IBM Research Report

A Case for Recombinomics

Laxmi Parida ${ }^{1}$, Asif Javed ${ }^{1,2}$, Marta Meléer,2,3, Jaume Bertranpetit ${ }^{3}$
${ }^{1}$ IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA
${ }^{2}$ Department of Computer Science Rensselaer Polytechnic Institute Troy, NY

USA

${ }^{3}$ Biologia Evolutiva Universitat Pompeu Fabra Barcelona, Catalonia
Spain

[^0]
TECH REPORT

A Case for Recombinomics

Laxmi Parida* ${ }^{\dagger}$ Asif Javed ${ }^{\dagger \ddagger}$ Marta Melé ${ }^{\dagger \ddagger}$ © Jaume Bertranpetit ${ }^{〔}$

Abstract

In this report we present the results of the recombinational analysis based on our model IRiS. We investigate HapMap III database with 11 populations and over 1000 samples: we picked this testbed primarily due to the choice of SNPs in the database. In an effort to reduce the effects of compounding errors due to limitations of current technologies and techniques, we focus on the recombining X Chromosome. In our preliminary analysis, our results are two-fold. Firstly, we demonstrate the presence of recombinations-based evidence in short segments of the genome to detect subcontinental divide in the populations. We observe this in both populations-centered as well as recombinations-centered analysis. Secondly, we make the surprising observation that the effect of the population dynamics that shapes the allele-frequency variations between populations is also reflected in the purely recombination-based variations. We conclude that our recombinational-based exploration has the potential to go well beyond the known into non-traditional territories.

Contents

1 Exploring Human X Chromosome 2
1.1 Screening Criteria 2
1.2 The 18 Viable ChrX Regions 4
2 Method 4
2.1 Statistical Analysis (using p-value estimations) 5
2.2 Combinatorial Analysis (using IRiS) 6
3 Results 9
3.1 Recombinational-Distances of Populations 9
3.1.1 Multidimensional Scaling (MDS) Visualization 10
3.1.2 Comparison with $F_{S T}$ Distances (Mantel Test) 10
3.2 Specificity Analysis 15
4 General Discussion 17
4.1 Recombination Hotspots: Friend or Foe? 17
4.2 $\quad F_{S T}$ Adjustment under LD (dependence) Assumptions 17

[^1]
1 Exploring Human X Chromosome

We glean regions of X-Chromosome for our recombinational analysis. At this stage HapMap III is the most extensive in terms of population coverage as well as choice of SNPs. Although HGDP (Human Genome Diversity Panel: http: / /www.stanford.edu/group/morrinst/hgdp.html) database has data from very large number of ethnic groups, we found that the SNP density was not adequate for our analysis. We use the HapMap III database: this includes samples from eleven populations with the subcontinental divide as follows:

1. Four African (Af) populations: LWK, MKK, YRI and ASW.
2. One South-Asian (sA) population: GIH.
3. Three East-Asian (eA) populations: CHB, CHD, and JPT.
4. One American (Am) population: MEX.
5. Two European (Eu) populations: CEU and TSI.

This is summarized in the following table.

label	population sample	number of samples
LWK	Luhya in Webuye, Kenya	100
MKK	Maasai in Kinyawa, Kenya	180
YRI	Yoruba in Ibadan, Nigeria	180
ASW	African ancestry in Southwest USA	90
GIH	Gujarati Indians in Houston, Texas	100
CHB	Han Chinese in Beijing, China	90
CHD	Chinese in Metropolitan Denver, Colorado	100
JPT	Japanese in Tokyo, Japan	91
MEX	Mexican ancestry in Los Angeles, California	90
CEU	Utah residents with Northern and Western	180
	European ancestry from the CEUPH collection	
TSI	Toscans in Italy	100

Some details on the SNP data. The SNP genotype data was generated from 1115 samples, collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. The Illumina Human 1M Beadchip is focused on tagSNPs, SNPs in genes, and SNPs and non-polymorhic markers in known and novel copy number variation regions. There are $\approx 950,000$ tag SNPs and $\approx 100,000$ nonHapMap SNPs. There are 565,000 SNPs in and near coding regions and for the CNVs identification there are $\approx 260,000$ markers. The Affymetrix SNP 6.0 chip includes more than 906,600 SNPs containing an unbiased selection of 482,000 SNPs from the Array 5,0, a selection of additional 424,000 tag SNPs, new SNPs added in the dbSNP database and SNPs in recombination hotspots. On the X-chromosome, there are approximately 16,500 SNPs in HGDP and 31,000 SNPs in HapMap III.

1.1 Screening Criteria

I. Identifying Potential Pitfalls. It is important to recognize the irrecoverable errors that any analysis may produce to avoid possible misinterpretation of the results. We identify two primary sources that a
recombinational-analysis must be wary of: presence of copy number variations (CNV) and segmental duplication (SD) in the input data. Our focus is on phylogeographic studies and thus to avoid the interplay of any potential selection and the recombinational landscape, we avoid the putative gene regions on the chromosome. Note that most phasing techniques are challenged by regions of low LD and by low frequency haplotypes. Thus to avoid phantom recombinations due to possible phasing errors, in the female samples, we pick only those that are homozygous in the screened region.
II. Enhancing signal-to-noise ratio. Note that not all SNPs are typed in all the populations in the database: we pick only those that are typed in all the eleven populations. Further, we eliminate those regions that do not have a sufficient number of SNPs (we use a cut-off limit of 80).

The details of our screening of the database, accounting for I and II above, is summarized below.

1. ChrX Regions: X chromosome of HapMap III (www . hapmap . org) data.
(a) at least 50 Kb away from genes. This information comes from Ensembl v37 (Feb 06) which is the last version of Build 35, retrieved using BioMart
(http://feb2006.archive.ensembl.org/Homo-sapiens/martview).
(b) at least 50 Kb away from copy number variation (CNV) regions. This was done using Database of Genomic Variants (http: / /projects.tcag.ca/variation/), Build 35.
(c) at least 50 Kb away from segmental duplication (SD) regions. This was done using Segmental Duplications Database (http://humanparalogy.gs.washington.edu), Build 35.
2. Samples: In each selected ChrX region, males or homozygous females are selected.
3. SNPs: In each selected ChrX region of the samples, we picked the SNPs by applying the following rules (in the order they are listed):
(a) SNP typed in all 11 populations,
(b) a total of at least 80 SNPs in the region,
(c) minor allele frequency $(\mathrm{MAF})>0.1$ of total population.

		SNPs						Recombinations	
Label	Start	End	size (bp)	No.	density	samples	ρ	Hotspots	
1	22505979	22728622	222643	95	$1 / 2394$	477	3.608	5	
2	23071760	23213016	141256	96	$1 / 1456$	504	3.355	2	
3	25715611	26016381	300770	83	$1 / 3957$	505	0.660	4	
$4(\mathrm{Cg})$	35038017	35504132	466115	81	$1 / 5755$	560	0.603	4	
5	38875482	39480082	604607	179	$1 / 3378$	490	1.237	9	
6	84704863	84952842	247979	80	$1 / 3306$	579	0.255	2	
7	86338463	86609425	270962	90	$1 / 3188$	452	1.604	2	
8	87288915	87838907	549992	204	$1 / 2736$	406	1.691	8	
$9(\mathrm{Eg})$	93522874	94555707	1032833	180	$1 / 5738$	392	0.895	6	
$10(\mathrm{Dg})$	112181012	112602418	421406	92	$1 / 4581$	514	0.375	2	
11	116631417	116865805	234388	82	$1 / 2894$	527	1.849	2	
12	120875730	121450338	574608	157	$1 / 3831$	431	1.335	7	
$13(\mathrm{Bg})$	125833172	126301999	468827	81	$1 / 5787$	492	0.526	3	
$14(\mathrm{NH})$	126499106	126892013	392907	72	$1 / 5457$	669	0.182	0	
15	140883556	141050268	166712	99	$1 / 1755$	433	5.122	3	
16	141376625	141647366	270741	88	$1 / 3148$	460	3.847	4	
17	143563468	143896320	332852	96	$1 / 3579$	509	1.533	6	
18	144769060	145266667	497607	162	$1 / 3110$	446	2.106	4	

Figure 1: The 18 viable ChrX regions. The recombination rate ρ and the number of hotspots are computed from HapMap II data: NH is the only region without hotspots by this computation.

1.2 The 18 Viable ChrX Regions

This screening gives us 18 viable regions on the human X Chromosome for recombinational exploration. The distribution of these regions on the chromosome is shown in the ideogram. Further details on these regions are shown in Fig 1.

Recombination rates and the location and the number of recombination hotspots were estimated from Phase II HapMap data, release 21 (www.hapmap.org) using methods described in [MMH ${ }^{+}$04]. In Section 4.1 we discuss the possible interplay of hotspots with our analysis. We characterize the viable regions of the human ChrX: Fig 2 gives the breakdown of the samples by population and the value of minimum number of recombinations, R_{M}, for each population (see [HSW05] for R_{M}).

2 Method

Each region, which is a contiguous segment on the chromosome, is handled independently.
Biological Insights. The authors in [GSN $\left.{ }^{+} 02\right]$ established the existence of haplotype blocks in humans. Exploiting this characteristic that appropriately chosen SNP's in a neighborhood on the chromosome exhibit linkage disequilibrium (or the lack of independence), we segment the input haplotypes into some g-sized chunks of adjacent SNPs. g is called the grain size. The analysis flow is summarized in the box.

ChrX Regions		Sample Break-down by Ethnicity										
		LWK	MKK	YRI	ASW	GIH	CHB	CHD	JPT	MEX	CEU	TSI
Cg	samples	42	69	90	29	45	39	39	46	28	80	53
SNPs=81	R_{M}	14	14	16	12	10	10	5	5	5	12	10
Region 6	samples	41	84	87	33	42	45	38	43	46	80	40
SNPs=75	R_{M}	11	11	11	9	6	5	4	2	5	11	7
Eg	samples	24	65	69	24	35	30	20	27	13	51	32
SNPs=180	R_{M}	39	53	57	44	26	27	19	21	14	32	24
Dg	samples	37	78	80	32	43	38	30	34	24	78	40
SNPs=92	R_{M}	25	26	24	21	13	11	10	8	12	12	12
Bg	samples	32	64	78	28	38	41	41	40	22	69	39
SNPs=81	R_{M}	11	15	15	16	15	11	7	10	13	17	16
NH	samples	41	69	89	29	59	67	62	73	30	92	58
SNPs=72	R_{M}	12	12	12	12	5	3	2	1	8	10	8

Figure 2: The R_{M} estimates of the populations in the different ChrX regions.

ANALYSIS FLOW:

(Statistical Analysis of Input)
LOOP
Choose block size g
Is this choice statistically sound? (Section 2.1)
YES: Exit LOOP
END LOOP
(Combinatorial Analysis)
Proceed to use IRiS with block size g (Section 2.2)
(Statistical Analysis of Output)
Analyze shared recombinations (Section 3.1)
Analyze recombination per population/sample (Section 3.2)

2.1 Statistical Analysis (using p-value estimations)

Are we justified in using g SNP's as a block (or pattern)? Using k, the number of distinct patterns of the g SNPs across the samples, as a proxy for the extent of LD in this block, we estimate the p-value of k. Loosely speaking, when these g SNPs are in linkage equilibrium (or independent), k should be much larger than when they are in LD. An alternative view is that k is an estimate of the number of lineages for the g sized segment of the chromosome.

Let the number of samples be n and let the number of SNPs be N. Further, let V be a column vector of size n. Since the SNPs are assumed to be bi-allelic, V which represents the value of a SNP in the n samples is binary. We use two schemes, based on the mode of definition of the N vectors, to estimates the p-value.

The range of values of k seen in our data is $2 \leq k \leq 16$ and we study the p-value estimates in this range.

1. RandV: In this scheme, $V_{1}, V_{2}, \ldots, V_{N}$ are defined randomly. In other words, each entry of each V is picked independently and uniformly from a set of two alleles. We use 10000 replicates and the distribution of the number of g-sized patterns is shown in Fig 3. The p-values estimated based on this scheme is shown in the table below. The p-values are ≈ 0.0 for every value of k.
2. PermV: While the RandV Scheme is not incorrect, we make some domain-dependent modifications to design another scheme. In the PermV scheme we
(i) mimic the allele frequencies seen in the input data and
(ii) use the population distribution (by ethnicity) of the screened samples in the chromosomal region.

This is done as follows: the individual V vectors are plucked from the X-Chromosome of the HapMap III data, (but the SNPs span the entire chromosome) and any untyped SNP (i.e., N in the database) in the vector is given a value in agreement with the allele frequency of that column. Further, we use only those V 's that have RAF ≥ 0.1, as is done in the screening process. We again use 10000 replicates and for each replicate, we randomly permute the N vectors. The distribution of the number of g sized patterns is shown in Fig 3 (b). The p-values estimated based on this is shown in the table below.

k	$2 . .9$	10	11	12	13	14	15	16	17	
	randV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
permV	0.0	$4.8 \mathrm{e}-7$	$4.8 \mathrm{e}-7$	$9.5 \mathrm{e}-7$	$2.4 \mathrm{e}-6$	$2.9 \mathrm{e}-6$	$1.3 \mathrm{e}-5$	$7.8 \mathrm{e}-5$	$1.4 \mathrm{e}-4$	

k	18	19	20	21	22	23	24	25	26
randV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
permV	$1.9 \mathrm{e}-4$	$2.3 \mathrm{e}-4$	2.8e-4	$4.5 \mathrm{e}-4$	$8.9 \mathrm{e}-4$	2.1e-3	5.3e-3	$1.0 \mathrm{e}-2$	$2.0 \mathrm{e}-2$

If for a block, k has an insignificant p-value, then the subsequent analysis risks becoming unreliable. We then reduce the grain size. An alternative is to discard the offending SNPs of the block, thus fragmenting the region. In our experiments we used a grain size $g=5$ and the p-values obtained for this on all the regions were acceptable. The haplotypes are re-coded as sequence of these SNP patterns for the combinatorial analysis.

2.2 Combinatorial Analysis (using IRiS)

Computational Insights. Note that the general task of computing a phylogenetic network is computationally hard. Striking a balance between computational hardness and biological reality, we use a compatible model that makes our problem tractable. Our approach can be briefly summarized as follows. We first cluster, possibly overlapping, haplotypes that display no evidence of recombinations and a representative haplotype of each cluster is extracted for the next phase. Then exploiting the coherence seen in such data, each haplotype is recoded using blocks of SNPs (patterns seen across different haplotypes) of granularity g. Finally, a network is constructed from the recoded representative haplotypes. Using a divide-and-conquer paradigm, the haplotype is segmented to give simple structures and then these individual structures are merged to give a unified topology using a DSR (Dominant Subdominant Recombinant) Scheme. This gives a plausible explanation of the data through recombinations. The underlying mathematical model along with some tests on simulated data had been earlier presented in $\left[\mathrm{PMC}^{+} 08\right]$. In a subsequent work, we give a mathematical proof of the effectiveness of our algorithm in terms of distance from the ideal optimal along with results on a three-population HapMap II data $\left[\mathrm{PJM}^{+} 09\right]$. To avoid digression, some relevant details are presented in the Appendix for the interested reader.

Figure 3: Distribution of k for $g=5$ for the ChrX region Eg. Recall that the randV Scheme is independent of the region but the permV Scheme is not, since it uses the population distribution of the region (and allele frequency distribution of the entire ChrX) for a more realistic estimation.

Figure 4: Using HapMap II data.

3 Results

As expected, the application of our method on the X Chromosome regions gives extremely complex network of recombinations on samples. Note that potentially we are exploring L lineages per sample where L could be as large as 100 or more. Compare this with one lineage per sample in a phylogenetic tree analysis. Due to the enormity and the depth of the available information, we systematically analyze the results at different levels with different perspectives, using well-established and accepted methods (such as MDS, PCA, Mantel Test). Our analysis can be categorized as follows.

1. Populations-specific. We estimate pairwise population distances using recombinations (details in Section 3.1). We use two methods to interpret these distances: (1) visualization of the pairwise distances of the eleven populations using multidimensional scaling (MDS) and (2) compare with traditional $F_{S T}$ distances using Mantel Test. In this context our results are two-fold. Firstly, we demonstrate the presence of recombinations-based evidence in short segments of the genome to detect subcontinental divide in the populations. Secondly, we make the surprising observation that the effect of the population dynamics that shapes the allele-frequency variations between populations is also reflected in the purely recombination-based variations.
2. Recombinations-specific. Using a 11-dimensional vector for each recombination where each dimension denotes a population and each value indicates the number of support of individuals from that population, we do a PCA analysis of the data for each region. Here we again observe the subcontinental separation of the samples within the short segments.
A next step is to use a M-dimensional vector per recombination where each dimension corresponds to a sample. The results of this analysis is not ready at this time.

Further details on these is described below.

3.1 Recombinational-Distances of Populations

Shared Recombinations. The networks generated by IRiS are analyzed to associate each recombination event with participating populations. If in the set of haplotypes with a recombination event x, there are at least l members of population Z_{1} and l of populations Z_{2}, then recombination event x is said to be shared between populations Z_{1} and Z_{2}. In our analysis we set $l=1$. Similarly, we can extend this notion to sharing of a recombination event between three or more populations.

Recombinational-Distance Matrix D_{r} Computation. We use the number of recombinations shared by two populations Z_{1} and Z_{2} as a measure of similarity between Z_{1} and Z_{2}. Let S be the similarity matrix with each element written as $s_{i j}$ denoting the number of shared recombinations between population Z_{i} and Z_{j}. Then matrix S is converted to a normalized distance matrix D_{r} where each entry is written as $d_{i j}$. Firstly, the similarity is converted to a distance by taking the reciprocal of the value. Roughly speaking, this indicates that larger the number of shared recombination events smaller the distance and vice versa. Note that $s_{i i}$ denotes the number of population-specific recombinations, but this is not used in the definition of $d_{i j}$. Hence, $s_{i i}$ is set to 0 for subsequent computations. This is then normalized (scaled) with the the minimum of the total number recombinations seen in population Z_{i} and in population Z_{j}. Precisely speaking,

$$
\begin{equation*}
d_{i j}=\frac{\min \left(\sum_{i} s_{i j}, \sum_{j} s_{i j}\right)}{\max \left(1, s_{i j}\right)}, \quad \text { for all } i<j \tag{1}
\end{equation*}
$$

The distance between a population and itself is 0 . Thus for all $i, d_{i i}=0$. The distance is symmetric, i.e. for all $i, j, d_{i j}=d_{j i}$ holds. We give one complete example below for the reader. Since the matrices are symmetric, we show only the upper diagonals of the matrices. This is the distance matrix for the ChrX region Eg.

$$
S=\left[\begin{array}{rrrrrrrrrrr|r}
\text { LWK } & \text { MKK } & \text { YRI } & \text { ASW } & \text { GIH } & \text { CHB } & \text { CHD } & \text { JPT } & \text { MEX } & \text { CEU } & \text { TSI } & \\
\hline- & 80 & 93 & 60 & 27 & 21 & 15 & 18 & 14 & 28 & 16 & \text { LWK } \\
& - & \mathbf{1 1 6} & 77 & 44 & 41 & 31 & 35 & 28 & 47 & 38 & \text { MKK } \\
& & - & 85 & 41 & 42 & 31 & 34 & 26 & 37 & 28 & \text { YRI } \\
& & & - & 44 & 33 & 29 & 29 & 26 & 41 & 32 & \text { ASW } \\
& & & & - & 43 & 41 & 39 & 26 & 40 & 40 & \text { GIH } \\
& & & & & - & 45 & 49 & 22 & 33 & 31 & \text { CHB } \\
& & & & & & - & 39 & 19 & 21 & 23 & \text { CHD } \\
& & & & & & & - & 22 & 29 & 28 & \text { JPT } \\
& & & & & & & & & 26 & 27 & \text { MEX } \\
& & & & & & & & & & 45 & \text { CEU } \\
& & & & - & \text { TSI }
\end{array}\right] .
$$

As a concrete example we compute the distance between populations MKK and YRI d_{23} using s_{23}. Note that S is a symmetric matrix although we do not display all the values here. The diagonal entries for the calculation purposes are set to zero. Then

$$
\begin{aligned}
\sum_{i} s_{i 2} & =537, \quad \sum_{i} s_{i 3}=533 \\
d_{23} & =\frac{\min (537,533)}{116}=4.5948 \approx 4.60
\end{aligned}
$$

Recombinational-distance matrix D_{r} for the similarity matrix S is shown below.

$$
D_{r}=\left[\begin{array}{rrrrrrrrrrr}
0 & 4.65 & 4 & 6.2 & 13.78 & 17.14 & 19.6 & 17.89 & 16.86 & 12.40 & 19.25 \\
& 0 & \mathbf{4 . 6 0} & 5.92 & 8.75 & 8.78 & 9.49 & 9.2 & 8.43 & 7.38 & 8.11 \\
& & 0 & 5.36 & 9.39 & 8.57 & 9.48 & 9.47 & 9.08 & 9.38 & 11.00 \\
& & & 0 & 8.75 & 10.91 & 10.14 & 11.10 & 9.08 & 8.46 & 9.63 \\
& & & & 0 & 8.37 & 7.17 & 8.26 & 9.08 & 8.68 & 7.7 \\
& & & & & 0 & 6.53 & 6.57 & 10.73 & 10.52 & 9.94 \\
& & & & & & 0 & 7.54 & 12.42 & 14 & 12.78 \\
& & & & & & & 0 & 10.73 & 11.10 & 11.00 \\
& & & & & & & & 0 & 9.08 & 8.74 \\
& & & & & & & & & 0 & 6.84 \\
& & & & & & & 0
\end{array}\right] .
$$

3.1.1 Multidimensional Scaling (MDS) Visualization

Figs 5, 6, 7 give the Multidimensional Scaling (MDS) analysis done using MATLAB. The figures show the subcontinental separation in the regions.

3.1.2 Comparison with $F_{S T}$ Distances (Mantel Test)

Next for each region, we compare distance matrix D_{r} (defined in Section 3.1) with the $F_{S T}$ measure that Arlequin software (http://cmpg.unibe.ch/software/arlequin3/) computes on the 11 populations, using Mantel test [SR95] with 10000 replicates. The results are shown in Fig 8.

(3) Region 3: stress 6.1%

(4) Region 4 (Cg): stress 3.5\%

Figure 5: MDS plots of ChrX regions 1-6.

Figure 6: MDS plots of ChrX regions 7-12.

Figure 7: MDS plots of ChrX regions 13-18.

	SNPs					Recombs	IRiS	Mantel Test		MDS
Label	size (bp)	No.	density	Smp	ρ	H	$\#$	r	p-value	stress
1	222643	95	$1 / 2394$	477	3.608	5	365	0.721	10^{-4}	3.7
2	141256	96	$1 / 1456$	504	3.355	2	243	0.645	10^{-4}	6.4
3	300770	83	$1 / 3957$	505	0.660	4	67	0.455	2.8×10^{-3}	6.1
$4(C g)$	466115	81	$1 / 5755$	560	0.603	4	94	0.566	5×10^{-4}	3.5
5	604607	179	$1 / 3378$	490	1.237	9	225	0.720	$<10^{-6}$	7.6
6	247979	80	$1 / 3306$	579	0.255	2	24	-.044	0.5733	2.6
7	270962	90	$1 / 3188$	452	1.604	2	104	0.741	$<10^{-6}$	4.8
8	549992	204	$1 / 2736$	406	1.691	8	171	0.368	8.8×10^{-3}	5.6
$9(E g)$	1032833	180	$1 / 5738$	392	0.895	6	254	0.542	3×10^{-4}	5.5
$10(D g)$	421406	92	$1 / 4581$	514	0.375	2	116	0.630	1.1×10^{-3}	3.2
11	234388	82	$1 / 2894$	527	1.849	2	128	0.146	0.158	.014
12	574608	157	$1 / 3831$	431	1.335	7	258	0.611	10^{-3}	4.7
$13(B g)$	468827	81	$1 / 5787$	492	0.526	3	75	0.566	$<10^{-6}$	8.6
$14(N H)$	392907	72	$1 / 5457$	669	0.182	0	32	0.480	2.3×10^{-3}	4.7
15	166712	99	$1 / 1755$	433	5.122	3	243	0.568	6×10^{-4}	6.1
16	270741	88	$1 / 3148$	460	3.847	4	214	0.576	2×10^{-4}	6.0
17	332852	96	$1 / 3579$	509	1.533	6	202	0.531	$<10^{-6}$	6.5
18	497607	162	$1 / 3110$	446	2.106	4	261	0.435	8×10^{-4}	6.3

Figure 8: Brief descriptions of the ChrX regions and evaluation of our method. Recombination rate ρ and the number of hotspots H is computed using LDhat. IRiS $\#$ is the number of recombinations detected by IRiS. The two evaluations are: (1) Mantel Test with the recombination matrix D_{r} (correlation coefficient is shown as r) and (2) stress factor in the MDS analysis.

3.2 Specificity Analysis

Recall that we have recovered, through IRiS estimation of recombinations, a population structure that fits what is known through traditional population genetic analysis. Now we go further in recovering the specificity of each population given by the repertoires of chromosomes (samples) harboring particular sets of recombinations. There are several ways to organize the output of IRiS. In any case, the output is organized in the two formats below.

- Format 1: A 11-dimensional vector for each recombination where each dimension denotes a population and each value indicates the number of support of individuals from that population. As the number of samples varies among the populations, a direct comparison may be misleading. We experiment with three ways of accounting for this non-uniformity in the input data. Each entry (i, j) in the matrix is scaled by $1 / x_{j}$. In Scheme I, x_{j} is the number of samples in population j. In Scheme II, x_{j} is the sum of the entries of column j in the matrix. In Scheme III, x_{j} is the number of non-zero entries in column j of the matrix. We found that Scheme II and III work well and give similar results. We adopted Scheme II for the analysis shown in supplement.
- Format 2: An M-dimensional vector per recombination where each dimension corresponds to a sample. This format is more exhaustive and will have a wider interest in the complete analysis of historical recombinations.

It is important to note that due to the limited number and the sampling process, the presence/absence of recombination events in the population may not be interpreted as deterministic markers.

Population-Overlap Study. Here we use heuristics to ascertain the significance of a recombination and display the distribution of these significant recombinations in the populations in a few regions. This is done primarily to gain an understanding of the overlaps of the populations in terms of recombination events. The table confirms the inherent complexity of the recombination networks. The subcontinental-population labels of Section 1 are used here.

ChrX Regions \rightarrow	1	2	3	4	5	9	10	12	18	total
Af	65	69	12	26	70	63	40	60	70	475
sA									1	1
eA	2	3	2	5	1	3	1	1	1	19
Am							1		1	2
Eu		4				2		3	2	11
Af \& sA	1	0	1		1				1	4
Af \& eA	3	2	1		1		8	1	3	19
Af \& Eu	4	6	3		7	3	1	2	2	28
sA \& eA	1					1		2		4
sA \& Am	1							2		3
sA \& Eu				1		2		1	1	5
eA \& Eur	1					1				2
eA \& Am							1	2		3
Am \& Eu	1									1
Af \& eA \& sA	2	4	1		1	3			1	12
Af \& Eu \& sA	2	1		1	3	2		3	3	15
Af \& eA \& Am		1	1		1			1	1	5
Af \& eA \& Eu	5	3			4			2	2	16
Af \& Am \& Eu	10				2			1		13
sA \& Eu \& eA	2						1	1	1	5
Af \& eA \& sA \& Eu	2	2			6	3	3		5	21
sA \& Eu \& eA \& Am	1		1		2			1		5
sA \& Eu \& Af \& Am			1	1	1					3
$s \mathrm{~A}$ \& Eu \& Af \& Am \& Eu	8	3	3	5	12	13	4	4	8	60

Multivariate Analysis. Here there are several possibilities: principal component analysis (PCA), correspondence analysis (as the data is a frequency table), discriminant analysis or more genetic-centered like STRUCTURE (http://pritch.bsd.uchicago.edu/structure.html). The last two require data in format 2.

We show the results for regions 1 and 2: see figures at the end of the document. The details of Region 1 is discussed here and the same follows for Region 2. PCA gives gives us powerful results, with very strong discrimination both at continental as well as population level. The first principal component clearly separates Africans from non-Africans, with 27% of the variance explained while the second principal component, with 16% makes a good separation of MKK from the other three African populations. This result has also been found in traditional genetic analysis based on allele frequency or those based on phylogeography. The third component, with 13% of variance, separates at the same time MKK from other Africans and Asian populations from the rest on non-Africans. There is low discrimination between TSI (Italy) and GIH (India) and between CEU (North Europe) and MEX (Mexico).

Population specificity can be achieved, nonetheless just by taking the next components. Considering those that are significant in the PCA, shown in the table, it is possible to see how particularly each population is shaded by the most important contributions to the component. Thus the frequencies that each recombination is found in each population gives a clear picture of population differentiation.

To see at a glance both effects, of population differentiation and the contribution of each of the detected
recombination, a correspondence analysis has also been done and the plotted results can be interpreted in a similar way. In the representation of dimensions 1,2 and 3 (see figures), the clouds of recombination events show how they pull the populations to segregate among them.

To conclude, results shown graphically are nothing but a simplification of the numerical analysis in which all the significant factors are considered simultaneously.
(Results from the analysis of data in Format 2 are not ready)

4 General Discussion

Here we comment on existing notions and concepts along with our observations based on insights gained through this work.

4.1 Recombination Hotspots: Friend or Foe?

The occurrences of meiotic recombinations in the human genome (and some other genomes) is not uniform, but rather there are regions called hotspots (usually $1-2 \mathrm{~kb}$ in width) where the frequency of recombination is 10 to several thousand times higher than the average in the background, and almost all recombination events happen within them [LZZ06]. Recent studies have shown that hotspots are a ubiquitous feature of the human genome, and recombination hotspots are also the main contributor of the block-like pattern of haplotypes. So the pattern (blocks) that we exploit in the IRiS model owes its existence to hotspots.

In Fig 9 we compare two existing popular methods of computing recombination rates. We selected a fixed region in ChrX. In the first, we transposed the results from HapMap II from the website onto our ChrX regions in the HapMap III database. In the second we used the PHASE algorithm:
http://stephenslab.uchicago.edu/software.html.
The common intuition is that recombination hotspots must confound any recombinational analysis. At this stage of our work, it is not clear to us that it has affected our analysis- we do recognize that the number of recombination events estimated by our analysis may actually be a gross underestimate around the hotspots. Further we expect high p value estimates of Section 2.1 of the g blocks if a hotspot region displays a likelihood of very many lineages.

4.2 $\quad F_{S T}$ Adjustment under LD (dependence) Assumptions

The $F_{S T}$ distance measure comes in various forms [JHTS04]. Basically the difference in computation lies in the details of the measure of allele frequency differences in two populations. There is an underlying assumption that, any pair of alleles is independent and thus a simple aggregation over all the alleles suffice.

The very basic premise of our model is that there is a fair chance of two alleles being dependent (having the same lineage or identical genealogical history), at least in a population. This is also seen through our R_{M} analysis of the individual populations in Fig 2. It is unclear whether this $F_{S T}$ estimate is sufficiently accurate for this analysis.

Our suggestion for modifying the to $F_{S T}^{\prime}$ is as follows. Let $b_{1}, b_{2}, \ldots, b_{K}$ be blocks of alleles such that each block b_{i} has a high LD (or estimated to have the same genealogical history, say through a T_{M} analysis) in at least one of the populations. For example for the two populations CHB and CHD, the blocks in each population are as follows:

CHB: 320262743455166808391
CHD: 361045475466838591
Here the numbers refer to the position of the cluster boundary in terms of SNP blocks. Thus the first cluster of three blocks occurs in both the populations. The next two cluster boundaries are at positions 6 and 10 in

Figure 9: Comparison of the recombination rate ρ for the region Dg using two sources. HapMap II result is the one posted on HapMap website where software LDhat has been used. HapMap III results are computed using the software Phase. HapMap II uses Build 35 and HapMap III uses Build 36, hence the positions marked along the x-axix in the two plots do not match exactly but the SNPs have been vertically aligned (using the RS ids).
the second population followed by position 20 in the first population. Proceeding in this manner, the blocks for the two populations are:

$$
\text { CHB or CHD: } 361020262743454751546680838591
$$

In this case $K=16$. Then the $F_{S T}$ distance is adjusted as follows:

$$
F_{S T}^{\prime}=\frac{\sum_{i} F_{S T}\left(b_{i}\right)}{K}
$$

where $F_{S T}\left(b_{i}\right)$ is the usual $F_{S T}$ distance between the two populations restricted to the alleles in the block b_{i}. Roughly speaking, this will adjust the biases due to strong LD segments (or blocks).

Acknowledgments We thank Hafid Laayouni for his efforts on the PCA analysis. We gratefully acknowledge Ajay Royyuru's enthusiastic support, and more, of the work.

References

[FSF $\left.{ }^{+} 04\right]$ Roubinet F, Despiau S, Calafell F, Jin F, Bertranpetit J, Saitou N, and Blancher A. Evolution of the O alleles of the human ABO blood group gene. Transfusion, 44(5):707-15, 2004.
[GSN ${ }^{+}$02] Stacey B. Gabriel, Stephen F. Schaffner, Huy Nguyen, Jamie M. Moore, Jessica Roy, Brendan Blumenstiel, John Higgins, Matthew DeFelice, Amy Lochner, Maura Faggart, Shau Neen LiuCordero, Charles Rotimi, Adebowale Adeyemo, Richard Cooper, Ryk Ward, Eric S. Lander,

Mark J. Daly, and David Altshuler. The structure of haplotype blocks in the human genome. Science, 296(5576):2225-2229, 2002.
[HSW05] Jotun Hein, Mikkel H. Schierup, and Carsten Wiuf. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford Press, 2005.
[JHTS04] M.A. Jobling, M. Hurles, and C. Tyler-Smith. Human Evolutionary Genetics: Origins, Peoples and Disease. Mathematical and Computaional Biology Series. Garland Publishing, 2004.
[LZZ06] Jun Li, Michael Q. Zhang, and Xuegong Zhang. A new method for detecting human recombination hotspots and its applications to the HapMap ENCODE data. Am. J. Hum. Genet, 79:628, 2006.
[MMH ${ }^{+}$04] Gilean A. T. McVean, Simon R. Myers, Sarah Hunt, Panos Deloukas, David R, Bentley, and Peter Donnelly. The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670):581-584, 2004.
[PJM ${ }^{+}$09] Laxmi Parida, Asif Javed, Marta Melé, Francesc Calafell, Jaume Bertranpetit, and Genographic Consortium. Minimizing recombinations in consensus networks for phylogeographic studies. to appear in BMC Bioinformatics, 2009.
$\left[\mathrm{PMC}^{+} 08\right]$ Laxmi Parida, Marta Melé, Francesc Calafell, Jaume Bertranpetit, and Genographic Consortium. Estimating the ancestral recombinations graph (ARG) as compatible networks of SNP patterns. Journal of Computational Biology, 15(9):1-22, 2008.
[SR95] R. R. Sokal and F. J. Rohlf. Biometry. Mathematical and Computaional Biology Series. New York: Freeman, 1995.

Appendix

Our Underlying Mathematical Model

We propose a model, that exploits the contiguous patterns in the extant sequences to construct a phylogenetic network. A striking difference from the other network models is that ours permits multiple roots. Further, a recombination is modeled as a hybrid of stretches (or segments) of parental sequences. We do this by extending the notion of compatible trees to networks that models recombinations in a fairly generalized form. The network is defined in terms of a segmentation S of the aligned extant sequences into say K segments. Every edge in the network is associated with at least one segment (from the K segments). When the network is restricted only to the edges of fixed segment, the resulting topology is a phylogenetic tree of only that segment from all the extant sequences.

We formally define the compatible network here. Let I be the given input matrix with n rows and m columns. Each row corresponds to an extant sequence or haplotype. The matrix I has two kinds of elements, solid characters and dont-care. As our model will not only consider single character (where it would be normal to use the four nucleotides A, C, G, T) but combinations of them (see grain below) the nomenclature is not restricted to four states. A dont-care is written as ' - ' and its semantics will be discussed later. Further, for ease of exposition, let all occurrences of a character c be within a single column of I.

The segmentation S of the m columns of input I, written as the closed interval $[1, m]$, is a collection of non-overlapping intervals such that each column j is in at most one segment. For example, given 5 columns, a possible segmentation of $[1,5]$ is:

$$
S=\{[1,2],[3,4],[5,5]\}
$$

For convenience, the three segments are denoted simply by integer labels 1,2 and 3 .
A compatible network N is a directed acyclic graph (DAG) that explains input I with a segmentation S. N is defined as follows: It has three kinds of nodes. A node with no incoming edge is a root node and N may have multiple root nodes. A node with no outgoing edges is a leaf node and there can be no more than n leaf nodes in N. Every other node is an internal node. An internal node has at most two incoming edges. When a node has exactly one incoming edge, it is called a mutation node and the incoming edge is called a mutation edge. When the node has two incoming edges, the node is called a recombination or a hybrid node and the incoming edges are called recombination edges. A mutation edge is labeled with element(s) from the matrix I. A recombination edge is labeled with segment(s) of S.

Each node in N is labeled by a sequence of length m. Let e be the mutation edge coming into node v with labels $c_{1}, c_{2}, \ldots c_{l}$. Let c_{i} occur in column j_{i} of I. Then the label of v is obtained from the label of its only parent, by replacing positions $j_{1}, j_{2}, \ldots, j_{l}$ with values $c_{1}, c_{2}, \ldots, c_{l}$ respectively.

Let e_{1} and e_{2} be two recombination edges coming into a node v with segment labels $s_{1}, s_{2}, \ldots s_{l_{1}}$ and $r_{1}, r_{2}, \ldots r_{l_{2}}$ of parents 1 and 2 respectively. The label of node v is a hybrid sequence with segments $s_{1}, s_{2}, \ldots s_{l_{1}}$ from the label of the first parent and segments $r_{1}, r_{2}, \ldots r_{l_{2}}$ from the label of the second parent. Each position in the missing segments, i.e. neither from parent 1 nor from parent 2 , in the label is written as ϕ. The interpretation of ϕ is that it is a sort of a filler, that is not reflected in any way in the extant sequences and could be ignored for all practical purposes. In genetic terms these are partial sequences that have been lost and their existence is known because only part of it (a recombinant fragment) has reached the present. An interesting example is found in the ABO sequence variations $\left[\mathrm{FSF}^{+} 04\right]$.

Next, the network N is compatible with input I with segmentation S if the two conditions hold:
(1) the label of a leaf node corresponds to a row in matrix I and every row in matrix I is the label of some leaf node in N.
(2) For each column j in I, every solid character (of j) occurs exactly once in the label of some mutation edge in N.

The Compatible Network Construction Problem

For a segment $s \in S$, Restricted (N, s) is the network obtained by doing the following two operations. (1) Removing all recombination edges that do not have the label s. (2) Let character c occur in column j and $j \notin s$, then the label c can be removed from the mutation edge label.

Fact 1 For each segment $s \in S$, Restricted (N, s) is a forest, i.e., each connected component is a tree.
$L(N, s, c)$ is the collection of rows corresponding to leafnodes reachable from node v in $\operatorname{Restricted}(N, s)$ where v has an incoming mutation edge with the label c. Note that for a fixed c, the node v is unique in a compatible network. We pose the following optimization problems.

Problem 1 (Minimal Segmentation) Given I, the task is to compute a compatible network N with minimum number of elements in segmentation S of I.

Problem 2 (Minimal Recombination) Given I, the task is to compute a compatible network N with minimum number of recombinations in N.

Note that the number of recombinations in a compatible network is at least $K-1$, where K is the number of segments in the segmentation S.

Fact 2 (Nonuniqueness) Two distinct segmentations $S \neq S^{\prime}$ can give distinct compatible networks N and N^{\prime}. Moreover, it is possible that a segmentation S, can give two distinct compatible networks N_{1} and N_{2}.

Fig ?? shows a character matrix I and two distinct compatible networks for the same segmentation S (the interested reader can see an example in Fig ??, where two distinct segmentations of the same size ($K=2$) is possible for the same character matrix).

We propose to tackle Problem 1 in a three step process: In the first step we transform the input haplotypes into a character matrix; in the second step we split this character matrix into segments where a phylogenetic forest can explain each segment and then in the final step construct the compatible network from the forests. The details follow.

(Step 1) Staging the Input: Haplotypes to 'Character' Matrix

The input is a collection of haplotypes, in the form of a matrix I^{\prime} where each row is an ordered vector of SNP values as they appear along a chromosome. A running example of 25 haplotypes each with 85 SNP's is shown in in Fig 10. A reference sequence is shown at the top. The asterisk in the haplotype denotes agreement with the reference sequence.

We process this data into a smaller matrix (I) of blocks of SNPs that we call characters (not unlike taxonomic characters) since each column may now take on multiple values and further, the order is unspecified. This processing is carried out in the following three stages.

1. Removing redundancies: Without loss of generality, no two rows are identical in I^{\prime}. However, since our interest is in recombinations, identical columns are not considered redundant for the purpose of extracting the topology of the phylogenetic network. Note, however that the information regarding the redundant rows is retained for the final analysis.

(1) I^{\prime} : Input matrix of SNPs.

12345678910123456789101234456789

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	0	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
7	2	2	2	0	1	3	2	1	2	1	3	0	2	1	1	2	2	0	1	1	1	0	1	0	2	1	1	1	1
8	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1
9	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	1	1	1	1	1	1	1	1	2	1	1	1	1
10	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	1	1	1	1	1	1	1	1	2	1	1	1	1
11	2	2	2	3	2	3	2	2	3	1	3	1	1	1	2	2	1	1	1	1	1	1	1	1	2	1	1	1	1
12	2	2	2	3	2	3	2	2	4	1	3	1	1	1	2	2	1	1	1	1	1	1	1	1	2	1	1	1	1
13	2	2	2	3	2	3	3	2	4	1	3	1	1	1	1	2	2	1	1	1	2	1	1	1	2	1	1	1	1
14	2	2	2	3	2	3	3	2	3	1	3	3	1	1	1	2	2	1	1	1	2	1	1	1	2	1	1	1	1
15	2	2	2	3	2	3	2	0	3	1	3	3	1	1	1	2	2	1	1	1	2	1	1	1	2	1	0	0	2
16	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	2
17	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1
18	2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1
19	2	2	2	3	2	3	2	2	3	1	3	1	1	2	1	2	2	1	1	1	3	1	2	3	1	1	3	3	1
20	2	2	2	3	2	3	2	2	3	1	3	1	1	2	1	2	2	1	1	1	3	1	2	3	1	1	3	3	1
21	2	1	2	3	0	3	2	1	2	1	3	0	1	2	1	2	2	1	1	1	3	1	2	3	1	1	3	3	1
22	2	2	2	3	2	3	2	1	3	2	3	1	2	3	1	2	2	1	1	1	3	3	2	1	1	1	1	3	1
23	2	2	2	3	2	3	2	1	3	2	3	1	2	3	1	2	2	1	1	1	3	3	2	1	1	1	1	3	1
24	2	2	2	3	2	3	2	1	3	2	3	5	2	3	1	2	2	1	1	1	3	3	2	1	1	1	1	3	1
25	2	2	2	3	2	3	2	1	3	2	3	5	2	3	1	2	2	1	1	1	3	3	2	1	1	1	1	3	1

(2) $I^{\prime \prime}:$ Blocking $g=3$ SNPs of I^{\prime}.
cluster $1 \begin{array}{llllllllllllllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 910 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 920 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} \quad\binom{$ rows of }{$I^{\prime \prime}}$

1	1		1			1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			3 4)
2			2	2	3	2	3	2	1	3	0	3	1	2	0	1	2	2	1	1	1	3	0	2	1	1	1	1	3	1	(22	2324	25)
3			2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	1	1	1	1	1	1	1	1	2	1	1	1	1		(9	10)
4		2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1		(8)17	18)
5		2	2	2	3	2	3	2	2	3	1	3	1	1	2	1	2	2	1	1	1	3	1	2	3	1	1	3	3	1		(19	20)
6			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,			(1)
7			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	,			(5)
8			1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1			(6)
9		2	2	2	0	1	3	2	1	2	1	3	0	2	1	1	2	2	0	1	1	1	0	1	0	2	1	1	1	,			(7)
10		2	2	2	3	2	3	2	2	3	1	3	1	1	1	2	2	1	1	1	1	1	1	1	1	2	1	1	1	1			(11)
11			2	2	3	2	3	2	2	4	1	3	1	1	1	2	2	1	1	1	1	1	1	1	1	2	1	1	1	1			(12)
12		2	2	2	3	2	3	3	2	4	1	3	1	1	1	1	2	2	1	1	1	2	1	1	1	2	1	1	1	1			(13)
13		2	2	2	3	2	3	3	2	3	1	3	3	1	1	1	2	2	1	1	1	2	1	1	1	2	1	1	1	1			(14)
14		2	2	2	3	2	3	2	0	3	1	3	3	1	1	1	2	2	1	1	1	2	1	1	1	2	1	0	0	2			(15)
15		2	2	2	3	2	3	2	2	3	1	3	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	2			(16)
16		2	1	2	3	0	3	2	1	2	1	3	0	1	2	1	2	2	1	1	1	3	1	2	3	1	1	3	3	1			(21)

(3) I : Clustering of the rows of $I^{\prime \prime}$.

Figure 10: The steps involved in processing input SNP matrix I^{\prime} to obtain the character matrix $I^{\prime \prime}$. See text for details and Fig 11 for the explanation of one of the clusters represented in I.

Figure 11: Possible evolutionary history of cluster 2. The putative root node (vector) for this history is row 2 of I of Fig 10 .
2. Grouping the columns (graing): A fixed number, g, of consecutive columns of I^{\prime} are blocked together to obtain $I^{\prime \prime}$. Thus, each column of $I^{\prime \prime}$ represents a block of g consecutive SNPs from the input matrix I^{\prime}. Each distinct pattern in $I^{\prime \prime}$ is assigned a distinct integer label. Note that for the purposes of extracting the topology, it is adequate to distinguish different patterns in a single column. Thus a label ' 2 ' in column one may represent an entirely different pattern from label ' 2 ' in column four. (Note that we used uppercase alphabets for these labels, instead of integers, in the previous section for ease of exposition.)

In Fig 10 a grain size of $g=3$ is used on I^{\prime} to give a 25×29 matrix $I^{\prime \prime}$. Each column represents a block of three consecutive SNPs (except the very last column which has only one SNP). Each distinct pattern is assigned a distinct integer. For example, in column 1, pattern CTC (or CT* in I^{\prime}) is assigned integer 1; pattern GCC (or $* * *$ in I^{\prime}) is assigned integer 2.

Wild character 0 in I^{\prime}. A unique pattern in a column is assigned 0 . Note that a single column may have multiple 0's. For example, in Fig 10 (2), column 12 has a value 0 at rows 7 and 21. The pattern GAA appears only in row 7 and the pattern GGA appears only once in row 21 in that column.
3. Clustering the rows: In this step, we reduce the number of rows of $I^{\prime \prime}$ by identifying clusters of rows that (possibly) do not have any recombinations in their evolutionary history.

Each cluster is represented by a single vector that is the putative root node of the evolutionary history (tree) of the cluster elements.

We use a greedy iterative algorithm to compute the clusters. This is based on uninterrupted patterns across the rows of the matrix and the process is summarized below.

Wrapper Procedure:
(Step 1) In each column of $I^{\prime \prime}$, replace a unique entry by 0 .
(Step 2) Collapse $I^{\prime \prime}$ to \breve{I}, where a row in \breve{I} is the putative root of a cluster of rows of $I^{\prime \prime}$ (see below).
(Step 3) IF $I^{\prime \prime}$ is identical to \breve{I}, terminate the process ELSE Update \breve{I} to $I^{\prime \prime}$ and go to Step 1 .
The pseudcode for Collapse, the process of clustering multiple rows into one putative root vector, is given below. This is a recursive process and the very first call is made with $c=1 ; r_{\max }$ is the number of rows and $c_{\max }$ is the number of columns in I; and pat is initialized to the empty string ϕ. The concatenation of string pat followed by string p is written as $p a t \oplus p$: this is the putative root vector that is built incrementally in the successive calls of the routine. The calls terminate either when singleton sets (\mathcal{S}) are reached or the rightmost column $c_{\max }$ is reached.

Collapse($\left.I, c, c_{\text {max }}, r_{\text {max }}, p a t\right)$
(1) IF $\left(c>c_{\max }\right)$ THEN rows of I is a cluster and pat is the putative root
2) $\operatorname{ELSE}\{$
(3) $\mathcal{S}_{\text {zero }} \leftarrow\{i \mid I[i, c]$ is ' 0 ' $\}$
(4) FOR each $p \neq$ ' 0 ' in column c of I \{
(5) $\quad \mathcal{S}_{p} \leftarrow\{i \mid I[i, c]$ is $p\} \cup \mathcal{S}_{z e r o}$
(6) \quad Restrict I only to the $r\left(=\left|\mathcal{S}_{p}\right|\right)$ rows of \mathcal{S}_{p} to get \tilde{I}

IF $(r>1)$ THEN Collapse($\left.\tilde{I}, c+1, c_{\text {max }}, r, p a t \oplus p\right)$
\}
(9) $\}$

The structure of the tree (plausible evolutionary history) of a cluster with the putative root is embedded in the run-time history of the wrapper procedure and the recursive calls of Collapse(). We omit the details here to avoid digression. It suffices to assume that this tree can be constructed with ease. Note that it is possible to get overlapping clusters using Collapse(), due to the use of $\mathcal{S}_{z e r o}$ in the procedure: see line (5) above. When a sample, say i, appears in multiple clusters, the result is to be interpreted as follows: for the granularity used, the analysis is unchanged whether i is in one cluster or the other(s). The strength of this approach is in the flexibility it provides in terms of alternative plausible hypotheses for a data set.

Fig 10 (3) shows a clustering of the samples of $I^{\prime \prime}$. Fig 11 describes cluster 2 from the example and shows its possible evolutionary history as a tree. Note that the four rows $22,23,24,25$ of $I^{\prime \prime}$ are identical except in column 12 where rows 22 and 23 have a value 1 and rows 24 and 25 have a value 5 . Thus these two groups are split in the tree shown in Fig 11. The vector representing the putative root of this cluster has a value of 1 in column 12. This is because the value 5 does not appear in any of the remaining rows (other than rows $22,23,24,25$) in I^{\prime} at column 12 ; however value 1 does appear in some of the others. Were it the case, that value 1 did not appear in any of the remaining rows, then the vector would have had a value 0 in this column.

(Step 2) Computing Segmentation S

In this step we segment the matrix I into as small a number of segments as possible, such that for each segment there exists a compatible forest (described in Problem 3 at the end of the section). However, we must first introduce some terminology to understand this problem setting and its proposed solution.

Let S be a segmentation with K segments of the input $n \times m$ character matrix I. For each $1 \leq k \leq K$, let the k th segment be $s^{k}=\left[j_{1}^{k}, j_{2}^{k}\right]$. For convenience, the size of the k th segment is $s z_{k}=j_{2}^{k}-j_{1}^{k}+1$. Then I^{k} is the $n \times s z_{k}$ sub-matrix obtained by extracting the columns $j_{1}^{k} \leq j \leq j_{2}^{k}$ of I.

The segmentation S is such that for each (sub)matrix I^{k} there exists a compatible network N^{k} with no recombination nodes and a single segment in its segmentation. In other words, N^{k} is a forest, i.e., every connected component is a tree.

Character array I to multisets C's. Let column j of the matrix I have L^{j} distinct characters, where none of the characters is a dont care ('-'). Let these characters of column j be $c_{1}^{j}, c_{2}^{j}, \ldots, c_{l}^{j}, \ldots, c_{L^{j}}^{j}$. For each distinct character c_{l}^{j} of column j, define a set of rows (or sample numbers) as follows:

$$
C_{l}^{j}=\left\{i \mid I[i, j] \text { is } c_{l}^{j}\right\}
$$

Thus each column j can be written as a multiset (or, set of sets):

$$
\mathcal{C}^{j}=\left\{C_{1}^{j}, C_{2}^{j}, \ldots, C_{l}^{j}, \ldots C_{L^{j}}^{j}\right\}
$$

Let C_{0}^{j} is the set of 0 's or wild cards in column j and is called the zeroset of column j.

Two sets C_{1} and C_{2} straddle if both the conditions hold: (1) the intersection of C_{1} and $C_{2}, C_{1} \cap C_{2}$, is not empty, and, (2) both the set differences $C_{1} \backslash\left(C_{1} \cap C_{2}\right)$ and $C_{2} \backslash\left(C_{1} \cap C_{2}\right)$ are non empty. As an example, let $C_{1}=\{1,2,3\}, C_{2}=\{2,3,4\}, C_{3}=\{3,4\}$ and $C_{4}=\{5,6\}$. Then C_{4} does not straddle with any of the other sets and C_{3} does not straddle with C_{2}. However, C_{1} and C_{2} straddle; C_{1} and C_{3} straddle.

Two nodes v_{1} and v_{2} are incomparable if there exists no segment label s such that there is a s-path from a root to a leaf node with both v_{1} and v_{2} in the path.

Fact 3 (incomparable mutation nodes) Let v_{1} and v_{2} be two mutation nodes with incoming edges e_{1} and e_{2} respectively with solid character labels c_{1} and c_{2} at column j. Then v_{1} and v_{2} must be incomparable in the compatible network.

Problem 3 (Compatible Forest Problem) Given a matrix I, the task is to find if there exists some partitioning of the zeroset C_{0}^{j} of each j such that any pair of columns j and k are compatible using the partitions of the zerosets for the given A.

It is possible to ignore the wild characters by replacing each by a non-zero (unique) integer. Further, when the character matrix I is binary and the wild characters are ignored, this problem has been called perfect phylogeny in literature. Even this restricted problem is known to be NP-hard.

We use a greedy algorithm to segment the matrix I into as small a number of segments as possible, such that for each segment there exists a compatible forest. Fig ?? shows a example of I and three possible segmentations using $A=1$, i.e., at most one character per column is designated as a dont care. The first one has the minimum number of segmentations, i.e, 1. Nevertheless, we study two more segmentations for illustrative purposes. For partitioning of zerosets, consider the multisets for columns 5, 6 and 7 of I of Fig ?? (1):

\mathcal{C}^{5}	\mathcal{C}^{6}	\mathcal{C}^{7}
$C_{0}^{5}=\{1\}$,	$C_{0}^{6}=\{1,2,4,6\}$,	$C_{1}^{7}=\{1,2,3,6\}$,
$C_{1}^{5}=\{3,6\}$,	$C_{1}^{6}=\{3,5\}$.	$C_{2}^{7}=\{4,5\}$.
$C_{2}^{5}=\{2,4,5\}$.		

Pattern ' 1 ' of column 5 and pattern ' 1 ' of column 7 are designated dont care characters (${ }^{\prime}-$ ') in the respective columns in Fig ?? (3). Next only C_{1}^{6} is augmented with elements of the zeroset C_{0}^{6} to obtain $\{1,2,3,4,5,6\}$.

\mathcal{C}^{5}	\mathcal{C}^{6}	$\mid c$
C_{0}^{7}		
$C_{0}^{5}=\{1\}$,	$C_{1}^{6^{\prime}}=\{1,2,3,4,5,6\}$.	$C_{2}^{7}=\{4,5\}$.

Now, it can be easily verified that each pair of columns $(5,6,7)$ is compatible and a compatible tree is shown in Fig ?? (3b).

(Step 3) Forests to Networks: The DSR Algorithm

Segmentation suggests a method to compute a compatible network: Given I, a possible segmentation and the corresponding forests are first constructed and then the compatible network is constructed from the forests. Thus we set the stage to solve the following problem.

Problem 4 (Consensus Compatible Network Problem) Given two networks N_{1} on a vertex set U and N_{2} on a vertex set V, defined on the same set of samples, and with no common mutation edge labels, the task is to compute N_{3} on some vertex set W, with two segments s_{1} and s_{2} such that for each edge label c_{1} in N_{1} and each edge label c_{2} in N_{2}, the following holds:

$$
\begin{aligned}
& L\left(N_{3}, s_{1}, c_{1}\right)=L\left(N_{1}, s_{1}, c_{1}\right) \\
& L\left(N_{3}, s_{2}, c_{2}\right)=L\left(N_{2}, s_{2}, c_{2}\right)
\end{aligned}
$$

Overview of the approach. We solve this problem using a topology based method. Our approach is iterative, bottom-up working at one level of N_{1} and N_{2} at a time. The method gets its name from the need to give one of three possible "colors" (Dominant or Subdominant or Recombinant) assignment to nodes at each stage, which is central to this approach. Roughly speaking, a dominant node in W uses the edge labels of N_{1} and N_{2}; a subdominant uses one of the edge labels of N_{1} and N_{2} (but not both); and a recombinant uses neither of the edge labels of N_{1} and N_{2} and is indeed a recombinant node in N_{3}. In the iterative procedure, the "color" of a dominant or a subdominant node may change to recombinant. For the DSR algorithm, the label of the leafnode is the set of samples or rows represented by that node. We begin by considering the bottommost level in both N_{1} and N_{2} and computing the intersection matrix X. Let P_{u} be the leaf nodes in N_{1} and P_{v} be lefnodes in N_{2}. For convenience, the P 's of iteration i are written as P_{u}^{i} and $P_{v}^{i} . P_{u}^{i}$ and P_{v}^{i} are updated through the iterations as follows:

$$
\begin{aligned}
P_{u}^{i} & =\left\{u \in U \mid \text { for all descendants } x \text { of } u \text { in } N_{1}, x \in P_{u}^{i^{\prime}} \text { holds for some } i^{\prime}<i\right\}, \\
P_{v}^{i} & =\left\{v \in V \mid \text { for all descendants } x \text { of } v \text { in } N_{2}, x \in P_{v}^{i^{\prime}} \text { holds for some } i^{\prime}<i\right\} .
\end{aligned}
$$

Compatible DSR assignment of X. An appropriate assignment of DSR is required so that a network N_{3} can actually be built. The DSR assignment of matrix X is compatible if it satisfies the following two conditions:

1. Each row and each column in matrix X has at most one dominant. If there is no dominant, then it has at most one subdominant.
2. A non-recombinant element can have another non-recombinant in its row or its column but not both.

It can be verified that if any one of the above conditions is violated, it would be impossible to construct a compatible network N_{3}. Although in the discussion above N_{1} and N_{2} are forests, the same method can be extended to the case when one or both are not forests (see the original papers).

The correctness of the DSR algorithm follows from the two observations which can be verified.
Fact 4 (Incomparable P 's) If $u_{1}, u_{2} \in P_{u}^{i}$, at some iteration i, then u_{1} and u_{2} are incomparable in N_{1}. Similarly for $v_{1}, v_{2} \in P_{v}^{i}$.

Fact 5 (Incomparable w 's) If two solid characters c_{1} and c_{2} are edge labels at position j, incident on nodes w_{1} and w_{2} in N_{3}, then w_{1} and w_{2} are incomparable in N_{3}.

Approximation Factor of the Greedy DSR Scheme

In this section, we compute the approximation factor of the greedy version of the DSR Scheme. Let the number of new recombination events produced by the DSR algorithm in G_{3} be $N_{\text {DSR }}$. Let the optimal number of new recombinations be N_{opt}. We use the following definition of the true approximation factor:

$$
\begin{equation*}
\text { approx }_{\text {true }}=\frac{N_{\mathrm{DSR}}-N_{\mathrm{Opt}}}{N_{\mathrm{Opt}}} \tag{2}
\end{equation*}
$$

For given graphs G_{1} and G_{2} let $z_{l}=\max \left(n_{l}, m_{l}\right)$ where $n_{l}>0$ and $m_{l}>0$ are the number of nodes at level l in G_{1} and G_{2} respectively. Further, let Z be the sum of all z_{l} over all the levels (excluding the leaf level). Let $L_{v}(G)$ be all the leafnodes (extant units) reachable from node v in G. For each level, $l>0$, i.e. excluding the leafnodes, consider $L_{v_{i}}\left(G_{1}\right), 1 \leq i \leq n_{l}$, where each v_{i} is at level l in G_{1}. Similarly consider $L_{u_{i}}\left(G_{2}\right), 1 \leq i \leq m_{l}$, where each u_{i} is at level l in G_{2}. Let x_{l} be the number of non-empty intersections between the two collection of sets and let Y be the sum of x_{l} over all the levels (excluding leaf level). Note that if G_{1} and G_{2} are the same (isomorphic) graphs then $Y=Z$ and $N_{\mathrm{opt}}=0$.

Figure 12: In (a) \& (b) G_{1} and G_{2} have segmentation $S=\{2,3,4\}$. (b) The two parents of node 'R' have labels $\{4,2\}$ and $\{3,2\}$. Thus, the network restricted to segment label 2 , shown in (c), has a closed path defined by the nodes labeled ' Z ', ' W ', ' U ', ' R ' and ' V '. Hence the network in (b) is not compatible.

Figure 13: Given trees T_{1} in (a) and T_{2} in (b), each of height 3. (c) These two trees define $X_{l}, 1 \leq l \leq 3$, for each level l.Note that the entries in $X_{l}, l>1$ differ in details depending on the choices the DSR algorithm makes. While ' \emptyset ' denotes an empty set, '?' (including ' $\{\cdot\}$ ') could be either empty or non-empty, again depending on the choices the DSR Scheme makes.

Figure 14: (a) \& (b) Two possible consensus networks G_{1} and G_{2} for two input trees T_{1} and T_{2} of Fig 13. (c) The edge labels of G_{2} have been locally shuffled keeping the exact same topology.

$2: 1 \quad 2: 2 \quad 2: 3 \quad 2: 4 \quad-\phi-$					
1:1	$\{d\}$	\emptyset	¢	\{c\}	\emptyset
1:2	\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset
1:3	\emptyset	$\{e\}$	\emptyset	\{b\}	\emptyset
- ϕ -	\emptyset	\emptyset	\emptyset	\emptyset	

(a) Level 1: X_{1}

(b) Level 2: X_{2}

(c) Level 3: X_{3}

Figure 15: X-matrices of Network G_{1} of Fig 14 (a). The X_{l} matrix is shown on the top and the DSR assignment shown in the bottom row for each $l, 1 \leq l \leq 3$.

Theorem 1 .

$$
\begin{equation*}
\text { approx }_{\text {true }} \leq \frac{Z}{\max (1, Y-Z)} \tag{3}
\end{equation*}
$$

Proof: Let $N_{\max }\left(N_{\min }\right)$ be the maximum (minimum) number of new recombinations produced by the DSR scheme over all possible DSR assignments. Then we first show the following:

$$
\begin{equation*}
N_{\min } \leq N_{\mathrm{opt}} \leq N_{\mathrm{DSR}} \leq N_{\max } \tag{4}
\end{equation*}
$$

Clearly $N_{\text {opt }} \leq N_{\max }$ holds (else it contradicts the optimality of N_{opt}). Next we have to show that $N_{\min } \leq$ $N_{\text {opt }}$ holds as well. For this we need a few more characterizations of the network.
Recombination Node Descriptor $F_{1} \mid F_{2}$: Let Y be the set all given haplotypes (or taxa). A split or bipartition is written as $Z_{1} \mid Z_{2}$ where Z_{1} and Z_{2} are nonoverlapping subsets of Y with $Y=Z_{1} \cup Z_{2}$. A tripartition $Z_{1}\left|Z_{2}\right| Z_{3}$ is defined similarly. In earlier works a mutation event has been associated with a bipartition of Y and a recombination event with a tripartition. However, the latter requires certain restrictions in the form of network G, i.e., a recombination node cannot be a direct descendent of another recombination node. Here we define recombination nodes as a bipartition of an appropriate subset of features.

For a fixed segment s, let s-path be a path in the graph with mutation edge(s) and recombinant edge(s) with s in its label. For any v, note that there is a unique s-path from a root to v. Further, let v be a recombination node and $l b l_{1}$ and $l b l_{2}$ be the labels of the two incoming (recombination) edges $u_{1} v$ and $u_{2} v$ respectively. For $s_{1} \in l b l_{1}$ but $s_{1} \notin l b l_{2}$, let feature f_{1} be such that $s_{1}: f_{1}$ is in the label of the closest mutation edge on the s_{1}-path from v. Then F_{1} is the set of all such features. F_{2} is defined similarly. For example consider in G_{1} of Fig 12(a), consider the recombination leafnode labeled with haplotype a. Here $l b l_{1}=\{2\}, l b l_{2}=\{3\}$ and the descriptor for this node is $F_{1}\left|F_{2}=\{2: 4\}\right|\{3: 5\}$. For the recombination node labeled ' R ', $l b l_{1}=\{4\}, l b l_{2}=\{2,3\}$ and the descriptor is $F_{1}\left|F_{2}=\{4: 7\}\right|\{2: 9,3: 8\}$.
Isomorphism $\left(G_{1} \equiv G_{2}\right)$): Let $L_{v}(G)$ be all the leafnodes (extant units) reachable from node v. Let $s: f$ be in the label of the unique incoming edge on mutation node v and then let $L_{s: f}(G)$ be the same as L_{v}. Two compatible networks G_{1} and G_{2} on the same segmentation S are isomorphic (or identical), written as $G_{1} \equiv G_{2}$, if the following two conditions hold: (1) For each element $s: f$ in $G_{1}, L_{s: f}\left(G_{1}\right)=L_{s: f}\left(G_{2}\right)$ and viceversa, and, (2) For each recombination node v in G_{1} with descriptor $F_{1} \mid F_{2}$, there exists a recombination node in G_{2} with the same descriptor and viceversa.
Canonical Form: It is possible to bubble $u p$ or down an element in the mutation edge label to obtain G^{\prime} such that $G^{\prime} \equiv G$. Our convention will be to bubble down the element of the mutation edge label, towards a leafnode. A network G is in the canonical form (1) if no node has only one outgoing edge and (2) if no element of any mutation edge label can be bubbled down to obtain G^{\prime} with $G^{\prime} \equiv G$. For example see Fig 14 .

$2: 1 \quad 2: 2 \quad 2: 3 \quad 2: 4 \quad-\phi-$					
1:1	$\{d\}$	\emptyset	\emptyset	$\{c\}$	\emptyset
1:2	\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset
1:3	\emptyset	\{e\}	\emptyset	\{b\}	\emptyset
- ϕ -	\emptyset	\emptyset	\emptyset	\emptyset	

(a) Level 1: X_{1}

(b) Level 2: X_{2}

(c) Level 3: X_{3}

Figure 16: X-matrices of Network G_{2} of Fig 14 (b). Also see Fig 15 for a description of the matrices.

Since the levels of nodes in a canonical network are unique, the following can be readily verified (see also concrete examples in Figs 13 and 19).

Lemma 1 Let G_{3} be the consensus of G_{1} and G_{2} which are in canonical forms, with $l_{\max }\left(l_{\min }\right)$ as the maximum (minimum) of the heights of G_{1} and G_{2}. Then there exist some X-matrices, $X_{1}, X_{2}, \ldots, X_{l_{\max }}$ whose DSR assignments produce G_{3}. This is written as $G_{3} \cong X_{1}, X_{2}, \ldots, X_{l_{\max }}$.

Back to the proof: We have to show that $N_{\text {min }} \leq N_{\text {opt }}$ holds. Assume the contrary, i.e., $N_{\text {opt }}<N_{\text {min }}$. In other words, the optimal number of new recombinations is even lower than the minimum produced by the algorithm over all possible choices. Then consider this network G_{3}^{\prime} with N_{opt} new recombinations. Then by Lemma 1, there exist a sequence of X-matrices $G_{3}^{\prime} \cong X_{1}, X_{2}, \ldots, X_{l_{\max }}$ with some DSR assignments for each X_{l}. Thus by these choices of the algorithm $N_{\min } \leq N_{\mathrm{Opt}}$ must hold, again leading to a contradiction. Hence $N_{\text {opt }} \nless N_{\text {min }}$. Here ends the proof of correctness of Eqn 4. Next, we give a few characterizations of the DSR assignment to facilitate the counting of the new recombinations.
Type I \& II (new) Recombination Events: Let v be a recombination node in G_{3} with labels $l b l_{1}$ and $l b l_{2}$ on the two incoming edges and descriptor $F_{1} \mid F_{2}$. The recombination event is new if, without loss of generality, $l b l_{1} \subseteq S_{1}$ and $l b l_{2} \subseteq S_{2}$. In other words, this recombination node is a result of the consensus of G_{1} and G_{2} (and not a recombination that existed in G_{1} or G_{2}). A new recombination node v is of two types: Let $e_{1}\left(e_{2}\right)$ be a mutation edge in $G_{1}\left(G_{2}\right)$ with a label in $F_{1}\left(F_{2}\right)$. Without loss of generality, let $\operatorname{level}\left(e_{1}, G_{1}\right)=l$. Then the recombination is of Type I at level l if $\operatorname{level}\left(e_{2}, G_{2}\right)=l$ and is of Type II at level l if $\operatorname{level}\left(e_{2}, G_{2}\right)>l$. Further, let the number of (non-empty) entries assigned dominant be n_{l}^{D}, subdominant be n_{l}^{S} and recombinant be n_{l}^{R} in an X-matrix X_{l}. Then the following can be verified.
Lemma 2 The number of Type I recombination events at level l in G_{3} is n_{l}^{R}. The number of Type II recombination events at level l in G_{3} is $\leq n_{l}^{D}+n_{l}^{S}$. Also, the number of recombination events in a network is bounded below ($N_{\min }$) by the number of Type I recombination events and above ($N_{\max }$) by the sum of the number of Type I and Type II recombination events.

Islands in \boldsymbol{X} : We now give tighter bounds on n_{l}^{D}, n_{l}^{S} and n_{l}^{R} for our analysis. Consider a bipartite graph $B(V, E)$ with V partitioned into (1) n_{l} nodes, corresponding to the rows and (2) m_{l} nodes corresponding to the columns of X_{l}. The adjacency matrix X_{l}^{\prime} is obtained from X_{l} where an empty set entry is replaced with 0 and a non-empty set entry with 1 . Let the number of connected components of graph $B(V, E)$ be C_{l}. Each connected component corresponds to an island in X_{l} which is a collection of rows and columns of X_{l}. Thus X_{l} is fragmented into C_{l} islands, $X_{l, i}$, written as: $X_{l}=X_{l, 1}+X_{l, 2}+\ldots+X_{l, C_{l}}$. See Fig 17 for an example. Note that this fragmentation is for analysis purposes only. Further, $\sum_{l=1}^{l_{b n d}} \sum_{i=1}^{C_{l}} y_{l, i}$, for any $y_{l, i}$,

Figure 17: (a) X_{l} has five rows and six columns. (b) The rows and columns have been permuted (shuffled) to reveal the three islands (or three connected components in the associated bipartite graph).
will be written simply as $\sum_{l, i}^{l_{b n d}} y_{l, i}$. Let island $X_{l, i}$ have $x_{l, i}$ non-empty entries and let the number of entries assigned $Y(D$ or S or $R)$ in $X_{l, i}$ be $n_{l, i}^{Y}$. Within an island the number of non-recombinants cannot exceed $\max \left(n_{l, i}, m_{l, i}\right)$ by Rules 1 and 2 . Thus the following is easily verified:

Lemma 3 For each l and i (i.e., island $X_{l, i}$),

$$
\begin{array}{rlr}
n_{l, i}^{D}+n_{l, i}^{S} & =\max \left(n_{l, i}, m_{l, i}\right) & \text { (by Rule 3 in island } X_{l, i} \text {), } \\
n_{l, i}^{R} & =x_{l, i}-\max \left(n_{l, i}, m_{l, i}\right) & \left(\text { since } x_{l, i}=n_{l, i}^{D}+n_{l, i}^{S}+n_{l, i}^{R}\right) .
\end{array}
$$

Back to the proof: Next, let $N_{c \max }\left(\geq N_{\max }\right)$ and $N_{c \min }\left(\leq N_{\min }\right)$ be some computable functions of the input.Using Lemmas 2 and 3, we define appropriate (computable) $N_{c \max }$ and $N_{c \text { min }}$ as follows:

$$
\begin{align*}
N_{\max } \leq \sum_{l}^{l_{\min }} x_{l} & =N_{c \max } \tag{5}\\
N_{\min }=\sum_{l, i}^{l_{\min }} n_{l, i}^{R}=\sum_{l, i}^{l_{\min }}\left(x_{l, i}-\max \left(n_{l, i}, m_{l, i}\right)\right) \geq \sum_{l}^{l_{\min }} x_{l}-\sum_{l}^{l_{\min }} \max \left(n_{l}, m_{l}\right) & =N_{c \min } \tag{6}
\end{align*}
$$

Note that the greedy Rule 3 encourages fragmentation of $X_{l}, l>1$, into islands and under the best case scenario we get $n_{l}^{D}+n_{l}^{S}=\sum_{l}^{l_{\text {min }}} \max \left(n_{l}, m_{l}\right)$, which is used in Eqn 6 above. Finally, using Eqn 2, we have

$$
\begin{equation*}
\text { approx }_{t r u e}=\frac{N_{\mathrm{DSR}}-N_{\mathrm{Opt}}}{N_{\mathrm{Opt}}} \leq \frac{N_{c \max }-N_{c \text { min }}}{N_{c \text { min }}} \approx \frac{N_{c \max }-N_{c \text { min }}}{\max \left(1, N_{c \text { min }}\right)} \tag{7}
\end{equation*}
$$

The correctness of Eqn 3 is established by setting $Z=\sum_{l, i}^{l_{\text {min }}} \max \left(n_{l}, m_{l}\right)$ and $Y=\sum_{l}^{l_{\text {min }}} x_{l}$. Here ends the proof.

Figure 18: The network on segment Chr X: $87390235-87412114$ of the three populations using HapMap II data. The leafnodes are labeled with (a set of) clusters of the input haplotypes. A label on an internal node is for reference purposes only. An element of the edge label is to be interpreted as segment-id:position-id:pattern-id. Further details are available at http://www.cs.nyu.edu/parida/res/public/Xchr08.

Figure 19: Consensus of a tree and a network.

	2:1	$2 \bullet 3$	2:2	$2: 3$	$\begin{aligned} & d_{11} \\ & d_{12}^{2,3,4} \\ & d_{13} \end{aligned}$
1:1	D			R	
1:2		D			
1:3			D	R	
- ϕ -					
	d_{11}	${ }_{12}, d_{12}^{3}$	d_{13}		

(a) Level 1: X_{1}

(b) Level $2 X_{2}$

(c) Level $3 X_{3}$

$$
\begin{gathered}
\\
-\phi-4 \bullet 2 \\
\hline d_{31} \\
\hline
\end{gathered}
$$

$$
-\phi-\frac{3.4 \bullet 2}{\frac{S}{s_{y_{41}}^{3,4}, s_{y_{41}}^{2}}}
$$

(d) Level $4 X_{4}$

$$
-\phi-\frac{2: 9}{\left\{s_{y_{31}}, s_{y_{41}}^{2}\right\}}
$$

$$
-\phi-\begin{gathered}
2: 9 \\
\frac{S}{s_{y_{51}}}
\end{gathered}
$$

(e) Level $5 X_{5}$

(f) Level 1

(g) Level 2

(i) Level 4

(j) Level 5

Figure 20: Stepwise construction of G_{3} of Fig 19 (c) as consensus of T_{1} and G_{2} : (a)-(e) The X matrices and the DSR assignments. (f)-(j) The construction of G_{3} using the DSR assignments of (a)-(e).

Figure 21: MDS plots of all regions and the best thirteen: stress factor 4% and 4.64% respectively.

Figure 22: Region 1 Principal Component Analysis

Figure 23: Region 1 Principal Component Analysis

Figure 24: Region 1 Principal Component Analysis

Figure 25: Region 1 Correspondence Analysis

Figure 26: Region 1 Correspondence Analysis

Figure 27: Region 1 Correspondence Analysis

	Fact.1	Fact.2	Fact.3	Fact.4	Fact.5	Fact.6	Fact.7	Fact.8	Fact.9	Fact.10
LWK	10.23	10.16	0.00	31.29	25.93	11.29	1.35	0.54	0.11	0.02
MKK	16.74	$\mathbf{5 9 . 0 7}$	13.75	0.54	0.08	0.08	0.27	0.07	0.28	0.04
YRI	$\mathbf{3 6 . 7 3}$	9.45	2.19	27.41	8.47	3.49	1.17	1.66	0.30	0.05
ASW	3.09	3.72	3.38	5.72	1.16	$\mathbf{6 0 . 0 3}$	0.25	12.22	1.28	0.05
GIH	3.61	0.19	0.07	$\mathbf{3 2 . 6 7}$	$\mathbf{4 4 . 3 6}$	3.34	5.75	0.27	0.49	0.15
CHB	6.07	3.37	13.13	0.02	1.60	1.90	9.24	1.70	9.32	$\mathbf{4 4 . 5 5}$
CHD	5.08	0.88	11.64	0.08	0.04	1.21	15.19	10.55	24.70	21.53
JPT	7.01	2.04	6.19	0.04	8.78	0.03	11.57	7.98	24.06	23.20
MEX	4.20	7.24	23.98	0.81	0.57	0.00	$\mathbf{3 2 . 4 7}$	19.18	1.68	0.78
CEU	4.14	3.76	$\mathbf{2 5 . 5 8}$	0.23	5.75	15.03	11.23	$\mathbf{2 4 . 7 5}$	0.08	0.37
TSI	3.10	0.13	0.10	1.19	3.26	3.60	11.49	21.07	$\mathbf{3 7 . 7 0}$	9.26
	Fact.1	Fact.2	Fact.3	Fact.4	Fact.5	Fact.6	Fact.7	Fact.8	Fact.9	Fact.10
LWK	3.29	0.00	0.85	0.27	$\mathbf{3 6 . 8 4}$	4.92	$\mathbf{4 1 . 9 3}$	0.34	2.08	0.39
MKK	17.07	$\mathbf{6 3 . 6 0}$	4.76	0.62	2.67	0.00	1.81	0.02	0.08	0.29
YRI	$\mathbf{4 7 . 6 2}$	19.09	2.43	14.44	1.95	2.60	1.74	0.01	0.21	0.81
ASW	2.26	9.54	0.09	$\mathbf{7 3 . 9 8}$	1.78	2.06	0.19	0.19	0.00	0.81
GIH	3.93	0.01	1.67	1.41	2.67	$\mathbf{6 4 . 1 2}$	0.34	16.04	0.27	0.45
CHB	5.59	0.76	2.37	3.78	32.11	7.90	15.08	19.30	2.62	1.40
CHD	4.26	0.46	8.00	0.84	0.92	2.90	3.80	2.53	$\mathbf{3 7 . 0 4}$	30.17
JPT	5.61	0.91	8.23	1.90	1.43	5.06	0.04	$\mathbf{5 1 . 3 1}$	5.32	11.09
MEX	2.87	0.96	1.85	2.02	17.28	9.58	35.05	8.60	2.00	10.70
CEU	3.89	3.11	$\mathbf{5 6 . 9 6}$	0.69	0.83	0.10	0.02	0.57	15.24	9.50
TSI	3.61	1.56	12.78	0.06	1.52	0.77	0.00	1.09	35.13	$\mathbf{3 4 . 3 9}$

Figure 28: Regions 1 and 2: Principal Component Analysis

Figure 29: Region 2 Principal Component Analysis

Figure 30: Region 2 Principal Component Analysis

Figure 31: Region 2 Principal Component Analysis

Figure 32: Region 2 Correspondence Analysis

Figure 33: Region 2 Correspondence Analysis

Figure 34: Region 2 Correspondence Analysis

[^0]:
 Research Division
 Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

[^1]: *Corresponding author: parida@us.ibm.com
 ${ }^{\dagger}$ Computational Biology Center, IBM T J Watson Research, Yorktown, USA.
 ${ }^{\ddagger}$ Department of Computer Science, Rensselaer Polytechnic Institute, New York, USA
 ${ }^{\S}$ Work done during an internship at IBM T J Watson Research Center.
 ${ }^{\text {® }}$ Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.

