <featureMatchers featurePath="Extent" featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>
<targetAnnotations className="Processed"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"
 fullPath="PrimaryTumor:Size:Dimensions:toArray"/>
</targetAnnotations>
<targetAnnotations className="Processed"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"
 fullPath="MetastaticTumor:Size:Dimensions:toArray"/>
</targetAnnotations>
<targetAnnotations className="OtherDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"/>
 <featureAnnotationMatchers annotationTypeName="Dimension"
 windowsizeInside="1">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Unit" featureTypeName="String"/>
 <featureMatchers featurePath="Extent" featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>

Figure 5: Dimension extraction sample

In the example above, a path to features of interest that are

properties of feature annotations (FA) is specified by a

sequence of properties/methods that are required in order

to locate the final feature. For example:

fullPath="PrimaryTumor:Size:Dimensions:toArray"

specifies that PrimaryTumor contains a property called

“Size” of a type that has an array of dimensions, and

elements of that array should be of type Dimension as

enforced by the annotationTypeName attribute. The first

target annotation (TA) with a class label

PrimaryTumorDimension is specified to be of a type Size

and located on a path PrimaryTumor:Size. This

specification ensures that only Size annotations that are

constituents of PrimaryTumor annotations are matched.

Once the TA is located, a feature annotation (FA) of the

same type Size is searched for within the offset boundaries

of the TA, which is enforced by windowsizeInside attribute.

In this example, the value of windowsizeInside attribute is set

to 1, guaranteeing that the same Size annotation that was

previously selected as the TA will also be selected as the

FA. The same rules apply to the processing of target

аnnotations referenced by the

MetastaticTumorDimension class label. Also in this

example, a specification of an arbitrary label “Processed”

with no FA specification should be noted. This illustrates

the functional feature of FESL of excluding annotations

(TAs) that have been matched during the previous search

from further processing. Thus, dimensions matched for

tumor sizes will not by considered during the search

specified by criteria with label OtherDimension.

4. Automated performance metrics
evaluation

Comparison of results produced by a pipeline of UIMA

annotators to a “gold standard” or results of two different

NLP systems is a frequent task, and should be automated.

Creating a uniform methodology that would not just

simplify the comparison, but would also facilitate the

identification of common sources of errors and measure

performance improvements gained by correcting these

errors, is crucial in the NLP research and development

process.

Using FESL as an information extraction mechanism, we

developed such a methodology that includes several

steps:

- defining the comparison criteria

- extracting the relevant features

- extracting relevant information from two sources to

be compared into a spreadsheet-compatible format

- comparative analysis of extracted information

Only the first step has to be done manually; all others can

be completely automated.

4.1 Defining the comparison criteria

The definition of the comparison criteria between two
CAS structures is a critical step in the evaluation process.
Each CAS structure can have its own type system, and the
information represented by an individual type from one
type’s system does not necessarily mirror the information
stored in the corresponding type of a different type system.
In fact, its constituent parts could be spread across
multiple types. For complex types (types that include
other types and are also a part of the comparison process),
the relevant constituents to be used in the definition of
equality must be defined. The result of this step is a set of
FESL configuration files and set of custom comparison
Excel spreadsheet templates (CST). The FESL
configuration files specify the feature extraction, whereas
the templates implement the comparison criteria.

It is within the CST’s that the comparison between two
CAS structures is executed. Information from both
structures is loaded into a CST, and then the comparison is
implemented with a set of macros that perform the
following:
- compare two corpora based on the user defined

equality criteria
- calculate performance metrics such as precision,

recall and F-score.
In addition they could include macros to take into account
errors in the “gold standard” or estimate the performance
gain by fixing a specific algorithm or implementation
errors in automated annotators.

4.2 Feature extraction

Feature extraction is performed using a custom UIMA
CAS consumer that uses a FESL configuration file and a
CAS structure as its input and outputs delimited files with
feature values. This CAS consumer contains code which
interprets and executes the FESL configuration. A sample

of such an implementation will be released into Open
Source as part of the Apache UIMA incubator project.
The fundamental semantic rules implemented by FESL
were covered in section 3. Features are extracted from
both sources that are being compared, resulting in two
delimited files that are merged into a single file. This
process uses the offsets of annotations within the
document to guide the merger. The merged file can be
easily imported into a custom Excel spreadsheet for
further analysis, as discussed in section 4.1. In our
environment, the creation of a spreadsheet from two
delimited files is completely automated. Figure 6 shows
typical content of a merged file with feature values
extracted from two sources. We used a vertical bar (“|”)
character as the value separator, since our data can never
contain one—for use with other data sets, this can be
customized accordingly:

Figure 6: Merged results of feature extraction

4.3 Comparative Analysis

Comparative analysis usually includes several steps –
calculation of performance metrics, error analysis, and
evaluation of the most effective ways of improving
accuracy (e.g. identification of types of errors and
corrections that would maximize accuracy). As was
mentioned earlier, the calculations are done automatically
by macros, while error analysis and evaluation, for the
most part, must be done manually. One way that the
evaluation can be partially automated is that one of the
implemented macros allows errors to be classified
according to a code (e.g., errors in the gold standard vs.
errors in the automatic annotations) and performance
metrics recalculated based on these error codes.

5. Using feature extraction for machine
learning

Machine learning algorithms build and apply models to
extract pertinent information from sources such as a text
documents or images (Mitchell, 1997). In addition to the
machine learning algorithm, the process of defining of
ML feature set itself is a critical factor in building
accurate models of the information to be identified. In
general, extensive experimentation with a variety of
parameters is done to create models which perform with
the desired accuracy for a particular task.

The complexity of feature extraction varies, but it is
desirable to have a comprehensive mechanism to rapidly
extract them. CFE is such a mechanism for textual data
sources. In section 3 we described FESL and its semantics,

which can be used to specify which features should be
extracted. In this section we will describe some details as
they pertain to feature extraction within the machine
learning domain.

In particular, information from a surrounding context of a
specific term has to be taken into account, and
additionally, that context can be constrained by multiple
conditions specific to the task. Design of FESL takes such
considerations into account by allowing specification of
fairly complex and precise criteria for locating and
extracting particular pieces of information. For Word
Sense Disambiguation (WSD), in addition to the FESL
configuration, we developed a CAS consumer that
generates machine learning models and AEs that evaluate
the models within a classification task.

One of the steps in building models for machine learning

for textual data is generation of parameter sets from a text

corpus. The syntax and semantic of FESL, as previously

described, is sufficient for this task. The generated

parameter set contain individual machine learning

features (MLFs - not to be confused with UIMA features)

whose symbolic names are constructed from values

extracted according to FESL specification. In cases where

more then one UIMA feature value is extracted for a

particular MLF, the extracted values are concatenated to

produce a MLF symbolic name. For instance when

extracting size information from a context of a term to be

disambiguated we could produce an MLF that is

presented as “L1_Size_53_58_25_cm” which is a

combination of an annotation type that the information

was extracted from (Size), numeric extents for three

dimensions (53, 58, 25) and a measurement unit (cm). It

should be noted that prefix “L1” indicates that FESL

configuration specified to include a position of a MLF

relative to the term into the MLF name. A position is

characterized by direction and distance, thus “L1” should

be read as “first size annotation to the left from the term to

be disambiguated”. In cases where neither the distance

nor the direction is required to be a part of an MLF name it

will be prefixed with “X0”. Figure 7 shows a typical

content of an MLF file for WSD:

Figure 7: Sample of MLF file for WSD

6. Conclusion

In this paper, we proposed CFE (Common Feature

Extraction), a methodology and system for testing and

evaluating complex NLP applications executed within the

UIMA framework. The core of the system is a declarative

$ head set1-SizeDim-report.txt

18|24|4.0|cm|18|24|4.0|cm|gold/doc0.fve|medtas/doc0.fve

40|47|12.0|cm|40|47|12.0|cm|gold/doc0.fve|medtas/doc0.fve

106|118|6.5|cm|106|118|6.5|cm|gold/doc0.fve|medtas/doc0.fve

112|118|2.0|cm|112|118|2.0|cm|gold/doc0.fve|medtas/doc0.fve

249|261|3.8|cm|249|261|3.8|cm|gold/doc0.fve|medtas/doc0.fve

255|261|2.5|cm|255|261|2.5|cm|gold/doc0.fve|medtas/doc0.fve

275|281|5.0|cm|275|281|5.0|cm|gold/doc0.fve|medtas/doc0.fve

182|187|30|cm|182|187|30|cm|gold/doc10.fve|medtas/doc10.fve

211|216|20|cm|211|216|20|cm|gold/doc10.fve|medtas/doc10.fve

72|85|0.05|cm|72|85|0.05|cm|gold/doc100.fve|medtas/doc100.fv

e

$ cat ml_feature.txt

X0_Dimension_12_cm

X0_Size_45_50_12_cm

X0_Dimension_45_cm

X0_Size_4_6_5_cm

X0_Dimension_10_cm

X0_Size_20_35_10_cm

language FESL, and a UIMA component that processes

FESL specifications, using them to guide extraction of

data from a UIMA CAS in a completely generalized way,

and providing a method for subsequent processing to

format the output as needed for any downstream use. In

addition, CFE can be used to rapidly specify and extract

features to build models for machine learning algorithms.

The flexibility and ease-of-use of the system enables easy

experimentation with different models in the machine

learning space. CFE was used in quite different tasks:

experimenting with large numbers of feature sets to build

models for word sense disambiguation, evaluating a

sizable set of parameters for dictionary lookup and

evaluating the automatic filling of hierarchical knowledge

models. The comparison spreadsheets proved to be

invaluable in determining which algorithmic

improvements would result in the most substantial

improvements in precision and recall.

For a next step, a GUI for generating FESL configuration

files is planned. Other possible extensions are automating

the process of building refined models and automatically

evaluating them. The CFE system, the FESL declarative

language specification and the UIMA component to

interpret it will be released into Open Source as part of the

Apache UIMA incubator project.

7. Acknowledgements

We thank Rie K. Johnson for her support and Wei Guan

for experimenting with CFE.

8. References

Coden A.R., Savova G.K., Buntrock J. D., Sominsky I.L.,

Ogren P.V. , Chute C.G., de Groen P.C. (2007) Text

Analysis Integration into a Medical Information

Retrieval System: Challenges Related to Word Sense

Disambiguation: Medinfo 2007

Mitchell Tom. (1997). Machine Learning, McGraw Hill

Ogren, P.V. (2006). Knowtator: A Protégé plug-in for

annotated corpus construction. Rochester, MN.

Abstract for HLT-NAACL 2006.

Savova G.K., Coden A.R, Sominsky I.L., Johnson R.K.,

Ogren P.K., de Groen P.C. and Chute C.G. (2008). Word

Sense Disambiguation across Two Domains:

Biomedical Literature and Clinical Notes. To appear in

Journal of Biomedical Informatics

