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Abstract 

There is a vast quantity of information available in unstructured form, and the academic and scientific communities are increasingly 
looking into new techniques for extracting key elements - finding the structure in the unstructured. There are various ways to identify 
and extract this type of data; one leading system, which we will focus on, is the UIMA framework. Tasks that are often desirable to 
perform with such data after it has been identified are testing, correctness verification (evaluation) and model building for machine 
learning systems. In this paper, we describe a new Open Source tool, CFE, which has been designed to assist in both model building 
and evaluation projects. In our environment, we used CFE extensively for both building intricate machine learning models, running 
parameter-tuning experiments on UIMA components, and for evaluating a hand-annotated "gold standard" corpus against annotations 
automatically generated by a complex UIMA-based system. CFE provides a flexible, yet powerful language for working with the 
UIMA CAS - the results of UIMA processing - to enable the collection and classification of resultant data. We describe the syntax and 
semantics of the language, as well as some prototypical, real-world use cases for CFE. 

 

1. Introduction 

A wealth of information is captured in unstructured 

sources, ranging from text to streaming video. Analysis of 

these sources and extraction of knowledge from them is 

the goal of several frameworks currently in use within the 

research community. Two open source frameworks, the 

Gate system (http://www.gate.ac.uk) and the UIMA 

framework (http://incubator.apache.org/uima) have 

gained popularity. Although different in several aspects, 

both systems are modular, providing a mechanism for 

creating and executing a pipeline of components, known 

as “annotators”. These annotators implement various 

algorithms, each of which performs a specific analysis 

task. In this paper, we will focus on textual unstructured 

data sources. Hence, examples of annotators are natural 

language processing (NLP) components, such as 

part-of-speech taggers and parsers, rule based annotators 

or named entity annotators based on a variety of 

machine-learning algorithms.  

 

One of the challenges faced by all application developers 

is the testing and evaluation methodology. At a high level, 

the issues typically are regression testing and computation 

of accuracy metrics (e.g. precision/recall) against a “gold 

standard”. There are many tools available (e.g., 

Knowtator (http://knowtator.sourceforge.net) and Callisto 

(http://callisto.mitre.org)) for manually annotating 

documents, both for building machine learning training 

data and for creating “gold standard” corpora to be used as 

a reference set in testing. Evaluation and testing involves 

comparing annotations from different executions. Within 

the UIMA framework, this can be accomplished by 

extracting and comparing values of properties of UIMA 

annotations. These annotations can be arbitrarily complex. 

Extraction of these properties, called features, is also one 

of critical sub-tasks in creating machine learning models, 

as the feature vectors for building the models can be 

generated from features values of UIMA annotation. 

 

It should be noted that the term features, which is 

frequently used throughout this paper, is often used in 

different contexts. This term may refer to properties of 

UIMA annotation types or features that are used to 

build/evaluate models for machine learning algorithms. In 

this paper we will use the term features in relation to 

properties of UIMA annotations, while values of models 

for machine learning will be referred as ML features. 

 

What we needed, but were not able to discover, was a tool 

that could be configured to extract specific portions of a 

UIMA CAS (Common Analysis Structure: the 

object-based data structure in which UIMA represents 

objects, properties and values), specifically a set of 

features from some set of annotations based on user 

specified conditions. Traditionally, application-specific 

“CAS Consumers” have been written to satisfy this 

requirement. While this approach is reasonable for a fixed 

(or nearly fixed) set of output requirements, it can be 

unwieldy when experimenting with different sets of 

features to be extracted, an underlying annotation model 

is in flux, or if two or more differing (yet equivalent) 

models need to be extracted and aligned. For these 

reasons, we created a system to perform these kinds of 

extraction tasks, and which provides a powerful 

declarative extraction specification language. The same 

functionality is also needed to generate ML features to 

build models that underlie machine learning algorithms. 

To accomplish the final steps of evaluation tasks, we 

combine the generalized feature extractor with a system 

within which accuracy metrics can be computed. 

 

This paper is organized as follows. In section 2, we will 

describe the challenges of testing and evaluating UIMA 



pipelines in detail and discuss why other testing and 

evaluation environments proved to be inadequate. The 

feature extraction specification language (FESL) – is 

introduced in section 3. Section 4 will describe a 

real-word use case of FESL performance evaluation of an 

NLP system and section 5 will demonstrate how FESL 

can be used for machine learning related processing. We 

conclude in section 6 with proposing some potential 

extensions. 

 

2. Problem statement 

Evaluation of an information extraction system consists 

of several steps: defining a baseline against which to 

compare, defining the comparison criteria, extracting 

relevant information from sources (e.g., the baseline and 

the system to be evaluated) and subsequent comparative 

analysis.  

 

At a very general level, for a given textual document, a 

UIMA pipeline executes as shown in Figure 1.  

 

 

 

 

 

 

 

Figure 1: UIMA pipeline 

 

First, the document is read into a Common Analysis 

System (CAS) structure. Next, a set of analysis engines 

(AEs) mark up this piece of text, producing annotation 

objects, each of which is usually associated with a span of 

text in that document. Finally, one or more CAS 

Consumers read these annotations, perform any necessary 

processing, and then output results.  

 

 

 

 

 

 

 

 

 

Figure 2: An abstract view of typical UIMA annotation 

 

 

Each annotation (as shown for example in Figure 2) has 

properties associated with it. These properties contain 

specific information about the annotation, and as 

described in the introduction, are called features. 

Although the actual implementation of UIMA annotation 

objects is much more complex, this abstract view reflects 

information stored in these objects. The values of features 

are set by AEs and could either be modified or used 

without modification by subsequent annotation engines. 

In the example in Figure 2, the annotations are created 

with a dictionary lookup mechanism against a medical 

terminology, the attributes being the begin and end offsets 

of the relevant piece of text in the document that this 

annotation object is associated with, the semantic class of 

the named entity that is described by the annotation, the 

terminology name and code associated with it from that 

dictionary, and the actual text fragment. 

 

The first step in the process of evaluation is the definition 

of equality between two types to be compared. This 

necessitates a specification of a set of features from both 

the test and reference sets that should be compared, and 

the criteria for the comparison. In the next step, the 

annotations of those types and their significant properties 

are extracted. We developed the language FESL to specify 

the details of this extraction. FESL contains sufficient 

semantics for expressing rules for generation of 

parameters for building machine learning models. The 

extraction can be implemented as part of a standard 

UIMA component (AE or CAS consumer) depending on 

particular application requirements. For the evaluation 

environment, we developed a tool that extracts required 

feature values using a CAS consumer. It performs the 

extraction from two CAS structures that are to be 

compared and loads the extracted information into a 

Microsoft Excel spreadsheet, where the final stages of the 

evaluations are executed, as described in section 4. 

 

3. The Feature Extraction Specification 
Language (FESL) 

To enable a high degree of flexibility and extensive 

functionality, we defined an XML-based specification 

language that expresses semantic rules for feature 

extraction. One of the key concerns in defining the 

language was to avoid any dependency upon any 

particular application of the extraction process. This 

allows reusing the same extraction semantics for different 

purposes, whether for comparative analysis, subsequent 

algorithm execution or machine learning related 

processing. The feature extraction process is independent 

of the representation of the feature in the final output. This 

enables different output formats for different use cases, 

such as machine learning or testing. As a simple example, 

extracted values for comparison could contain spaces in 

their representation, while the same values extracted for 

machine learning could replace spaces with underscore 

characters. The component also defines a destination for 

output. For instance, the analysis engine (AE) could store 

the extracted features values within a CAS structure 

and/or a subsequent CAS Consumer might output them to 

an external source such as a disk file or database.  

 

The semantics of the specification language allow the 

definition of complex multi-parameter criteria that could 

identify a particular concept of interest. Such criteria 

allow locating the information expressed by any 

particular UIMA annotation and/or its features in a CAS 

structure, evaluating its value against one or more 
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conditions and recording the results in an internal 

depository for post processing. The criteria for such 

search can be specified by a combination of the following 

conditional expressions, written with FESL: 

a. type of an annotation object that contains the feature 

(in the general case, the feature does not have to be a 

property of the object, but should be accessible (i.e on 

the path) from its properties, as will be shown further 

down in this section)  

b. surrounding (enclosing) annotation type and relative 

location of the object within the enclosure, as 

indicated by the enclosingAnnotation attribute of the 

targetAnnotations XML tag, shown in Figure 3 (the 

significance of the enclosing annotation is explained 

below) 

c. path to the feature from the annotation object, as 

indicated by the featurePath attribute of the 

featureMatchers XML tags, as shown in Figure 3 

d. type and value of the feature itself; the feature value 

can be evaluated against different constraints 

expressed with FESL, as explained further down in 

this section 

e. values of any public Java get-style methods (methods 

that accept no parameters and return a value) 

implemented by the underlying class of the feature 

f. location of the object or the feature on a specific path 

(in cases when it is required to select/bypass 

annotations if they are features of certain annotation 

types) 

 

One of the key capabilities of FESL mentioned in items 

(a), (c) and (f) is an ability to specify a “path” to a feature 

from an annotation object. This path is a sequence of 

feature/method names, separated by the colon character, 

that mimics the sequence of Java method calls required, 

starting at the annotation object, in order to extract the 

feature value. It should be noted that, as UIMA 

annotations support arrays as feature types, FESL also 

provides the ability to extract values of features that are 

arrays or properties of annotations that are contained in 

arrays. Figure 5 contains a sample of how arrays are 

specified in FESL. In addition, special array semantics 

allow accessing elements of arrays by index and sorting 

them by offset before extraction. 

 

Some applications require performing an extraction of 

information relevant to a certain concept within sentence 

boundaries; other may extend the scope of the extraction 

to a paragraph. As mentioned in item (b) FESL has the 

ability to define such a scope by specifying an enclosing 

annotation as illustrated in Figure 3. 

 

Typically, values of UIMA annotation features are 

required to be extracted, but FESL also enables an 

extraction of non-UIMA properties of an object by using 

Java reflection mechanism. As specified by item (e), a 

value returned by any public method that has no 

arguments can be extracted and treated in the same way 

UIMA features are processed. As shown in Figure 3, 

getCoveredText is not a property of a UIMA Annotation 

type, but rather a method that this type defines. 

 

As previously mentioned in item (d) the feature values 

can be evaluated by conditional expressions stated in 

FESL. Particularly, the feature values can be evaluated 

whether they: 

i. are of  a certain type 

ii. belong to a specific set of  values (vocabulary), where 

the set of values, as shown on Figure 3, is defined by 

the enumFeatureValues XML tag 

iii. belong to a range of numeric values (inclusively or 

non-inclusively) as defined by the 

rangeFeatureValues XML tag 

iv. match certain bits of a bit mask (integer values only); 

the bitmaskFeatureValues XML tag will contain an 

integer bitmask along with a flag indicating whether 

the bitmask should exactly match to a feature value 

v. match a Java regular expression pattern, where the 

patternFeatureValues XML tag will contain a regular 

expression against which a feature value will be 

evaluated 

 

The evaluation of the search criteria can be specified in 

disjunctive normal form. Conjunctions are bounded by 

FESL groupFeatureMatcher XML tags and are referred to 

as groups.  Disjunction is implicit between multiple 

groups. This gives a powerful and flexible way of 

defining fairly complex criteria for a search of a required 

annotation and/or its value.  

 

It should be noted that the semantics of FESL, as shown in 

Figure 3, separate the concept and specification of target 

annotations (TA) from feature annotations (FA). Although 

they use identical semantic rules for specifying the search 

criteria, the ways the results of the search are processed 

are different. In particular, TAs are used to locate a 

concept, while FAs are the annotations upon which the 

extraction of features is performed. Target annotations are 

specified by the targetAnnotationMatcher XML tag, and 

feature annotations by the featureAnnotationMatcher 

XML tag. During the extraction process, a TA is located 

according to its search criteria. Once the TA is found, FAs 

that correspond to the TA, and match to their own search 

criteria, are located and feature values are extracted from 

them. Additionally, the semantics allow the extraction of 

features from multiple FAs, where each FA is located by 

its specific context relative to the TA. This is particularly 

useful in machine learning related processing where it is 

often required to select features from annotations that are 

located “near” another annotation with certain properties. 

 

Let us consider a quite common example taken from the 

machine learning domain: extracting “a bag of words 

within a window of size 5 centered around the word 

‘tumor’, excluding prepositions, conjunctions, articles 

and punctuation”. This could be understood as:  search for 

token-based annotations that corresponds to the word 

“tumor” (TA), and on every match consider the 5 nearest 



token-based annotations (FAs) on both sides, and 

excluding tokens that have associated part-of-speech tags 

indicating they are of one of the following categories: 

preposition, conjunction, article or punctuation, then 

extract the token that corresponds to that FA. The FESL 

semantics allow the unambiguous specification of criteria 

for such a search that is shown in Figure 3.  

 
<targetAnnotations className="BOW5Tumor" 
      enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="TokenAnnotation"> 
      <groupFeatureMatchers> 
         <featureMatchers featurePath="getCoveredText" featureTypeName="String"> 
            <enumFeatureValues> 
               <values>tumor</values> 
            </enumFeatureValues> 
         </featureMatchers> 
      </groupFeatureMatchers> 
   </targetAnnotationMatcher> 
   <featureAnnotationMatchers annotationTypeName="TokenAnnotation" 
         windowsizeLeft="5" windowsizeRight="5"> 
      <groupFeatureMatchers> 
         <featureMatchers featurePath="getCoveredText" featureTypeName="String"/> 
         <featureMatchers featurePath="pennTag" featureTypeName="String" 
               exclude="true"> 
            <enumFeatureValues caseSensitive="true"> 
               <values>IN</values> 
               <values>CC</values> 
               <values>DT</values> 
               <values>null</values> 
            </enumFeatureValues> 
         </featureMatchers> 
      </groupFeatureMatchers> 
   </featureAnnotationMatchers> 
</targetAnnotations> 
 

Figure 3: Bag of words extraction sample 
 

 

In this figure, short versions of UIMA annotation type 

names are shown for better readability. In the example, all 

extracted feature values are assigned a label 

“BOW5Tumor” (the value of the targetAnnotation’s 

“className” attribute). The label could be used in 

subsequent processing for the grouping of related results 

of extraction. The search is limited to token annotations 

(TokenAnnotation) within the same sentence 

(SentenceAnnotation), as specified by 

enclosingAnnotation attribute. Also, annotations of type 

TokenAnnotation have a property called pennTag that 

contains their part-of-speech tags. As illustrated in this 

example, the TokenAnnotation’s getCoveredText attribute 

is evaluated if, and only if, that same TokenAnnotation’s 

pennTag contains a value in the set specified under 

enumFeatureValues XML tag. 

 

 

 

 

 

 

 

 

 

Figure 4: Tokenized sentence 

 

To demonstrate how this FESL specification is applied 

consider the sentence from Figure 4. Each box on this 

figure corresponds to a single TokenAnnotation. These 

TokenAnnotations are all enclosed within a single 

SentenceAnnotation. Each TokenAnnotation contains a 

unique label, a text string covered by this annotation and a 

POS tag. According to the FESL specification in Figure 3, 

first a TA of a TokenAnnotation type with covered text 

tumor is searched for. Once it is found (T7), a search is 

performed for 5 FAs of a type TokenAnnotation to the left 

from T7. Only annotations whose POS tag is not IN, CC, 

DT or null are selected during the search. Thus the 

selected FAs will be T6, T4, T2 and T1. The same 

algorithm applied on the right context of T7 will produce 

a selection of FAs labeled T8, T9 and T10. As has been 

mentioned earlier, the search for FAs is limited by 

sentence boundaries. For this reason, even though a 

windowSizeRight and windowSizeLeft are specified with 

the value 5, fewer than five TokenAnnotations are actually 

selected. 

 

As opposed to this previous example for machine learning, 

in the case of feature extraction for a comparative analysis 

(e.g. evaluation), the TA and FA usually are the same. 

 

To demonstrate another set of capabilities of FESL, 

consider a case where it is necessary to process 

annotations that implement hierarchical models, (i.e., 

annotations containing other annotations, which may 

themselves contain annotations, etc.), with multiple levels 

of containment. The set of particular features that are 

required for extraction depend on where in the hierarchy 

the annotation is located and how it is related to the higher 

level annotation. As an example, we consider a case 

where it is required to distinguish between a dimension of 

a surgical margin and dimensions of a tumor. Figure 5 

illustrates these capabilities, where the requirement is to 

extract values of features of Dimension annotations that 

are constituents of Size annotations which in turn are 

properties of two different containing UIMA annotations: 

PrimaryTumor annotations and MetastaticTumor 

annotations. An additional requirement is to extract 

feature values of all other Dimension annotations under a 

separate label. Figure 5 illustrates how these complicated 

requirements can be specified with FESL: 
   

<targetAnnotations className="PrimaryTumorDimension"  
      enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="Size" fullPath="  
         PrimaryTumor:Size"/> 
   <featureAnnotationMatchers annotationTypeName="Size"  
         windowsizeInside="1"> 
      <groupFeatureMatchers> 
         <featureMatchers featurePath="Dimensions:toArray:Unit"  
               featureTypeName="String"/> 
         <featureMatchers featurePath="Dimensions:toArray:Extent" 
               featureTypeName="String"/> 
      </groupFeatureMatchers> 
   </featureAnnotationMatchers> 
</targetAnnotations> 
<targetAnnotations className="MetastaticTumorDimension"  
      enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="Size"  
         fullPath="PrimaryTumor:Size"/> 
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   <featureAnnotationMatchers annotationTypeName="Dimension"  
         windowsizeInside="3"> 
      <groupFeatureMatchers> 
         <featureMatchers featurePath="Unit" featureTypeName="String"/> 
         <featureMatchers featurePath="Extent" featureTypeName="String"/> 
      </groupFeatureMatchers> 
   </featureAnnotationMatchers> 
</targetAnnotations> 
<targetAnnotations className="Processed"  
      enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="Dimension" 
         fullPath="PrimaryTumor:Size:Dimensions:toArray"/> 
</targetAnnotations> 
<targetAnnotations className="Processed" 
        enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="Dimension" 
         fullPath="MetastaticTumor:Size:Dimensions:toArray"/> 
</targetAnnotations> 
<targetAnnotations className="OtherDimension" 
      enclosingAnnotation="SentenceAnnotation"> 
   <targetAnnotationMatcher annotationTypeName="Dimension"/> 
   <featureAnnotationMatchers annotationTypeName="Dimension"  
         windowsizeInside="1"> 
      <groupFeatureMatchers> 
         <featureMatchers featurePath="Unit" featureTypeName="String"/> 
         <featureMatchers featurePath="Extent" featureTypeName="String"/> 
      </groupFeatureMatchers> 
   </featureAnnotationMatchers> 
</targetAnnotations> 
 

Figure 5: Dimension extraction sample 

 

In the example above, a path to features of interest that are 

properties of feature annotations (FA) is specified by a 

sequence of properties/methods that are required in order 

to locate the final feature. For example: 

 

fullPath="PrimaryTumor:Size:Dimensions:toArray" 

 

specifies that PrimaryTumor contains a property called 

“Size” of a type that has an array of dimensions, and 

elements of that array should be of type Dimension as 

enforced by the annotationTypeName attribute. The first 

target annotation (TA) with a class label 

PrimaryTumorDimension is specified to be of a type Size 

and located on a path PrimaryTumor:Size. This 

specification ensures that only Size annotations that are 

constituents of PrimaryTumor annotations are matched. 

Once the TA is located, a feature annotation (FA) of the 

same type Size is searched for within the offset boundaries 

of the TA, which is enforced by windowsizeInside attribute. 

In this example, the value of windowsizeInside attribute is set 

to 1, guaranteeing that the same Size annotation that was 

previously selected as the TA will also be selected as the 

FA. The same rules apply to the processing of target 

аnnotations referenced by the 

MetastaticTumorDimension class label. Also in this 

example, a specification of an arbitrary label “Processed” 

with no FA specification should be noted. This illustrates 

the functional feature of FESL of excluding annotations 

(TAs) that have been matched during the previous search 

from further processing. Thus, dimensions matched for 

tumor sizes will not by considered during the search 

specified by criteria with label OtherDimension.  

 

 

 

4. Automated performance metrics 
evaluation  

Comparison of results produced by a pipeline of UIMA 

annotators to a “gold standard” or results of two different 

NLP systems is a frequent task, and should be automated. 

Creating a uniform methodology that would not just 

simplify the comparison, but would also facilitate the 

identification of common sources of errors and measure 

performance improvements gained by correcting these 

errors, is crucial in the NLP research and development 

process. 

 

Using FESL as an information extraction mechanism, we 

developed such a methodology that includes several 

steps: 

- defining the comparison criteria 

- extracting the relevant features 

- extracting relevant information from two sources to 

be compared into a spreadsheet-compatible format 

- comparative analysis of extracted information 

 

Only the first step has to be done manually; all others can 

be completely automated. 

4.1 Defining the comparison criteria 

The definition of the comparison criteria between two 
CAS structures is a critical step in the evaluation process. 
Each CAS structure can have its own type system, and the 
information represented by an individual type from one 
type’s system does not necessarily mirror the information 
stored in the corresponding type of a different type system. 
In fact, its constituent parts could be spread across 
multiple types. For complex types (types that include 
other types and are also a part of the comparison process), 
the relevant constituents to be used in the definition of 
equality must be defined. The result of this step is a set of 
FESL configuration files and set of custom comparison 
Excel spreadsheet templates (CST). The FESL 
configuration files specify the feature extraction, whereas 
the templates implement the comparison criteria.  
 
It is within the CST’s that the comparison between two 
CAS structures is executed. Information from both 
structures is loaded into a CST, and then the comparison is 
implemented with a set of macros that perform the 
following: 
- compare two corpora based on the user defined 

equality criteria 
- calculate performance metrics such as precision, 

recall and F-score.  
In addition they could include macros to take into account 
errors in the “gold standard” or estimate the performance 
gain by fixing a specific algorithm or implementation 
errors in automated annotators. 

4.2 Feature extraction 

Feature extraction is performed using a custom UIMA 
CAS consumer that uses a FESL configuration file and a 
CAS structure as its input and outputs delimited files with 
feature values. This CAS consumer contains code which 
interprets and executes the FESL configuration. A sample 



of such an implementation will be released into Open 
Source as part of the Apache UIMA incubator project. 
The fundamental semantic rules implemented by FESL 
were covered in section 3. Features are extracted from 
both sources that are being compared, resulting in two 
delimited files that are merged into a single file. This 
process uses the offsets of annotations within the 
document to guide the merger. The merged file can be 
easily imported into a custom Excel spreadsheet for 
further analysis, as discussed in section 4.1. In our 
environment, the creation of a spreadsheet from two 
delimited files is completely automated. Figure 6 shows 
typical content of a merged file with feature values 
extracted from two sources. We used a vertical bar (“|”) 
character as the value separator, since our data can never 
contain one—for use with other data sets, this can be 
customized accordingly: 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Merged results of feature extraction 

4.3 Comparative Analysis 

Comparative analysis usually includes several steps – 
calculation of performance metrics, error analysis, and 
evaluation of the most effective ways of improving 
accuracy (e.g. identification of types of errors and 
corrections that would maximize accuracy). As was 
mentioned earlier, the calculations are done automatically 
by macros, while error analysis and evaluation, for the 
most part, must be done manually. One way that the 
evaluation can be partially automated is that one of the 
implemented macros allows errors to be classified 
according to a code (e.g., errors in the gold standard vs. 
errors in the automatic annotations) and performance 
metrics recalculated based on these error codes. 
 

5. Using feature extraction for machine 
learning  

Machine learning algorithms build and apply models to 
extract pertinent information from sources such as a text 
documents or images (Mitchell, 1997). In addition to the 
machine learning algorithm, the process of defining of 
ML feature set itself is a critical factor in building 
accurate models of the information to be identified. In 
general, extensive experimentation with a variety of 
parameters is done to create models which perform with 
the desired accuracy for a particular task. 
 
The complexity of feature extraction varies, but it is 
desirable to have a comprehensive mechanism to rapidly 
extract them. CFE is such a mechanism for textual data 
sources. In section 3 we described FESL and its semantics, 

which can be used to specify which features should be 
extracted. In this section we will describe some details as 
they pertain to feature extraction within the machine 
learning domain. 
 
In particular, information from a surrounding context of a 
specific term has to be taken into account, and 
additionally, that context can be constrained by multiple 
conditions specific to the task. Design of FESL takes such 
considerations into account by allowing specification of 
fairly complex and precise criteria for locating and 
extracting particular pieces of information. For Word 
Sense Disambiguation (WSD), in addition to the FESL 
configuration, we developed a CAS consumer that 
generates machine learning models and AEs that evaluate 
the models within a classification task.  

 

One of the steps in building models for machine learning 

for textual data is generation of parameter sets from a text 

corpus. The syntax and semantic of FESL, as previously 

described, is sufficient for this task. The generated 

parameter set contain individual machine learning 

features (MLFs - not to be confused with UIMA features) 

whose symbolic names are constructed from values 

extracted according to FESL specification. In cases where 

more then one UIMA feature value is extracted for a 

particular MLF, the extracted values are concatenated to 

produce a MLF symbolic name. For instance when 

extracting size information from a context of a term to be 

disambiguated we could produce an MLF that is 

presented as “L1_Size_53_58_25_cm” which is a 

combination of an annotation type that the information 

was extracted from (Size), numeric extents for three 

dimensions (53, 58, 25) and a measurement unit (cm). It 

should be noted that prefix “L1” indicates that FESL 

configuration specified to include a position of a MLF 

relative to the term into the MLF name. A position is 

characterized by direction and distance, thus “L1” should 

be read as “first size annotation to the left from the term to 

be disambiguated”.  In cases where neither the distance 

nor the direction is required to be a part of an MLF name it 

will be prefixed with “X0”. Figure 7 shows a typical 

content of an MLF file for WSD: 

 

 

 

 

 

 

 

 

 

Figure 7: Sample of MLF file for WSD 

 

6. Conclusion 

In this paper, we proposed CFE (Common Feature 

Extraction), a methodology and system for testing and 

evaluating complex NLP applications executed within the 

UIMA framework. The core of the system is a declarative 

$ head  set1-SizeDim-report.txt 

18|24|4.0|cm|18|24|4.0|cm|gold/doc0.fve|medtas/doc0.fve 

40|47|12.0|cm|40|47|12.0|cm|gold/doc0.fve|medtas/doc0.fve 

106|118|6.5|cm|106|118|6.5|cm|gold/doc0.fve|medtas/doc0.fve 

112|118|2.0|cm|112|118|2.0|cm|gold/doc0.fve|medtas/doc0.fve 

249|261|3.8|cm|249|261|3.8|cm|gold/doc0.fve|medtas/doc0.fve 

255|261|2.5|cm|255|261|2.5|cm|gold/doc0.fve|medtas/doc0.fve 

275|281|5.0|cm|275|281|5.0|cm|gold/doc0.fve|medtas/doc0.fve 

182|187|30|cm|182|187|30|cm|gold/doc10.fve|medtas/doc10.fve 

211|216|20|cm|211|216|20|cm|gold/doc10.fve|medtas/doc10.fve 

72|85|0.05|cm|72|85|0.05|cm|gold/doc100.fve|medtas/doc100.fv

e 

$  cat ml_feature.txt 

X0_Dimension_12_cm 

X0_Size_45_50_12_cm 

X0_Dimension_45_cm 

X0_Size_4_6_5_cm 

X0_Dimension_10_cm 

X0_Size_20_35_10_cm 

 



language FESL, and a UIMA component that processes 

FESL specifications, using them to guide extraction of 

data from a UIMA CAS in a completely generalized way, 

and providing a method for subsequent processing to 

format the output as needed for any downstream use. In 

addition, CFE can be used to rapidly specify and extract 

features to build models for machine learning algorithms. 

The flexibility and ease-of-use of the system enables easy 

experimentation with different models in the machine 

learning space. CFE was used in quite different tasks: 

experimenting with large numbers of feature sets to build 

models for word sense disambiguation, evaluating a 

sizable set of parameters for dictionary lookup and 

evaluating the automatic filling of hierarchical knowledge 

models. The comparison spreadsheets proved to be 

invaluable in determining which algorithmic 

improvements would result in the most substantial 

improvements in precision and recall.  

 

For a next step, a GUI for generating FESL configuration 

files is planned. Other possible extensions are automating 

the process of building refined models and automatically 

evaluating them. The CFE system, the FESL declarative 

language specification and the UIMA component to 

interpret it will be released into Open Source as part of the 

Apache UIMA incubator project. 
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