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Abstract the control flow predicates in the application that have been
executed. By changing one of the predicates in the path con-
We leverage two existing techniqgues—combined concretedition, and solving the resulting condition, additiongbirs
and symbolic execution, and the Tarantula algorithm for can be obtained. Execution of the program on these inputs
fault localization—to create a uniquely powerful method will result in additional control flow paths being exercised
for finding and localizing faults. The method automatically This process is repeated until either we hav@sient cov-
discovers inputs required to exercise paths through a pro- erage of the statements in the application or until the time
gram, thus overcoming the limitation of many existing fault budget is exhausted. For each execution, we determine if
localization techniques that a test suite be available up- an execution error occurs, or if the generated HTML page
front. We show how theffectiveness of Tarantula can be is malformed, using an HTML validator as an oracle. We
improved significantly by utilizing a correlation between e  implemented the technique in a tool callagollo (version
ecuted statements and the output that they produce, in com1.0), and in previous experiments on 4 open-source PHP
bination with an oracle that detects where errors occur in applicationsApollo 1.0found a total of 214 failures [3].
the output. We implemented these ideas in Apollo, a tool  The coverage achieved #pollo 1.0was limited, since
for testing PHP applications, using an HTML validator as  Apollo 1.0ignored changes to the state of the environment
our oracle. When applied to a number of open-source PHP by the executed scripts. That is, each script was executed
applications, Apollo found, and precisely localized a $ign  from asingleinitial environment state (usually a populated

icant number of faults. database). However, the desired behavior of a PHP appli-
cation is often only achieved by a series of interactions be-
1 Introduction tween the user and the server (e.g., a minimum of five inputs

are needed from opening Amazon to buying a book). In this

Web applications are typically written in a combination paper we enhance concolic testing by supporting automatic
of several programming languages (e.g., JavaScript on thedynamic simulation of user interactions, and implement it
client side, and PHP with embedded SQL commands on thein a new version of our tooApollo 2.0 Apollo 2.0records
server side), and generate structured output in the form ofthe environment state (database, sessions, cookiesgaiter
dynamically generated HTML pages that may refer to addi- ecuting each script, analyzes the output of the script to de-
tional scripts to be executed. Since the application istbuil tect the possible user options that are available, andressto
using a complex mixture of ffierent languages, program- the environment state before executing a new script based
mers may inadvertently make mistakes and introduce faultson a detected user option.
in the applications, resulting in web application crashes a More importantly, this paper also addresses the obvi-
malformed dynamically-generated HTML pages that can ous next step of determininghere in the source code
seriously impact usability. We present the first fully auto- changes need to be made in order to fix these failures.
matic technique that automatically finds and localizest§&aul This task is commonly referred to dault localization
in PHP web applications. and has been studied extensively in the literature (seg, e.g

In previous work [3], we adapted the well-established [5,11-13, 18, 25]). In this paper we combine ffaantula
technigue ofconcolic (combined concrete and symbolic) fault localization technique by Jones et al. [11,12] with-co
execution [4, 7, 8, 19, 22] to web applications written in colic execution in order to perform fully automated failure
PHP. In this approach, the application is first executed on andetection and localization for web applications written in
empty input, and gath conditionis recorded that reflects PHP. TheTarantulatechnique predicts statements that are



likely to be responsible for failures by computing for each web application is a client-server application in whichadat

statement, the percentage of passing tests that execatk it a and control flows interactively between a server that runs

the percentage of failing tests that execute it. From this, aPHP scripts and a client, which is usually a web browser.

suspiciousness ratinig computed for each executed state- The PHP scripts that run on the server generate HTML that

ment. Programmers are encouraged to examine the statencludes forms to invoke other PHP scripts, passing them a

ments in order of decreasing suspiciousness, and this hasombination of user input and constant values taken from

been demonstrated to be quitéeetive in experiments with  the generated HTML.

the Siemens suite [10] of versions of small C programs into  This section briefly reviews the PHP scripting language,

which artificial faults have been seeded [11]. and discusses the kinds of failures that may occur during the
The use of concolic execution to obtain passing and fail- execution of a PHP application, focusing on those aspects

ing runs overcomes the limitation darantulaand many  of PHP that difer from mainstream languages.

other existing fault localization techniques that a testesu

with passing and failing runs be available up-front. Fur- 2.1 The PHP Scripting Language

thermore, the fact that PHP applications generate output

in a format (HTML) that can be validated using an oracle . : ;

HTML validator) enables us to enhance thietive- terfaces, an_d dy_na_mlcally dispatched methods with syntax
(an - o ; . and semantics similar to that of Java. PHP also has features
ness of fault localization. This is accomplished by main- ¢ scripting languages, such as dynamic typing, anevan
taining, during program execution, antput mappindrom  construct that interprets and executes a string value thst w
statements in the program to the fragments of output theycomputed at run-time as a code fragment. For example, the
produce. This mapping, when combined with the report of following code fragment:

the oracle that indicates what parts of the program’s output
are incorrect, provides an additional source of infornmatio
about the possible location of the fault, and is used to fine-  prints the valug (names of PHP variables start with the
tune the suspiciousness ratings providedasantula $ character). Other examples of the dynamic nature of PHP
The contributions of this paper are as follows: are a predicate that checks whether a variable has been de-
fined, and class and function definitions that are statements
that may occur anywhere.
The code in Figures 1(b), 1(c) and 1(d) illustrates the fla-
: . - . vor of PHP. Note first of all that the code is an ad-hoc mix-
IS e(fectlvg at_ localizing real faults in commonly used ture of PHP statements and HTML fragments. The PHP
PHP applications. L code is delimited by?php and 7> tokens. The use of
2. We present an apprqach for fault localization th&}t lever- HTML in the middle of PHP indicates that HTML is gen-
ages concolic execution and tf@rantqlafault localiza- erated as if it were in a print statement. Tieguire state-
tion method. Qontrary tq mgst previous mgthods, OUTS ments resemble the £include directive in the sense that
does_ not require the avallabl_llty of a test suite. it includes the code from another source file. However, the
3. We implemented the technique Apallo 2. a fully C version is a pre-processor directive with a constant argu-

_?_Lrjfomatleg tSOIth(; fmdmgffaults in PHP apg)llca::ops. ment, whereas the PHP version is an ordinary statement in
IS Included the design of a new automated technique,, ich the file name is computed at runtime. Observe that

for the .simulation of user inp_ut and tracking_the USa9€ the dirname function—which returns the directory com-
of perS|st(_ant _state. An experimental eyaIL_Jatl_o_n using 6 ponent of a filename—is used in tlrequire statements,
PHP applications demonstrates_ that this 5|gn_|f|cz_;mtly N" as an example of including a file whose name is computed
creased coverage for 6 interactive PHP applications. at run-time. There are many similar cases where run-time

4 F\/)\ﬁpusedlApo!lo 2.0tg localize :9h§ul_ts in 3 off.th_e values are used, e.gswitch labels need not be constant.
app IC.E.itIOI’]S and compare tigsetiveness of: (i) This degree of flexibility is prized by PHP developers for
Tarantulg (||)afqult Iocallz§tlon meth'od that only uses enabling rapid application prototyping and development.
the output mapping, and (iil) a technique that enhancesHowever, the flexibility can make the overall structure of

T_ara_n_tulausing the output _mappiq_g. We found that (iii) program hard to discern and it can make programs prone to
significantly outperforms (i) and (ii). code quality problems

PHP is object-oriented, in the sense that it has classes, in-

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

1. We demonstrate that thEarantula technique, which
was previously only evaluated on small programs from
the Siemens suite with artificially seeded faults [11,12],

2 Context: PHP and Web Applications 2.2 Failures in PHP Programs

PHP is widely used for implementing Web applications, Our technique targets two types of failures that may oc-
in part due to its rich library support for network interac- cur during the execution of PHP applications and that can
tion, HTTP processing and database access. A typical PHFbe automatically detected:



1 <html> 1 <?php
2 <head>Login</head> 2 userTag = ’user’
3 <body> 3 pwTag = 'pw’;
4 <form name="login" action="exampleLogin.php"> 4 typeTag = ’type’;
5 <input type="text" name="user"/> 5 7>
6 <input type="password" name="pw"/>
7 </form>
8 </body> .
o </htnls (a) index.php ’(b) constants.php
1 <HTML> 1 <HTML>
2 <?php 2 <HEAD>Topic View</HEAD>
3 require( dirname(__FILENAME__).’/includes/constants.php’); 3 <?php
4 4 print "<BODY>\n";
5 $user = $_REQUEST[ ’user’ ]; 5 if(check_password($_SESSION[$userTag], $_SESSION[$pwTag]l) {
6 $pw = $_REQUEST[ ’pw’ 1; 6 require( dirname(__FILENAME__).’/includes/constants.php’);
7 7
8 if (check_password($user, $pw) { 8 $type = $_SESSION[ $typeTag 1;
9 print "<HEAD>Login Successful</HEAD>\n"; 9 $topic = $_REQUEST[ ’topic’ ];
10 10
11 $_SESSION[ $userTag] = S$user; 11 if ($type == ’admin’) {
12 $_SESSION[ $pwTag ] = $pw; 12 print "<H1>Admin ";
13 7> 13 } else {
14 <BODY> 14 print "<H1>Normal ";
15 <FORM action="view.php"> 15 }
16 <INPUT TYPE="text" NAME="topic"/> 16 print "View of $topic</HI>\n";
17 </FORM> 17
18 </BODY> 18 /* code to print topic view... */
19 <?php 19
20 if ($user == ’admin’) { 20 if ($type == ’admin’) {
21 $_SESSION[ $typeTag ] = ’admin’; 21 print "<H2>Administrative Details\n";
22 } 22 /* code to print admin details... */
23 else { 23 }
24 print "<HEAD>Login Failed</HEAD>\n"; 24 } else {
25 } 25 print "Please Log in\n";
26 7> 26 }
27 </HTML> 27 print "</BODY>\n";
. 28 7> .
(c) login.php 2 </HTHL> (d) view.php
Figure 1: Example PHP web application.
e execution failuresre caused by missing included files, malformed HTML fragments with the portions of the
incorrect MySQL queries, and uncaught exceptions. scripts that produced them.
Such failures are easily identified as the PHP interpreter 2. For both kinds of failures, one could look at runs that
generates an error message and halts execution. Less se- do not exhibit the error, and record what set of state-
rious execution failures, such as those caused by the use ments such runs execute. Comparing that set of state-
of deprecated language constructs produce obtrusive er- ments with the set of statements executed by the failing
ror messages but do not halt execution. run could provide clues as to the fault location. The
e HTML failuresinvolve situations in which the gener- extensive literature on fault localization algorithmsttha
ated HTML page is not syntactically correct accord- exploit such information, is discussed in Section 7.
ing to an HTML validator. This may result in pages
being _r_endered incorrectly in a brqwser, it may cause 9 4  PHP Example
portability problems, and the resulting pages may ren-
der slower when browsers attempt to compensate for the Figure 1 shows an example of a PHP application that is
malformedness. designed to illustrate the particular complexities of firgdi
.. and localizing faults in PHP web applications. In partic-
2.3 Fault Localization ular, the figure shows: aindex.php top-level script that

Detecting failures only demonstrates that a fault exists;
the next step is to find thiecation of the fault that causes
each failure. There are at least two pieces of information
that might help:

1. For HTML failures, validators provide locations in the

contains static HTML in Figure 1(a), a generic login script
login.php in Figure 1(c), and a skeleton of a data display
scriptview.php in Figure 1(d). The two PHP scripts rely
on a shared include fileonstants. php that defines some
standard constants, which is shown in in Figure 1(b).

These fragments are part of the client-server work flow in
HTML file that have problems, and one could correlate a Web application: the user first sees ilmelex.php page



of Figure 1(a) and enters credentials. The user-input cre- statements on lines 12, 14, and 21 are suspect.

dentials are processed by the script in Figure 1(c), which

generates a response page that allows the user to enter Neither of these estimates is precise, since the fault is

further input—a topic—that in turn generates further pro- clearly in the printing of thei2 line itself (line 21). We

cessing by the script in Figure 1(d). Note that the user can, however, combine the results of the validator and the

name and password that are entered by the user duringets of statements. Specifically, we could observe that the

the execution oflogin.php are stored in special loca- printing of /BODY on line 27 inview.php occurs in both

tions $_SESSION[ S$userTag] and $_SESSION[ $pwTag passing and failing executions, and is therefore unlikely t

1, respectively. Moreover, if the user is the administrator, be the location of the fault. Furthermore, we can observe

this fact is recorded similarly, i§_SESSION[ $typeTag thatlines 12 and 14, each of which is only executed in one of

1. These locations illustrate how PHP handksssion  the executions, is not associated with the failure accgrdin

state which is data that persists from one page to an- to the information we received from the oracle. Therefore,

other, typically for a particular interaction by a partiaul ~ we can conclude that the fault is most closely associated

user. Thus, the updates tBESSION in Figure 1(c) will be ~ Wwith line 21 inview.php.

seen by the code in Figure 1(d) when the user follows the

link to view.php in the HTML page that is returned by 3 coneglic Execution in the Presence of In-

login.php. Theview.php script uses this session infor- .

mation to verify the usernanfgassword in line 5. teractive User Input
Our example program contains an error in the HTML

produced for the administrative details: the tag that is o ) ' -
opened on line 21 of Figure 1(d) is not closed. While this a variation onconcolic(combined concrete and symbolic)

faultitself is trivial, finding it and localizing its causehot. ~ €X€cution [4,7, 8, 19, 22], a well-established test gener-

Assume that testing starts (as an ordinary user would) by&tion technique. The basic idea behind this technique is
entering credentials to the script in Figure 1(c). A tester [© €xecute an application on some initial (e.g., empty or
must then discover that settisgser to the value admin’ randomly-chosen) input, and then on additional inputs ob-
results in the selection of aféiérent branch that records the {@in€d by solving constraints derived from exercised aintr
user type admin’ in the session state (see lines 20-22 in flow paths. Failures that occur during these executions are
login.php). After that, a tester would have to enter a topic €POrted to the user. _ _ _
in the form generated by the login script, and would then !N @ previous paper [3], we described how this technique
proceed to Figure 1(d) with the appropriate session state can be adapted to the domain of dynamic web applications
which will finally generate HTML exhibiting the fault as  Written in PHP. The resultingpollo 2.0tool takes into ac-
is shown in Figure 2(a). Thus, finding the fault requires a count Iangque constructs that are specific to PHP, uses an
careful selection of inputs to a series of interactive gsrip  °oracle to validate the output, and supports database inter-
and tracking updates to session state during the exectition o@ction. However, we previously relied onnaanual solu-
these scripts. tion for the challenging problem of interactive user input
The next step is to determine the cause of the malformedthat we already described in Section 2: PHP applications

HTML. Consider the two sources of information suggested typically generate HTML pages that contain user-interface
in Section 2.3 features such as buttons that—when selected by the user—

result in the execution of additional PHP scripts. Model-
e Our validator produces the output shown in Figure 2(c) ing such user input is important, because coverage of the
for this fault, indicating that lines 5 and 6 in the mal- application will typically remain very low otherwise. In
formed HTML of Figure 2(a) are associated with the our previous paper [3], we relied on a manually performed
HTML failure. These lines correspond to tH2 head-  program transformation that translates interactive user i
ing and the following/BODY tags, respectively. By cor-  put into additional script parameters. This manual step has
relating this information with the output mapping shown several limitations:
in Figure 2(b), we can determine that lines 21 and 27 in
view.php produced these lines of output. e |twas performed only once before the analysis, and thus
e The second source of information is obtained by com- did not take into account user input options that are cre-
paring the statements executed in passing and failing  ated dynamically by the web application.
runs. The HTML failure only occurs whefitype is e More importantly, whileApollo 1.0was able to execute
equal to admin’, and the diference between passing additional parts of the program, it did so without any
and failing runs therefore consists of all code that is knowledge of parameters that are transferred from one
guarded by the two conditionals on lines 11 and 20 in executable component to the next by persisting them in
view.php. Consequently, we may conclude that the the environment, or sending them as part of the call.

Our technique for finding failures in PHP applications is



<HTML>

<HEAD>Topic View</HEAD>
<BODY>

<H1>Admin View of A topic</H1>

HTML line | PHP lines in 1(d)

B W N

<H2>Administrative Details

o]

~No U wWNR
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=
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o

</BODY> ] (a) HTML output

</HTML>

29 ’ (b) output mappinnj

~

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing

end tag, improper nesting of elements, or use of an element where it is not allowed .
Line 5, character 1: start tag was here (c) Output of WDG Validato

Figure 2:(a) HTML produced by the script of Figure 1(dfb) Output mapping constructed during executido) Part of
output of WDG Validator on the HTML of Figure 2(a)

In this paper, we replace this manual step with an automaticeters, and the environment state before the execution. The
method that (i) tracks changes to the state of the environ-queue is initialized with one test for each of the components
ment (i.e., session state, cookies, and the database)ipnd (iexecutable from the initial state, and the empty path con-
performs an “on the fly” analysis of the HTML output pro- straint (lines 3— 5). The algorithm uses a constraint solver
duced by PHP scripts to determine what user options it con-to find a concrete input that satisfies a path constraint from
tains, with their associated PHP scripts. By determinireg th the selected test (lines 7-9). The algorithm restores the en
state of the environment as it exists when an HTML page vironment state (line 11), then executes the program compo-
is produced, we can determine the environment in which nent concretely on the input and checks if failures occurred
additional scripts are executed as a result of user interac{lines 12-14). Any detected failure is merged into the cor-
tion. This is important because a script is much more likely responding bug report (lines 15-16). Next, the program is
to perform complex behavior when executed in the correct executed symbolically on the same input (line 17). The re-
context (environment). For example, if the web application sult of symbolic execution is a path constraing,_, ¢, that
does not record in the environment that a user is logged in,is fulfilled if the given path is executed (here, the path con-
most scripts will present only vanilla information and ter- straint reflects the path that was just executed). The algo-
minate quickly (e.g., when the condition in line 5 of Fig- rithm then creates new test inputs by solving modified ver-
ure 1(d) is false). The new automated approach has in-sions of the path constraint (lines 18-21) as follows. For
creased coverage and the number of faults found, and weeach prefix of the path constraint, the algorithm negates the
envision it could be utilized in other tools as well (e.g., in last conjunct (line 19). A solution, if it exists, to such an
the context of the work by Wassermann et al. [22], who use alternative path constraint corresponds to an input thit wi
concolic execution to find SQL injection vulnerabilities in  execute the program along a prefix of the original execu-

PHP applications). tion path, and then take the opposite branch. Finally, the
algorithm analyzes the output to find new transitions from
3.1 Algorithm the new environment state (line 22). Each transition is ex-

pressed as a pair of path constraints and an executable com-

Figure 3 shows pseudo-code for our algorithm, which ponent. The algorithm then adds new tests for each transi-
extends the algorithm @fpollo 1.0[3] by tracking the state  tion that was not explored before (line 23— 27).
of the environment, and automatically discovering addi-
tional scripts based on an analysis of available user option 3.2 Example
The inputs to the algorithm are: a programcomposed
of any number of executable components (PHP scripts), the We will now illustrate the algorithm of Figure 3 using the
initial state of the environment before executing any compo example application of Figure 1. The inputs to the algorithm
nent (e.g, database), a set of executable components reactdre: # is the code from Figure 1, the initial state of the
able from the initial state, and an output oracl®. The  environment is emptyC is the script in Figure 1(c), and
output of the algorithm is a set of bug repag$or the pro- O is the WDG HTML validatot. The algorithm begins on
gram®, according ta). Each bug report contains the iden- lines 3-5 by initializing the work queue with one item: the
tifying information about the failure (message, and geRera script of Figure 1(a) with an empty path constraint and an
ing program part), and the set of tests exposing the failure. €mpty initial environment.

The algorithm uses a queue of tests. Each test containge a4ion 1. The first iteration of the outer loop (lines 6-27)
the program component to executgath constraintvhich
is a conjunction of conditions on the program'’s input param-  httpy/htmlhelp.contoolgvalidatoy




parameters # Program,Sy Initial environment state; Components
executable fronSy, O oracle;
P,C : setOf{Executable component);
result : Bug reportsB;
B : setOf((failure, setOf(7 test));
7 : ( Executable component, Path constraint, Environment State
B =2,
pcQueue= emptyQueug;
foreach component irC do
test:= (componentemptyPathConstrai(), So);
enqueugpcQueuetes);
while not empty(pcQueue) and not timeExpiredig)
test:= dequeu@cQueug
component= testcomponent
input := solvetestpathConstrainy;
if input# L then
restoreStat@eststate;
output:= executeConcrefeomponentinput);
newState= getCurrentStatg;
failures := getFailureO, outpu);
foreachf in failuresdo
merge(f, tesh into B;
C1 A ... A Cp = executeSymbolicomponentinput);
foreachi =1,...,ndo
newPC:=Ci A...ACi-1 A =Cj;
newTest= (testcomponentnewPCteststate;
enqueugcQueuenewTesk
(PCy,component A ... A (PCy, component) =
analyzeOutpybutpud;
foreachi =1,...,mdo
newPC:=c3 A... ACy APG;
newTest= (component newPCnewStatg
if pcQueue not contains newTéisen
enqueu@cQueuenewTest,

O©CoO~NO O~ WNER

28 return 8;

Figure 3: The failure detection algorithm. Thelveaux-
iliary function uses the constraint solver to find an input
satisfying the path constraint, or returnsif no satis-
fying input exists. The auxiliary functionsestoreState
and getCurrentStatereate a given environment state, or
load the current state of the environment respectively. The
analyzeOutpuauxiliary function performs an analysis of
the output to extract possible transitions from the current
environment state. The output of the algorithm is a set
of bug reports, each reports a failure and the set of tests
exposing that failure.

removes that item from the queue (line 7), uses an empty in-

put to satisfy the empty path constraint (line 9), restohnes t
empty initial state (line 11), and executes the script (lifg

No failures are observed, so the next few lines (line 13—
16) do nothing. The call texecuteSymbolion line 17 re-
turns an empty path constraint, so the funcéolyzeOut-

puton line 22 is executed next, and returns one user option;

(login.php, @, @) for executinglogin. php with no input,

Given this, the loop at lines 18-21 will generate several new
work items for the same script with the following path con-
straintS:user # admin A user = reg, aNduser = admin Which

are obtained by negating the previous path constraint. The
loop on lines 23—27 is not entered, because no user in-
put options are found. After several similar iterationsg tw
inputs are discovereduser = admin A pw = admin, and

user = regApw = reg. These corresponds to alternate control
flows in which thecheck_password test succeeds.

iteration 6-7. The next iteration of the top-level loop de-
gueues an item that allows thkeck_password call to suc-
ceed (assume it selectegkr = reg...). Once again, no fail-
ures are observed, but now the session state ugdnand

pw set is recorded at line 13. Also, this tirmaalyzeOutput
(line 22) finds the link to the script in Figure 1(d), and so
the loop at line 23-27 adds one item to the queue, executing
view.php with the current session state.

The next iteration of the top-level loop dequeues one
work item. Assume that it takes the last one described
above. Thus, it executes the script in Figure 1(d) with a
session that defineserandpw but nottype Hence, it pro-
duces an execution with no errors.

iteration 8-9. The next loop iteration takes that last work
item, containing a user and password pair for which the
call to check_password succeeds, with the user name as
‘admin’. Once again, no failures occur, but now the ses-
sion state withuser, pw andtypeset is recorded at line 13.
This time, there are no new inputs to be derived from the
path constraint, since all prefixes have been covered airead
Once again, parsing the output finds the link to the script in
Figure 1(d) and adds a work item to the queue, but with
a different session state (in this case, the session state also
includes a value fotypg. The resulting execution of the
script in Figure 1(d) with the session state that inclugips
results in an HTML failure.

There are a few other things that happen, but at this point
the reader should note that we have observed one successful
and one failing execution for the script in Figure 1(d). We
will discuss in Section 4.5 how this information will be used
for fault localization.

and the empty state. This testis added to the queue (line 27)4  Fault Localization

iteration 2-5. The next iteration of the top-level loop de-
gueues the new work item, and executegin.php with
empty input, and empty state. No failures are found. The
call to executeSymbolio line 17 returns a path constraint
user # admin A user # reg, indicating that the call to
check_password on line 8 in Figure 1(c) returned fafse

2For simplicity, we omit the details of this function. It compsneser

In this section, we first review th&rantulafault local-
ization technique. We then present an alternative tecleniqu
that is based on the output mapping and positional informa-
tion obtained from an oracle. Finally, we present a tech-
nique that combines the former with the latter.

and password to some constarddniin’ and ‘reg’.



4.1 Tarantula tests, the programmer needs to inspect less than 10% of the

executed statements.
Jones et al. [11, 12] present@drantula a fault local-

ization technique that associates with each statemsuns-a
piciousness ratinghat indicates the likelihood that it con-
tributes to a failure. The suspiciousness ratig(l) for a
statement that occurs at lfhkis a number between 0 and 1
that is defined as follows:

4.2 Fault Localization using the Output
Mapping

An oracle that determines whether or not a failure occurs

_ _ can often provide precise information about which parts of
Sar() = — Failed()/TotalFailed , the output are associated with that failure. For instange, a
assed)/TotalPassed- Falled()/TotalFailed HTML validator will typically report the location of mal-

where Passed) is the number of passing executions that formed HTML. Such information can be used as a heuris-
execute statement Failed(l) is the number of failing ex-  tic to localize faults in the program, provided that we can
ecutions that execute stateménfotalPasseds the total determine which portions of the program produced which
number of passing test cases, afualFailedis the total portions of the output. The basic idea is that the code that
number of failing test cases. After suspiciousness ratingsproduced the erroneous output is a good place to start look-
have been computed, each of the executed statements is asg for the causative fault. This is formalized as follows.
signed aank, in order of decreasing suspiciousness. Ranks Assume we have the following two functions:
do not need to be unique: The rank of a statenheafiects
the maximum number of statements that would have to be e Oy(f) returns output line numbers reported by the oracle
examined if statements are examined in order of decreas- O for failure f, and
ing suspiciousness, andlifvere the last statement of that e %,(0) returns the set of program parts of the source pro-
particular suspiciousness level chosen for examination. gram responsible for output lire

Jones and Harrold [11] conducted a detailed empirical
evaluation in which they applyarantulato faulty versions  Given these two functions, we define a suspiciousness rat-
of the Siemens suite [10], and compare iffeetiveness to  iNg Snap(l) of the statement at linkfor failure f as follows:
that of several other fault localization techniques (see Se
tion 7). The Siemens suite consists of several versions of Sall) = 1 if 1€ Uoeoy(r) Pn(0)
small C programs into which faults have been seeded arti- a 0 otherwise
ficially. Since the location of these faults is given, one can
evaluate the fectiveness of a fault localization technique Note that this is a “binary” rating: program parts are either
by measuring its ability to identify these faults. In thelfau highly suspicious, or not suspicious at all.
localization literature, this is customarily done by refpay
the percentage of the program that needs to be examinedy 3 Combined Technique
by the programmer, assuming statements are inspected in

decreasing order of suspiciousness [1,5,11, 18]. 3 The Tarantulaalgorithm presented in Section 4.1 local-
Specifically, Jones and Harrold compute for each failing jzes failures based on how often statements are executed in
test run ascore(in the range of 0%-100%) that indicates the  f4jling and passing executions. However, in the web appli-
percentage of the application’s executable statements thacations domain, a significant number of lines are executed
the programmer need not examine in order to find the fault. iy poth cases, or only in failing executions. Thus, the fault
This score is computed by determining a set of examined|ocalization technique presented in Section 4.2 can be used
statements that initially contains only the statement{s) a g enhance th@arantularesults by giving a higher rank to
rank 1. Then, iteratively, statements at the next highek ran giatements that are blamed by bd#rantulaand the map-
are added to this set until at least one of the faulty state- ping technique. More formally, we define a new suspicious-

ments is included. The score is now computed by dividing pegs ratingomd(!) for the statement at linkas follows:
the number of statements in the set by the total number of

executed statements. Using this approach, Jones and Har- 1.1 if Snagll) = 1A Sar(l) > 0.5

rold found that 13.9% of the failing test runs were scored ~ Somt{l) = { Sa(S) otherwise

in the 99-100% range, meaning that for this percentage of

the failing tests, the programmer needs to examine less thar]nforma”y, we give the suspiciousness rating 1.1 to any

1% of the program’s executed statements to find the fault. statement that is identified as highly suspicious by the or-

They also report that for an additional 41.8% of the failing acle, and for whictTarantulaindicates that the given line
3\We use line numbers to identify statements, because thatesnabto is positively correlatgq with the faglt (_indicated by thetfa

present the dierent fault localization techniques in a uniform manner. thatTarantulds suspiciousness rating is greater than 0.5).




lines) | executes | Sar(l) | Snanl) | Seoms) run. Such statements obtain a suspiciousness rating of
4,6,8,9,11 both 0.5 0.0 0.5

12 failing only 0 00 10 0/(1+0) = 0.0. ' By sim'iI.ar reasoning, statemepts that are
13 passing only | 0.0 0.0 0.0 only executed in the failing run obtain a suspiciousness rat
o Peongony| 99 | 09 99 ing of 1/(0+1) = 1.0, and statements that are executed in
21 failing only 1.0 1.0 11 both cases obtain a suspiciousness rating(@f1) = 0.5.

27 both 0.5 1.0 0.5 [ . .
58739 both 0E 55 e The suspiciousness ratings computed by the mapping-

based technique can be understood by examining the output

Figure 4: Suspiciousness ratings for lines in the PHP script©f the validator in Figure 2(c), along with the HTML in Fig-
of Figure 1(d), according to three techniques. The columnsUre 2(a) and the mapping from lines of HTML to the lines of
of the table show, for each linke when it is executed (in PHP that produced them in Figure 2(b). The validator says
the passing run, in the failing run, or in both runs), and the the error is in line 5 or 6 of the output, and those were pro-

suspiciousness ratin@ (1), Snag(l), andSomil)- duced by lines 21' a}nd 271n the.script of_Figure 1(d). anse-
guently, the suspiciousness ratings for lines 21 and 2Dijs 1.

and all other lines are rated 0.0 by the mapping-based tech-
4.4 Generating Inputs for Tarantula nique. The suspiciousness ratings for the combined tech-

A i q ious| wl ; . nique follow directly from its definition in Section 4.3.
| AS WE CISCUSSEC previous Yarantu acomputes suspi- As can be seen from the table, tharantulatechnique
ciousness ratings using a formula that considers how many. o . L
identifies lines 12 and 21 as the most suspicious ones,

t!mes a statement IS gxecuted by passing ".".”d failing EXECULNd the output mapping based technique identifies lines 21
tions. Butwhich passing executions and failing executions

should be supplied as inputsTarantuls® a_md 27 as_such. In other words,_each_ of these fault localiza-
To answer this question, assume that the algorithm oftlon techmques—when_ usec_j n |so|at|9n—reports one non-
Section 3 has exposed a nL;mber of failing executions Thisfaulty_statement_ as being h'gh.ly SUSpICIous. _However, the
o . : ' combined technique correctly identifies only line 21 as the

set can be partitioned into subsets that pertain to the sam

failure. Here, two failures are assumed to be “equivalent” ?aulty statement.

(i.e., due to the same fault) if the oracle produces the same

message for them, and if the same program constructs ar&  Implementation

correlated with these messages according to the output map-

ping. In Section 6, we will conduct separate fault localiza-  We extended thépollo 1.0tool [3] with the algorithm

tion experiments for each subset of equivalent failing exe- for combined concrete and symbolic execution in the pres-

cutions. ence of interactive user input and persistent session state
This leaves the question of what set of passing execu-that was presented in Section 3, and with the fault localiza-

tions we should supply tdarantulaas inputs along with  tion algorithm that was presented in Section 4. This section

these failing executions. We currently consider two otion  discusses some key features of the implementation.

1. We supplyall passing executions that were identified by jnteractive user input and session state.As was men-

the algorithm of Section 3. tioned in Section 3, it is important to determine what PHP
2. We supply arandomly selected subsef 10% of the  gcripts the user may invoke by selecting buttons, check-

passing tests that were identified by the algorithm of boxes, etc. in the HTML output of previously executed

Section 3. scripts. To this endApollo 2.0automatically extracts the
gAvailable user options from the HTML output. Each option
contains the script to execute, along with any parameters
(with default value if supplied) for that scriptApollo 2.0
also analyzes recursive static HTML documents that can be
called from the dynamic HTML output, i.é\pollo 2.0tra-

As described in Section 3.2, the test input generation al- verses hyperlinks in the generated dynamic HTML that link
gorithm produced two runs of the script in Figure 1(d): one to other HTML documents on the same site. To avoid re-
that exposed an HTML error and one that did not. Figure 4 dundant exploration of similar executionspollo 2.0per-

Note that the above strategies can be applied to both th
Tarantulaand the combined algorithms.

4.5 Example

shows the suspiciousness ratiggs(1), Snagll), andSomd(l) form state matching (performed implicitly in Line 26 of
that are computed for each limén the PHP script in Fig- ~ Figure 3) by not adding already-explored transitions.

ure 1(d), according to the three fault localization teches) The use of session state allows a PHP application to
under consideration. store user supplied information on the server for retrieval

To understand how th&arantularatings are computed, by other scripts. We enhanced the PHP interpreter to record
consider statements that are only executed in the passingvhen input parameters are stored in session state, to enable



program | version | #files | total LOC | PHPLOC | program strategy %cov failures
fagforge 132 19 1712 734 . exec. || HTML total
webchess 0.9.0 24 4718 2226 fagforge No Simulated Ul 86.8 9 55 64
schoolmate 1.5.4 63 8181 4263 Slmullated ul 92.4 9 63 72
phpsysinfo 2.5.3 73 16634 7745 webchess No Simulated Ul 37.8 20 7 27
timeclock 1.0.3 62 20792 13879 Simulated Ul 39.4 26 8 34
phpBB2 2.0.21 78 34987 16993 No Simulated Ul 65.0 35 60 95
schoolmate | g jjated UL 650 | 35 61 9%
. .. . . No Simulated Ul 55.5 3 1 4
Figure 5: Characteristics of subject programs. The columns| phpsysinfo | g 'iaed Ul 55.7 6 > s
of the table indicate (i) the version of the program we used, | timeciock | N° Simulated Ul 3.2 2 30 32
- h b f f| .th PHP . t th Simulated Ul 14.1 2 117 119
(i) the number of source files wi scripts, (iii) the —— No Simulated Ul 114 3 1 3
total number of lines in each program, and the number of Simulated Ul 28.0 5 19 24

lines with executable PHP code.

Figure 6: Experimental results for 10-minute test generati

. . . runs. The table presents results each ofNleeSimulated
Apollo 2.0to track constraints on input parameters in all yj and theSimulated Ul strategies. Thebcov column lists
scripts that use them. the line coverage achieved by the generated inputs. The next
web server integration. Apollo 1.0[3] only supported the three columns show the number of execution errors, HTML

execution of PHP scripts using the PHP command line inter- f&ilures, and the total number of failures.

preter. However, dynamic web applications often depend on

information supplied by a web-server, and some PHP con-pelieve that the results would be mudfeated by a dferent

structs are simply ignored by the command line interpreter time limit. This time budget includes all experimental task

(e.g.,heade). Apollo 2.0supports execution through the \We measured line coverage, i.e., the ratio of the number of

Apache web-server in addition to the stand-alone commandexecuted lines to the total number of lines with executable

line executor. A developer can uggollo 2.0to silently  PHP code that was shown in Figure 5. Furthermore, we

analyze the execution and record any failure found while classified the discovered failures as execution failures an

manually using the subject program on an Apache server. HTML failures, as was discussed previously in Section 2.2.
Figure 6 tabulates the line coverage results and observed

6 Evaluation failureson the subject programs for each of the two testtinpu
generation strategies (with simulated user interacticth an
This evaluation aims to answer two questions: without). Although the fflect varies, it is clear that the user

. _ _ . _ input simulation allowsApollo to achieve better results on
Q1. What is thg éect of automatically simulating user in- all subject programs. For example, phpsysinfo the ef-
put interaction on coverage and on the number of fail- fect on coverage is marginal (55.7% vs. 55.5%) because

ures exposed? this program is not interactive. On the other hand,dbr
Q2. How effective are the three fault localization tech- pBB2 the dfect is significant for both the coverage obtained
niques presented in Section 4 in practice? (28.0% vs. 11.4%), and for the number of failures detected
(24 instead of 4), and similarly farmeclock because these
6.1 Subject Programs applications only performs most operations when starting i

) ) the correct state (e.g., when the user is logged in).
For the evaluation, we selected six open-source PHP pro-

grams (fromttp: //sourceforge.net), for which the charac-
teristics are shown in Figure fagforge is a tool for creat-
ing and managing documentsebchesss an online chess To answer the second research question, we created a
game. schoolmateis an PHPMySQL solution for admin-  localized faults database by manually localizing up to 20
istering elementary, middle, and high schogtéipsysinfo faults in 3 of the subject programsvébchesscontained
displays system information, e.g., uptime, CPU, memory, only 9 faults that caused the 34 failures reported previ-
etc. timeclock is a web-based timeclock systephpBB2 ously). We then applied the three fault localization meth-

6.3 Localizing Faults

is an open source discussion forum. ods that were discussed in Section 4 to each failurei)
our implementation offarantula (see Section 4.1), (i) a
6.2 Coverage/Failures Detected fault localization technique that uses only the output map-

ping (see Section 4.2), and (iii) a fault localization teicjue
We ranApollo with and without the simulation of user that combineSarantulawith the output mapping (see Sec-
interaction for 10 minutes on each subject program. This tion 4.3). As mentioned in Section 4.4, we tried two sets of
time limit was chosen arbitrarily, but it allows each stggte  inputs for each technique: (a) the set of executions expos-
to generate hundreds of inputs and we have no reason tang f in combination withall passing executions, and (b)



progiam _| faring/passing Taralnguo'g mag’;"‘lgz °°mbg‘g‘i tions on this idea technique were later explored by Pan and
webchess | Random 24.35 25.12 7.20 Spdford [17], and by Agrawal et al. [2].
All 29.94 15.06 5.09 = H iar H
schooimate | Random 2021 1506 =10 In the s.pmt of thls_ early wo_rk, Renieris and Reiss [18]
Al 16.09 512 2.24 useset-unionand set-intersectiormethods for fault local-
timeclock | Random 21.54 512 241 ization, that they compare with theiearest neighbofault

. localization technique (discussed below). The set-union
Figure 7: Average percentage of the program a developerspnique computes the union of all statements executed by
would need to inspect in order to locate the failures using asqing test cases and subtracts these from the set of state-
different fault localization techniques. Tfeling/passing  ments executed by a failing test case. The resulting set con-

column indicates the method that was used to select theing the suspicious statements that the programmer should
sets of passing and failing tests (one of All, Random) used o |5re first. In the event that this report does not contain
for the fault localization Tarantulais the fault localization 4 faulty statement, Renieris and Reiss propose an SDG-

technique described in 4.Imapping is the fault localiza- 3564 ranking technique in which additional statements are
tion based only on the output mapping (see Section 4.2).qsidered based on their distance to previously reported
cor_nblngd is the combined fault localization technique de- statements along edges in a System Dependence Graph [9].
scribed in 4.3. The set-intersection technique identifies statementsatieat

executed by all passing test cases, but not by the failirig tes
the set of executions exposifign combination with 10%  case, and attempts to address errors of omission, where the
of randomly selected passing executions. failing test case neglects to execute a statement.

We measure thefiectiveness of these fault localization ~ The nearest neighborsgault localization technique by
algorithms as the minimal number of statements that needRenieris and Reiss [18] assumes the existence of a failing
to be inspected until all the faulty lines are detected, as-test case and many passing test cases. The technique se-
suming that statements are examined in order of decreasindects the passing test case whose execution spectrum most
suspiciousness (Section 4.1). Figure 7 tabulates thetsesul closely resembles that of the failing test case according to

The results show that theombinedtechnique is clearly ~ one of two distance criterfaand reports the set of state-
superior to each of th€arantulaand mapping-based tech- ments that are executed by the failing test case but not by the
niques that it builds upon. Favebchessthe programmer  selected passing test case. In the event that the report does
would need to inspect 19.00% of the statements on aver-not contain the faulty statement, Renieris and Reiss use the
age whenTarantulais supplied with all passing executions, SDG-based ranking technique mentioned above to identify
25.12% when the mapping-based technique is used, bugdditional statements that should be explored riggarest
only 6.94% using the combined technique. Using the sameNeighborwas evaluated on the Siemens suite [10], a col-
set of executions, the programmer needs to inspect 29.94%ection of small C programs for which faulty versions and
of schoolmatés statements usingarantulg 15.06% using @ large number of test cases are available, and was found to
the output mapping, and only 5.09% using the combined be superior to theet-uniorandset-intersectionechniques.
technique. Similar results are obtained for timeclock. The Cleve and Zeller [5, 25] present a fault-localization tech-
use of a randomly selected subset of the passing tests yieldsique based on Delta Debugging [24], a binary search and

slightly worse results for each of the techniques. minimization technique. Delta debugging is first employed
to identify the variables responsible for a failure, by sele
7 Related Work tively introducing values that occur in the program state of

a failing run into the state obtained during a passing run,
This section only presents a summary of the literature @nd observing whether or not the failure reoccurs. Then,
on fault localization, and in particular on fault localimat ~ d€lta debugging is applied again in order to identiguse
techniques that use information from passing and failing ex {ransitions i.e., points in the program where one variable
ecutions to predict the likelihood that statements areqesp ~ C€@Se€s to be the cause for a failure, and where another vari-
sible for failures. For a review of the literature on concoli 2Pl€ starts being the origin of that failure. Cleve and Zelle
execution, we refer the reader to our previous paper [3]. report finding a rgal failure in GCC_: using thg technique, and
Early work on fault localization relied on the use of pro- IS0 évaluate their work on the Siemens suite. _
gram slicing [21]. Lyle and Weiser [16] introdugeogram _ Da_IIme|gr et al. [6] present a fault localization technique
dicing, a method for combining the information oftkéirent in which differences between method call sequences that
program slices. The basic idea is that, when a program com
utes a correct value for variablend an incorrect value for 40One similarity measure defines the distance between two tessca
P . - . as the cardinality of the symmetric setfdrence between the statements
Va”‘?bleya th.e fault is likely to _be founq in Statement§ that that they cover. The other measure considers tiergnces in the relative
are in the slice w.r.ty, but not in the slice w.r.tx. Varia- execution frequencies.
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