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Abstract

We leverage two existing techniques—combined concrete
and symbolic execution, and the Tarantula algorithm for
fault localization—to create a uniquely powerful method
for finding and localizing faults. The method automatically
discovers inputs required to exercise paths through a pro-
gram, thus overcoming the limitation of many existing fault
localization techniques that a test suite be available up-
front. We show how the effectiveness of Tarantula can be
improved significantly by utilizing a correlation between ex-
ecuted statements and the output that they produce, in com-
bination with an oracle that detects where errors occur in
the output. We implemented these ideas in Apollo, a tool
for testing PHP applications, using an HTML validator as
our oracle. When applied to a number of open-source PHP
applications, Apollo found, and precisely localized a signif-
icant number of faults.

1 Introduction

Web applications are typically written in a combination
of several programming languages (e.g., JavaScript on the
client side, and PHP with embedded SQL commands on the
server side), and generate structured output in the form of
dynamically generated HTML pages that may refer to addi-
tional scripts to be executed. Since the application is built
using a complex mixture of different languages, program-
mers may inadvertently make mistakes and introduce faults
in the applications, resulting in web application crashes and
malformed dynamically-generated HTML pages that can
seriously impact usability. We present the first fully auto-
matic technique that automatically finds and localizes faults
in PHP web applications.

In previous work [3], we adapted the well-established
technique ofconcolic (combined concrete and symbolic)
execution [4, 7, 8, 19, 22] to web applications written in
PHP. In this approach, the application is first executed on an
empty input, and apath conditionis recorded that reflects

the control flow predicates in the application that have been
executed. By changing one of the predicates in the path con-
dition, and solving the resulting condition, additional inputs
can be obtained. Execution of the program on these inputs
will result in additional control flow paths being exercised.
This process is repeated until either we have sufficient cov-
erage of the statements in the application or until the time
budget is exhausted. For each execution, we determine if
an execution error occurs, or if the generated HTML page
is malformed, using an HTML validator as an oracle. We
implemented the technique in a tool calledApollo (version
1.0), and in previous experiments on 4 open-source PHP
applications,Apollo 1.0found a total of 214 failures [3].

The coverage achieved byApollo 1.0was limited, since
Apollo 1.0ignored changes to the state of the environment
by the executed scripts. That is, each script was executed
from asingleinitial environment state (usually a populated
database). However, the desired behavior of a PHP appli-
cation is often only achieved by a series of interactions be-
tween the user and the server (e.g., a minimum of five inputs
are needed from opening Amazon to buying a book). In this
paper we enhance concolic testing by supporting automatic
dynamic simulation of user interactions, and implement it
in a new version of our tool,Apollo 2.0. Apollo 2.0records
the environment state (database, sessions, cookies) afterex-
ecuting each script, analyzes the output of the script to de-
tect the possible user options that are available, and restores
the environment state before executing a new script based
on a detected user option.

More importantly, this paper also addresses the obvi-
ous next step of determiningwhere in the source code
changes need to be made in order to fix these failures.
This task is commonly referred to asfault localization,
and has been studied extensively in the literature (see, e.g.,
[5, 11–13, 18, 25]). In this paper we combine theTarantula
fault localization technique by Jones et al. [11,12] with con-
colic execution in order to perform fully automated failure
detection and localization for web applications written in
PHP. TheTarantula technique predicts statements that are



likely to be responsible for failures by computing for each
statement, the percentage of passing tests that execute it and
the percentage of failing tests that execute it. From this, a
suspiciousness ratingis computed for each executed state-
ment. Programmers are encouraged to examine the state-
ments in order of decreasing suspiciousness, and this has
been demonstrated to be quite effective in experiments with
the Siemens suite [10] of versions of small C programs into
which artificial faults have been seeded [11].

The use of concolic execution to obtain passing and fail-
ing runs overcomes the limitation ofTarantula and many
other existing fault localization techniques that a test suite
with passing and failing runs be available up-front. Fur-
thermore, the fact that PHP applications generate output
in a format (HTML) that can be validated using an oracle
(an HTML validator) enables us to enhance the effective-
ness of fault localization. This is accomplished by main-
taining, during program execution, anoutput mappingfrom
statements in the program to the fragments of output they
produce. This mapping, when combined with the report of
the oracle that indicates what parts of the program’s output
are incorrect, provides an additional source of information
about the possible location of the fault, and is used to fine-
tune the suspiciousness ratings provided byTarantula.

The contributions of this paper are as follows:

1. We demonstrate that theTarantula technique, which
was previously only evaluated on small programs from
the Siemens suite with artificially seeded faults [11,12],
is effective at localizing real faults in commonly used
PHP applications.

2. We present an approach for fault localization that lever-
ages concolic execution and theTarantulafault localiza-
tion method. Contrary to most previous methods, ours
does not require the availability of a test suite.

3. We implemented the technique inApollo 2.0, a fully
automated tool for finding faults in PHP applications.
This included the design of a new automated technique
for the simulation of user input and tracking the usage
of persistent state. An experimental evaluation using 6
PHP applications demonstrates that this significantly in-
creased coverage for 6 interactive PHP applications.

4. We usedApollo 2.0 to localize 49 faults in 3 of the
PHP applications and compared the effectiveness of: (i)
Tarantula, (ii) a fault localization method that only uses
the output mapping, and (iii) a technique that enhances
Tarantulausing the output mapping. We found that (iii)
significantly outperforms (i) and (ii).

2 Context: PHP and Web Applications

PHP is widely used for implementing Web applications,
in part due to its rich library support for network interac-
tion, HTTP processing and database access. A typical PHP

web application is a client-server application in which data
and control flows interactively between a server that runs
PHP scripts and a client, which is usually a web browser.
The PHP scripts that run on the server generate HTML that
includes forms to invoke other PHP scripts, passing them a
combination of user input and constant values taken from
the generated HTML.

This section briefly reviews the PHP scripting language,
and discusses the kinds of failures that may occur during the
execution of a PHP application, focusing on those aspects
of PHP that differ from mainstream languages.

2.1 The PHP Scripting Language

PHP is object-oriented, in the sense that it has classes, in-
terfaces, and dynamically dispatched methods with syntax
and semantics similar to that of Java. PHP also has features
of scripting languages, such as dynamic typing, and aneval

construct that interprets and executes a string value that was
computed at run-time as a code fragment. For example, the
following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value3 (names of PHP variables start with the
$ character). Other examples of the dynamic nature of PHP
are a predicate that checks whether a variable has been de-
fined, and class and function definitions that are statements
that may occur anywhere.

The code in Figures 1(b), 1(c) and 1(d) illustrates the fla-
vor of PHP. Note first of all that the code is an ad-hoc mix-
ture of PHP statements and HTML fragments. The PHP
code is delimited by<?php and ?> tokens. The use of
HTML in the middle of PHP indicates that HTML is gen-
erated as if it were in a print statement. Therequire state-
ments resemble the C#include directive in the sense that
it includes the code from another source file. However, the
C version is a pre-processor directive with a constant argu-
ment, whereas the PHP version is an ordinary statement in
which the file name is computed at runtime. Observe that
the dirname function—which returns the directory com-
ponent of a filename—is used in therequire statements,
as an example of including a file whose name is computed
at run-time. There are many similar cases where run-time
values are used, e.g.,switch labels need not be constant.
This degree of flexibility is prized by PHP developers for
enabling rapid application prototyping and development.
However, the flexibility can make the overall structure of
program hard to discern and it can make programs prone to
code quality problems.

2.2 Failures in PHP Programs

Our technique targets two types of failures that may oc-
cur during the execution of PHP applications and that can
be automatically detected:
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1 <html>

2 <head>Login</head>

3 <body>

4 <form name="login" action="exampleLogin.php">

5 <input type="text" name="user"/>

6 <input type="password" name="pw"/>

7 </form>

8 </body>

9 </html>

1 <?php

2 userTag = ’user’

3 pwTag = ’pw’;

4 typeTag = ’type’;

5 ?>

(a) index.php (b) constants.php

1 <HTML>

2 <?php

3 require( dirname(__FILENAME__).’/includes/constants.php’);

4

5 $user = $_REQUEST[ ’user’ ];

6 $pw = $_REQUEST[ ’pw’ ];

7

8 if (check_password($user, $pw) {

9 print "<HEAD>Login Successful</HEAD>\n";

10

11 $_SESSION[ $userTag] = $user;

12 $_SESSION[ $pwTag ] = $pw;

13 ?>

14 <BODY>

15 <FORM action="view.php">

16 <INPUT TYPE="text" NAME="topic"/>

17 </FORM>

18 </BODY>

19 <?php

20 if ($user == ’admin’) {

21 $_SESSION[ $typeTag ] = ’admin’;

22 }

23 else {

24 print "<HEAD>Login Failed</HEAD>\n";

25 }

26 ?>

27 </HTML>

1 <HTML>

2 <HEAD>Topic View</HEAD>

3 <?php

4 print "<BODY>\n";

5 if(check_password($_SESSION[$userTag], $_SESSION[$pwTag]) {

6 require( dirname(__FILENAME__).’/includes/constants.php’);

7

8 $type = $_SESSION[ $typeTag ];

9 $topic = $_REQUEST[ ’topic’ ];

10

11 if ($type == ’admin’) {

12 print "<H1>Admin ";

13 } else {

14 print "<H1>Normal ";

15 }

16 print "View of $topic</H1>\n";

17

18 /* code to print topic view... */

19

20 if ($type == ’admin’) {

21 print "<H2>Administrative Details\n";

22 /* code to print admin details... */

23 }

24 } else {

25 print "Please Log in\n";

26 }

27 print "</BODY>\n";

28 ?>

29 </HTML>
(c) login.php (d) view.php

Figure 1: Example PHP web application.

• execution failuresare caused by missing included files,
incorrect MySQL queries, and uncaught exceptions.
Such failures are easily identified as the PHP interpreter
generates an error message and halts execution. Less se-
rious execution failures, such as those caused by the use
of deprecated language constructs produce obtrusive er-
ror messages but do not halt execution.
• HTML failures involve situations in which the gener-

ated HTML page is not syntactically correct accord-
ing to an HTML validator. This may result in pages
being rendered incorrectly in a browser, it may cause
portability problems, and the resulting pages may ren-
der slower when browsers attempt to compensate for the
malformedness.

2.3 Fault Localization

Detecting failures only demonstrates that a fault exists;
the next step is to find thelocationof the fault that causes
each failure. There are at least two pieces of information
that might help:

1. For HTML failures, validators provide locations in the
HTML file that have problems, and one could correlate

malformed HTML fragments with the portions of the
scripts that produced them.

2. For both kinds of failures, one could look at runs that
do not exhibit the error, and record what set of state-
ments such runs execute. Comparing that set of state-
ments with the set of statements executed by the failing
run could provide clues as to the fault location. The
extensive literature on fault localization algorithms that
exploit such information, is discussed in Section 7.

2.4 PHP Example

Figure 1 shows an example of a PHP application that is
designed to illustrate the particular complexities of finding
and localizing faults in PHP web applications. In partic-
ular, the figure shows: anindex.php top-level script that
contains static HTML in Figure 1(a), a generic login script
login.php in Figure 1(c), and a skeleton of a data display
scriptview.php in Figure 1(d). The two PHP scripts rely
on a shared include fileconstants.php that defines some
standard constants, which is shown in in Figure 1(b).

These fragments are part of the client-server work flow in
a Web application: the user first sees theindex.php page
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of Figure 1(a) and enters credentials. The user-input cre-
dentials are processed by the script in Figure 1(c), which
generates a response page that allows the user to enter
further input—a topic—that in turn generates further pro-
cessing by the script in Figure 1(d). Note that the user
name and password that are entered by the user during
the execution oflogin.php are stored in special loca-
tions $ SESSION[ $userTag] and $ SESSION[ $pwTag
], respectively. Moreover, if the user is the administrator,
this fact is recorded similarly, in$ SESSION[ $typeTag
]. These locations illustrate how PHP handlessession
state, which is data that persists from one page to an-
other, typically for a particular interaction by a particular
user. Thus, the updates toSESSION in Figure 1(c) will be
seen by the code in Figure 1(d) when the user follows the
link to view.php in the HTML page that is returned by
login.php. Theview.php script uses this session infor-
mation to verify the username/password in line 5.

Our example program contains an error in the HTML
produced for the administrative details: theH2 tag that is
opened on line 21 of Figure 1(d) is not closed. While this
fault itself is trivial, finding it and localizing its cause is not.
Assume that testing starts (as an ordinary user would) by
entering credentials to the script in Figure 1(c). A tester
must then discover that setting$user to the value ‘admin’
results in the selection of a different branch that records the
user type ‘admin’ in the session state (see lines 20–22 in
login.php). After that, a tester would have to enter a topic
in the form generated by the login script, and would then
proceed to Figure 1(d) with the appropriate session state,
which will finally generate HTML exhibiting the fault as
is shown in Figure 2(a). Thus, finding the fault requires a
careful selection of inputs to a series of interactive scripts,
and tracking updates to session state during the execution of
these scripts.

The next step is to determine the cause of the malformed
HTML. Consider the two sources of information suggested
in Section 2.3:

• Our validator produces the output shown in Figure 2(c)
for this fault, indicating that lines 5 and 6 in the mal-
formed HTML of Figure 2(a) are associated with the
HTML failure. These lines correspond to theH2 head-
ing and the following/BODY tags, respectively. By cor-
relating this information with the output mapping shown
in Figure 2(b), we can determine that lines 21 and 27 in
view.php produced these lines of output.
• The second source of information is obtained by com-

paring the statements executed in passing and failing
runs. The HTML failure only occurs when$type is
equal to ‘admin’, and the difference between passing
and failing runs therefore consists of all code that is
guarded by the two conditionals on lines 11 and 20 in
view.php. Consequently, we may conclude that the

statements on lines 12, 14, and 21 are suspect.

Neither of these estimates is precise, since the fault is
clearly in the printing of theH2 line itself (line 21). We
can, however, combine the results of the validator and the
sets of statements. Specifically, we could observe that the
printing of /BODY on line 27 inview.php occurs in both
passing and failing executions, and is therefore unlikely to
be the location of the fault. Furthermore, we can observe
that lines 12 and 14, each of which is only executed in one of
the executions, is not associated with the failure according
to the information we received from the oracle. Therefore,
we can conclude that the fault is most closely associated
with line 21 inview.php.

3 Concolic Execution in the Presence of In-
teractive User Input

Our technique for finding failures in PHP applications is
a variation onconcolic(combined concrete and symbolic)
execution [4, 7, 8, 19, 22], a well-established test gener-
ation technique. The basic idea behind this technique is
to execute an application on some initial (e.g., empty or
randomly-chosen) input, and then on additional inputs ob-
tained by solving constraints derived from exercised control
flow paths. Failures that occur during these executions are
reported to the user.

In a previous paper [3], we described how this technique
can be adapted to the domain of dynamic web applications
written in PHP. The resultingApollo 2.0tool takes into ac-
count language constructs that are specific to PHP, uses an
oracle to validate the output, and supports database inter-
action. However, we previously relied on amanual solu-
tion for the challenging problem of interactive user input
that we already described in Section 2: PHP applications
typically generate HTML pages that contain user-interface
features such as buttons that—when selected by the user—
result in the execution of additional PHP scripts. Model-
ing such user input is important, because coverage of the
application will typically remain very low otherwise. In
our previous paper [3], we relied on a manually performed
program transformation that translates interactive user in-
put into additional script parameters. This manual step has
several limitations:

• It was performed only once before the analysis, and thus
did not take into account user input options that are cre-
ated dynamically by the web application.
• More importantly, whileApollo 1.0was able to execute

additional parts of the program, it did so without any
knowledge of parameters that are transferred from one
executable component to the next by persisting them in
the environment, or sending them as part of the call.
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1 <HTML>

2 <HEAD>Topic View</HEAD>

3 <BODY>

4 <H1>Admin View of A topic</H1>

...

5 <H2>Administrative Details

...

6 </BODY>

7 </HTML>

HTML line PHP lines in 1(d)
1 1
2 2
3 4
4 12, 16
5 21
6 27
7 29(a) HTML output (b) output mapping

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing

end tag, improper nesting of elements, or use of an element where it is not allowed

Line 5, character 1: start tag was here (c) Output of WDG Validator

Figure 2: (a) HTML produced by the script of Figure 1(d).(b) Output mapping constructed during execution.(c) Part of
output of WDG Validator on the HTML of Figure 2(a)
.

In this paper, we replace this manual step with an automatic
method that (i) tracks changes to the state of the environ-
ment (i.e., session state, cookies, and the database) and (ii)
performs an “on the fly” analysis of the HTML output pro-
duced by PHP scripts to determine what user options it con-
tains, with their associated PHP scripts. By determining the
state of the environment as it exists when an HTML page
is produced, we can determine the environment in which
additional scripts are executed as a result of user interac-
tion. This is important because a script is much more likely
to perform complex behavior when executed in the correct
context (environment). For example, if the web application
does not record in the environment that a user is logged in,
most scripts will present only vanilla information and ter-
minate quickly (e.g., when the condition in line 5 of Fig-
ure 1(d) is false). The new automated approach has in-
creased coverage and the number of faults found, and we
envision it could be utilized in other tools as well (e.g., in
the context of the work by Wassermann et al. [22], who use
concolic execution to find SQL injection vulnerabilities in
PHP applications).

3.1 Algorithm

Figure 3 shows pseudo-code for our algorithm, which
extends the algorithm ofApollo 1.0[3] by tracking the state
of the environment, and automatically discovering addi-
tional scripts based on an analysis of available user options.
The inputs to the algorithm are: a programP composed
of any number of executable components (PHP scripts), the
initial state of the environment before executing any compo-
nent (e.g, database), a set of executable components reach-
able from the initial stateC, and an output oracleO. The
output of the algorithm is a set of bug reportsB for the pro-
gramP, according toO. Each bug report contains the iden-
tifying information about the failure (message, and generat-
ing program part), and the set of tests exposing the failure.

The algorithm uses a queue of tests. Each test contains
the program component to execute, apath constraintwhich
is a conjunction of conditions on the program’s input param-

eters, and the environment state before the execution. The
queue is initialized with one test for each of the components
executable from the initial state, and the empty path con-
straint (lines 3– 5). The algorithm uses a constraint solver
to find a concrete input that satisfies a path constraint from
the selected test (lines 7–9). The algorithm restores the en-
vironment state (line 11), then executes the program compo-
nent concretely on the input and checks if failures occurred
(lines 12–14). Any detected failure is merged into the cor-
responding bug report (lines 15–16). Next, the program is
executed symbolically on the same input (line 17). The re-
sult of symbolic execution is a path constraint,

∧n
i=1 ci , that

is fulfilled if the given path is executed (here, the path con-
straint reflects the path that was just executed). The algo-
rithm then creates new test inputs by solving modified ver-
sions of the path constraint (lines 18–21) as follows. For
each prefix of the path constraint, the algorithm negates the
last conjunct (line 19). A solution, if it exists, to such an
alternative path constraint corresponds to an input that will
execute the program along a prefix of the original execu-
tion path, and then take the opposite branch. Finally, the
algorithm analyzes the output to find new transitions from
the new environment state (line 22). Each transition is ex-
pressed as a pair of path constraints and an executable com-
ponent. The algorithm then adds new tests for each transi-
tion that was not explored before (line 23– 27).

3.2 Example

We will now illustrate the algorithm of Figure 3 using the
example application of Figure 1. The inputs to the algorithm
are: P is the code from Figure 1, the initial state of the
environment is empty,C is the script in Figure 1(c), and
O is the WDG HTML validator1. The algorithm begins on
lines 3–5 by initializing the work queue with one item: the
script of Figure 1(a) with an empty path constraint and an
empty initial environment.

iteration 1. The first iteration of the outer loop (lines 6–27)

1http://htmlhelp.com/tools/validator/
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parameters: P Program,S0 Initial environment state,C Components
executable fromS0, O oracle;

P,C : setOf(Executable component);
result : Bug reportsB;
B : setOf(〈failure,setOf(T test)〉);
T : 〈 Executable component, Path constraint, Environment State〉

B ≔ ∅;1
pcQueue≔ emptyQueue();2
foreachcomponent inC do3

test≔ 〈component,emptyPathConstraint(),S0〉;4
enqueue(pcQueue, test);5

while not empty(pcQueue) and not timeExpired()do6
test≔ dequeue(pcQueue);7
component≔ test.component;8
input≔ solve(test.pathConstraint);9
if input, ⊥ then10

restoreState(test.state);11
output≔ executeConcrete(component, input);12
newState≔ getCurrentState();13
failures≔ getFailures(O,output);14
foreach f in failuresdo15

merge〈f , test〉 intoB;16
c1 ∧ . . . ∧ cn ≔ executeSymbolic(component, input);17
foreach i = 1,. . . ,ndo18

newPC≔ c1 ∧ . . . ∧ ci−1 ∧ ¬ci ;19
newTest≔ 〈test.component,newPC, test.state〉;20
enqueue(pcQueue, newTest);21

〈PC1, component1〉 ∧ . . . ∧ 〈PCm, componentm〉 ≔22
analyzeOutput(output);
foreach i = 1,. . . ,mdo23

newPC≔ c1 ∧ . . . ∧ cn ∧ PCi ;24
newTest≔ 〈componenti ,newPC, newState〉;25
if pcQueue not contains newTestthen26

enqueue(pcQueue, newTest);27
return B;28

Figure 3: The failure detection algorithm. Thesolveaux-
iliary function uses the constraint solver to find an input
satisfying the path constraint, or returns⊥ if no satis-
fying input exists. The auxiliary functionsrestoreState
andgetCurrentStatecreate a given environment state, or
load the current state of the environment respectively. The
analyzeOutputauxiliary function performs an analysis of
the output to extract possible transitions from the current
environment state. The output of the algorithm is a set
of bug reports, each reports a failure and the set of tests
exposing that failure.

removes that item from the queue (line 7), uses an empty in-
put to satisfy the empty path constraint (line 9), restores the
empty initial state (line 11), and executes the script (line12).

No failures are observed, so the next few lines (line 13–
16) do nothing. The call toexecuteSymbolicon line 17 re-
turns an empty path constraint, so the functionanalyzeOut-
put on line 22 is executed next, and returns one user option;
〈login.php,∅,∅〉 for executinglogin.phpwith no input,
and the empty state. This test is added to the queue (line 27).

iteration 2-5. The next iteration of the top-level loop de-
queues the new work item, and executeslogin.php with
empty input, and empty state. No failures are found. The
call to executeSymbolicin line 17 returns a path constraint
user , admin ∧ user , reg, indicating that the call to
check password on line 8 in Figure 1(c) returned false2.

2For simplicity, we omit the details of this function. It compares user

Given this, the loop at lines 18–21 will generate several new
work items for the same script with the following path con-
straints:user , admin ∧ user = reg, anduser = admin which
are obtained by negating the previous path constraint. The
loop on lines 23—27 is not entered, because no user in-
put options are found. After several similar iterations, two
inputs are discovered:user = admin ∧ pw = admin, and
user = reg∧pw = reg. These corresponds to alternate control
flows in which thecheck password test succeeds.

iteration 6-7. The next iteration of the top-level loop de-
queues an item that allows thecheck password call to suc-
ceed (assume it selecteduser = reg...). Once again, no fail-
ures are observed, but now the session state withuserand
pw set is recorded at line 13. Also, this timeanalyzeOutput
(line 22) finds the link to the script in Figure 1(d), and so
the loop at line 23–27 adds one item to the queue, executing
view.php with the current session state.

The next iteration of the top-level loop dequeues one
work item. Assume that it takes the last one described
above. Thus, it executes the script in Figure 1(d) with a
session that definesuserandpwbut nottype. Hence, it pro-
duces an execution with no errors.

iteration 8-9. The next loop iteration takes that last work
item, containing a user and password pair for which the
call to check password succeeds, with the user name as
‘admin’. Once again, no failures occur, but now the ses-
sion state withuser, pw andtypeset is recorded at line 13.
This time, there are no new inputs to be derived from the
path constraint, since all prefixes have been covered already.
Once again, parsing the output finds the link to the script in
Figure 1(d) and adds a work item to the queue, but with
a different session state (in this case, the session state also
includes a value fortype). The resulting execution of the
script in Figure 1(d) with the session state that includestype
results in an HTML failure.

There are a few other things that happen, but at this point
the reader should note that we have observed one successful
and one failing execution for the script in Figure 1(d). We
will discuss in Section 4.5 how this information will be used
for fault localization.

4 Fault Localization

In this section, we first review theTarantulafault local-
ization technique. We then present an alternative technique
that is based on the output mapping and positional informa-
tion obtained from an oracle. Finally, we present a tech-
nique that combines the former with the latter.

and password to some constants ‘admin’ and ‘reg’.
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4.1 Tarantula

Jones et al. [11, 12] presentedTarantula, a fault local-
ization technique that associates with each statement asus-
piciousness ratingthat indicates the likelihood that it con-
tributes to a failure. The suspiciousness ratingStar(l) for a
statement that occurs at line3 l is a number between 0 and 1
that is defined as follows:

Star(l) =
Failed(l)/TotalFailed

Passed(l)/TotalPassed+ Failed(l)/TotalFailed

wherePassed(l) is the number of passing executions that
execute statementl, Failed(l) is the number of failing ex-
ecutions that execute statementl, TotalPassedis the total
number of passing test cases, andTotalFailed is the total
number of failing test cases. After suspiciousness ratings
have been computed, each of the executed statements is as-
signed arank, in order of decreasing suspiciousness. Ranks
do not need to be unique: The rank of a statementl reflects
the maximum number of statements that would have to be
examined if statements are examined in order of decreas-
ing suspiciousness, and ifl were the last statement of that
particular suspiciousness level chosen for examination.

Jones and Harrold [11] conducted a detailed empirical
evaluation in which they applyTarantulato faulty versions
of the Siemens suite [10], and compare its effectiveness to
that of several other fault localization techniques (see Sec-
tion 7). The Siemens suite consists of several versions of
small C programs into which faults have been seeded arti-
ficially. Since the location of these faults is given, one can
evaluate the effectiveness of a fault localization technique
by measuring its ability to identify these faults. In the fault
localization literature, this is customarily done by reporting
the percentage of the program that needs to be examined
by the programmer, assuming statements are inspected in
decreasing order of suspiciousness [1,5,11,18].

Specifically, Jones and Harrold compute for each failing
test run ascore(in the range of 0%-100%) that indicates the
percentage of the application’s executable statements that
the programmer need not examine in order to find the fault.
This score is computed by determining a set of examined
statements that initially contains only the statement(s) at
rank 1. Then, iteratively, statements at the next higher rank
are added to this set until at least one of the faulty state-
ments is included. The score is now computed by dividing
the number of statements in the set by the total number of
executed statements. Using this approach, Jones and Har-
rold found that 13.9% of the failing test runs were scored
in the 99-100% range, meaning that for this percentage of
the failing tests, the programmer needs to examine less than
1% of the program’s executed statements to find the fault.
They also report that for an additional 41.8% of the failing

3We use line numbers to identify statements, because that enables us to
present the different fault localization techniques in a uniform manner.

tests, the programmer needs to inspect less than 10% of the
executed statements.

4.2 Fault Localization using the Output
Mapping

An oracle that determines whether or not a failure occurs
can often provide precise information about which parts of
the output are associated with that failure. For instance, an
HTML validator will typically report the location of mal-
formed HTML. Such information can be used as a heuris-
tic to localize faults in the program, provided that we can
determine which portions of the program produced which
portions of the output. The basic idea is that the code that
produced the erroneous output is a good place to start look-
ing for the causative fault. This is formalized as follows.
Assume we have the following two functions:

• On( f ) returns output line numbers reported by the oracle
O for failure f , and
• Pn(o) returns the set of program parts of the source pro-

gram responsible for output lineo

Given these two functions, we define a suspiciousness rat-
ing Smap(l) of the statement at linel for failure f as follows:

Smap(l) =

{

1 if l ∈
⋃

o∈On( f ) Pn(o)
0 otherwise

Note that this is a “binary” rating: program parts are either
highly suspicious, or not suspicious at all.

4.3 Combined Technique

TheTarantulaalgorithm presented in Section 4.1 local-
izes failures based on how often statements are executed in
failing and passing executions. However, in the web appli-
cations domain, a significant number of lines are executed
in bothcases, or only in failing executions. Thus, the fault
localization technique presented in Section 4.2 can be used
to enhance theTarantularesults by giving a higher rank to
statements that are blamed by bothTarantulaand the map-
ping technique. More formally, we define a new suspicious-
ness ratingScomb(l) for the statement at linel as follows:

Scomb(l) =

{

1.1 if Smap(l) = 1∧ Star(l) > 0.5
Star(S) otherwise

Informally, we give the suspiciousness rating 1.1 to any
statement that is identified as highly suspicious by the or-
acle, and for whichTarantula indicates that the given line
is positively correlated with the fault (indicated by the fact
thatTarantula’s suspiciousness rating is greater than 0.5).

7



line(s) executes Star(l) Smap(l) Scomb(l)

4,6,8,9,11 both 0.5 0.0 0.5
12 failing only 1.0 0.0 1.0
13 passing only 0.0 0.0 0.0
14 passing only 0.0 0.0 0.0
16, 20 both 0.5 0.0 0.5
21 failing only 1.0 1.0 1.1
27 both 0.5 1.0 0.5
28,29 both 0.5 0.0 0.5

Figure 4: Suspiciousness ratings for lines in the PHP script
of Figure 1(d), according to three techniques. The columns
of the table show, for each linel, when it is executed (in
the passing run, in the failing run, or in both runs), and the
suspiciousness ratingsStar(l), Smap(l), andScomb(l).

4.4 Generating Inputs for Tarantula

As we discussed previously,Tarantulacomputes suspi-
ciousness ratings using a formula that considers how many
times a statement is executed by passing and failing execu-
tions. Butwhichpassing executions and failing executions
should be supplied as inputs toTarantula?

To answer this question, assume that the algorithm of
Section 3 has exposed a number of failing executions. This
set can be partitioned into subsets that pertain to the same
failure. Here, two failures are assumed to be “equivalent”
(i.e., due to the same fault) if the oracle produces the same
message for them, and if the same program constructs are
correlated with these messages according to the output map-
ping. In Section 6, we will conduct separate fault localiza-
tion experiments for each subset of equivalent failing exe-
cutions.

This leaves the question of what set of passing execu-
tions we should supply toTarantula as inputs along with
these failing executions. We currently consider two options:

1. We supplyall passing executions that were identified by
the algorithm of Section 3.

2. We supply arandomly selected subsetof 10% of the
passing tests that were identified by the algorithm of
Section 3.

Note that the above strategies can be applied to both the
Tarantulaand the combined algorithms.

4.5 Example

As described in Section 3.2, the test input generation al-
gorithm produced two runs of the script in Figure 1(d): one
that exposed an HTML error and one that did not. Figure 4
shows the suspiciousness ratingsStar(l), Smap(l), andScomb(l)
that are computed for each linel in the PHP script in Fig-
ure 1(d), according to the three fault localization techniques
under consideration.

To understand how theTarantularatings are computed,
consider statements that are only executed in the passing

run. Such statements obtain a suspiciousness rating of
0/(1+0) = 0.0. By similar reasoning, statements that are
only executed in the failing run obtain a suspiciousness rat-
ing of 1/(0+1) = 1.0, and statements that are executed in
both cases obtain a suspiciousness rating of 1/(1+1) = 0.5.

The suspiciousness ratings computed by the mapping-
based technique can be understood by examining the output
of the validator in Figure 2(c), along with the HTML in Fig-
ure 2(a) and the mapping from lines of HTML to the lines of
PHP that produced them in Figure 2(b). The validator says
the error is in line 5 or 6 of the output, and those were pro-
duced by lines 21 and 27 in the script of Figure 1(d). Conse-
quently, the suspiciousness ratings for lines 21 and 27 is 1.0,
and all other lines are rated 0.0 by the mapping-based tech-
nique. The suspiciousness ratings for the combined tech-
nique follow directly from its definition in Section 4.3.

As can be seen from the table, theTarantula technique
identifies lines 12 and 21 as the most suspicious ones,
and the output mapping based technique identifies lines 21
and 27 as such. In other words, each of these fault localiza-
tion techniques—when used in isolation—reports one non-
faulty statement as being highly suspicious. However, the
combined technique correctly identifies only line 21 as the
faulty statement.

5 Implementation

We extended theApollo 1.0tool [3] with the algorithm
for combined concrete and symbolic execution in the pres-
ence of interactive user input and persistent session state
that was presented in Section 3, and with the fault localiza-
tion algorithm that was presented in Section 4. This section
discusses some key features of the implementation.

interactive user input and session state.As was men-
tioned in Section 3, it is important to determine what PHP
scripts the user may invoke by selecting buttons, check-
boxes, etc. in the HTML output of previously executed
scripts. To this end,Apollo 2.0automatically extracts the
available user options from the HTML output. Each option
contains the script to execute, along with any parameters
(with default value if supplied) for that script.Apollo 2.0
also analyzes recursive static HTML documents that can be
called from the dynamic HTML output, i.e.Apollo 2.0tra-
verses hyperlinks in the generated dynamic HTML that link
to other HTML documents on the same site. To avoid re-
dundant exploration of similar executions,Apollo 2.0per-
form state matching (performed implicitly in Line 26 of
Figure 3) by not adding already-explored transitions.

The use of session state allows a PHP application to
store user supplied information on the server for retrieval
by other scripts. We enhanced the PHP interpreter to record
when input parameters are stored in session state, to enable
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program version #files total LOC PHP LOC

faqforge 1.3.2 19 1712 734
webchess 0.9.0 24 4718 2226
schoolmate 1.5.4 63 8181 4263
phpsysinfo 2.5.3 73 16634 7745
timeclock 1.0.3 62 20792 13879
phpBB2 2.0.21 78 34987 16993

Figure 5: Characteristics of subject programs. The columns
of the table indicate (i) the version of the program we used,
(ii) the number of source files with PHP scripts, (iii) the
total number of lines in each program, and the number of
lines with executable PHP code.

Apollo 2.0 to track constraints on input parameters in all
scripts that use them.

web server integration. Apollo 1.0[3] only supported the
execution of PHP scripts using the PHP command line inter-
preter. However, dynamic web applications often depend on
information supplied by a web-server, and some PHP con-
structs are simply ignored by the command line interpreter
(e.g.,header). Apollo 2.0supports execution through the
Apache web-server in addition to the stand-alone command
line executor. A developer can useApollo 2.0 to silently
analyze the execution and record any failure found while
manually using the subject program on an Apache server.

6 Evaluation

This evaluation aims to answer two questions:

Q1. What is the effect of automatically simulating user in-
put interaction on coverage and on the number of fail-
ures exposed?

Q2. How effective are the three fault localization tech-
niques presented in Section 4 in practice?

6.1 Subject Programs

For the evaluation, we selected six open-source PHP pro-
grams (fromhttp://sourceforge.net), for which the charac-
teristics are shown in Figure 5.faqforge is a tool for creat-
ing and managing documents.webchessis an online chess
game.schoolmateis an PHP/MySQL solution for admin-
istering elementary, middle, and high schools.phpsysinfo
displays system information, e.g., uptime, CPU, memory,
etc. timeclock is a web-based timeclock system.phpBB2
is an open source discussion forum.

6.2 Coverage/Failures Detected

We ranApollo with and without the simulation of user
interaction for 10 minutes on each subject program. This
time limit was chosen arbitrarily, but it allows each strategy
to generate hundreds of inputs and we have no reason to

program strategy %cov failures
exec. HTML total

faqforge No Simulated UI 86.8 9 55 64
Simulated UI 92.4 9 63 72

webchess No Simulated UI 37.8 20 7 27
Simulated UI 39.4 26 8 34

schoolmate No Simulated UI 65.0 35 60 95
Simulated UI 65.0 35 61 96

phpsysinfo No Simulated UI 55.5 3 1 4
Simulated UI 55.7 6 2 8

timeclock No Simulated UI 3.2 2 30 32
Simulated UI 14.1 2 117 119

phpBB2 No Simulated UI 11.4 3 1 4
Simulated UI 28.0 5 19 24

Figure 6: Experimental results for 10-minute test generation
runs. The table presents results each of theNo Simulated
UI and theSimulated UI strategies. The%cov column lists
the line coverage achieved by the generated inputs. The next
three columns show the number of execution errors, HTML
failures, and the total number of failures.

believe that the results would be much affected by a different
time limit. This time budget includes all experimental tasks.
We measured line coverage, i.e., the ratio of the number of
executed lines to the total number of lines with executable
PHP code that was shown in Figure 5. Furthermore, we
classified the discovered failures as execution failures and
HTML failures, as was discussed previously in Section 2.2.

Figure 6 tabulates the line coverage results and observed
failureson the subject programs for each of the two test input
generation strategies (with simulated user interaction and
without). Although the effect varies, it is clear that the user
input simulation allowsApollo to achieve better results on
all subject programs. For example, onphpsysinfo the ef-
fect on coverage is marginal (55.7% vs. 55.5%) because
this program is not interactive. On the other hand, forph-
pBB2 the effect is significant for both the coverage obtained
(28.0% vs. 11.4%), and for the number of failures detected
(24 instead of 4), and similarly fortimeclock because these
applications only performs most operations when starting in
the correct state (e.g., when the user is logged in).

6.3 Localizing Faults

To answer the second research question, we created a
localized faults database by manually localizing up to 20
faults in 3 of the subject programs (webchesscontained
only 9 faults that caused the 34 failures reported previ-
ously). We then applied the three fault localization meth-
ods that were discussed in Section 4 to each failuref : (i)
our implementation ofTarantula (see Section 4.1), (ii) a
fault localization technique that uses only the output map-
ping (see Section 4.2), and (iii) a fault localization technique
that combinesTarantulawith the output mapping (see Sec-
tion 4.3). As mentioned in Section 4.4, we tried two sets of
inputs for each technique: (a) the set of executions expos-
ing f in combination withall passing executions, and (b)
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program failing /passing Tarantula mapping combined

webchess
All 19.00 25.12 6.94
Random 24.35 25.12 7.20

schoolmate
All 29.94 15.06 5.09
Random 30.21 15.06 5.10

timeclock
All 16.09 5.12 2.24
Random 21.54 5.12 2.41

Figure 7: Average percentage of the program a developer
would need to inspect in order to locate the failures using
different fault localization techniques. Thefailing /passing
column indicates the method that was used to select the
sets of passing and failing tests (one of All, Random) used
for the fault localization.Tarantulais the fault localization
technique described in 4.1.mapping is the fault localiza-
tion based only on the output mapping (see Section 4.2).
combined is the combined fault localization technique de-
scribed in 4.3.

the set of executions exposingf in combination with 10%
of randomly selected passing executions.

We measure the effectiveness of these fault localization
algorithms as the minimal number of statements that need
to be inspected until all the faulty lines are detected, as-
suming that statements are examined in order of decreasing
suspiciousness (Section 4.1). Figure 7 tabulates the results.

The results show that thecombined technique is clearly
superior to each of theTarantulaand mapping-based tech-
niques that it builds upon. Forwebchess, the programmer
would need to inspect 19.00% of the statements on aver-
age whenTarantulais supplied with all passing executions,
25.12% when the mapping-based technique is used, but
only 6.94% using the combined technique. Using the same
set of executions, the programmer needs to inspect 29.94%
of schoolmate’s statements usingTarantula, 15.06% using
the output mapping, and only 5.09% using the combined
technique. Similar results are obtained for timeclock. The
use of a randomly selected subset of the passing tests yields
slightly worse results for each of the techniques.

7 Related Work

This section only presents a summary of the literature
on fault localization, and in particular on fault localization
techniques that use information from passing and failing ex-
ecutions to predict the likelihood that statements are respon-
sible for failures. For a review of the literature on concolic
execution, we refer the reader to our previous paper [3].

Early work on fault localization relied on the use of pro-
gram slicing [21]. Lyle and Weiser [16] introduceprogram
dicing, a method for combining the information of different
program slices. The basic idea is that, when a program com-
putes a correct value for variablex and an incorrect value for
variabley, the fault is likely to be found in statements that
are in the slice w.r.t.y, but not in the slice w.r.t.x. Varia-

tions on this idea technique were later explored by Pan and
Spafford [17], and by Agrawal et al. [2].

In the spirit of this early work, Renieris and Reiss [18]
useset-unionandset-intersectionmethods for fault local-
ization, that they compare with theirnearest neighborfault
localization technique (discussed below). The set-union
technique computes the union of all statements executed by
passing test cases and subtracts these from the set of state-
ments executed by a failing test case. The resulting set con-
tains the suspicious statements that the programmer should
explore first. In the event that this report does not contain
the faulty statement, Renieris and Reiss propose an SDG-
based ranking technique in which additional statements are
considered based on their distance to previously reported
statements along edges in a System Dependence Graph [9].
The set-intersection technique identifies statements thatare
executed by all passing test cases, but not by the failing test
case, and attempts to address errors of omission, where the
failing test case neglects to execute a statement.

The nearest neighborsfault localization technique by
Renieris and Reiss [18] assumes the existence of a failing
test case and many passing test cases. The technique se-
lects the passing test case whose execution spectrum most
closely resembles that of the failing test case according to
one of two distance criteria4, and reports the set of state-
ments that are executed by the failing test case but not by the
selected passing test case. In the event that the report does
not contain the faulty statement, Renieris and Reiss use the
SDG-based ranking technique mentioned above to identify
additional statements that should be explored next.Nearest
Neighborwas evaluated on the Siemens suite [10], a col-
lection of small C programs for which faulty versions and
a large number of test cases are available, and was found to
be superior to theset-unionandset-intersectiontechniques.

Cleve and Zeller [5,25] present a fault-localization tech-
nique based on Delta Debugging [24], a binary search and
minimization technique. Delta debugging is first employed
to identify the variables responsible for a failure, by selec-
tively introducing values that occur in the program state of
a failing run into the state obtained during a passing run,
and observing whether or not the failure reoccurs. Then,
delta debugging is applied again in order to identifycause
transitions, i.e., points in the program where one variable
ceases to be the cause for a failure, and where another vari-
able starts being the origin of that failure. Cleve and Zeller
report finding a real failure in GCC using the technique, and
also evaluate their work on the Siemens suite.

Dallmeier et al. [6] present a fault localization technique
in which differences between method call sequences that

4One similarity measure defines the distance between two test cases
as the cardinality of the symmetric set difference between the statements
that they cover. The other measure considers the differences in the relative
execution frequencies.
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occur in passing and failing executions are used to iden-
tify suspicious statements. They evaluate the technique on
buggy versions of the NanoXML Java application.

Two recent papers by Jones and Harrold [11] and by
Abreu et al. [1] present empirical evaluations of several fault
localization techniques, including several of the techniques
discussed above, using the Siemens suite. Yu et al. [23]
evaluated the sensitivity of several of the fault localization
techniques discussed above to test suite reduction. Here,
the goal was to determine to what extent the effectiveness
of fault localization techniques was reduced as a result of
applying several test-suite minimization techniques.

Other fault localization techniques analyze statistical
correlations between control flow predicates and failures
(see, e.g., [14,15]), and correlations between changes made
by programmers and test failures [20].

In this paper, we apply theTarantula technique in a
different domain (open-source web applications written in
PHP instead of C programs), and adapted it to take into ac-
count positional information that we obtained from the PHP
interpreter. Instead of using artificially seeded faults such as
the ones in the Siemens suite, we study real faults that were
exposed by ourApollo 2.0tool. Moreover, we do not use an
existing test suite but rely onApollo 2.0to generate a large
number of (passing and failing) test cases instead.

8 Conclusions and Future Work

We have presented an approach for failure detection and
fault localization thats leverages concolic execution [4,7,
8, 19, 22] and theTarantulaalgorithm [11, 12] to automat-
ically find and localize failures in PHP web applications.
Our algorithm adapts concolic execution to the domain of
web applications by performing dynamic simulation of user
interaction in different environment states.

Unlike previous fault localization methods, ours does not
require a test-suite with passing and failing test cases to be
available up front. We use an output mapping between PHP
statements and the output they produce in combination with
positional information about HTML errors obtained from
the oracle to improve onTarantula’s fault localization.

We implemented the technique inApollo 2.0. In exper-
iments on 6 open-source PHP applications, we found that
our new automatic method for simulating user input sig-
nificantly improved line coverage and the number of fail-
ures found. We also found that a fault localization tech-
nique thatcombines Tarantulawith information retrieved
from the output mapping is significantly more precise than
eitherTarantulaor the output mappings alone.

The main topic for future work is to explore the use of
concolic execution to generate passing test cases that are
highly similar to failing test cases, to further improve the
effectiveness ofTarantula.
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