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TECH REPORT

A Case for Recombinomics

Laxmi Parida∗ † Asif Javed† ‡ § Marta Melé † ‡ ¶ Jaume Bertranpetit¶

Abstract

In this report we present the results of the recombinational analysis based on our model IRiS. We
investigate HapMap III database with 11 populations and over 1000 samples: we picked this testbed
primarily due to the choice of SNPs in the database. In an effort to reduce the effects of compounding
errors due to limitations of current technologies and techniques, we focus on the recombining X Chro-
mosome. In our preliminary analysis, our results are two-fold. Firstly, we demonstrate the presence of
recombinations-based evidence in short segments of the genome to detect subcontinental divide in the
populations. We observe this in both populations-centered as well as recombinations-centered analysis.
Secondly, we make the surprising observation that the effect of the population dynamics that shapes
the allele-frequency variations between populations is also reflected in the purely recombination-based
variations. We conclude that our recombinational-based exploration has the potential to go well beyond
the known into non-traditional territories.
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1 Exploring Human X Chromosome

We glean regions of X-Chromosome for our recombinational analysis. At this stage HapMap III is the most
extensive in terms of population coverage as well as choice of SNPs. Although HGDP (Human Genome
Diversity Panel: http://www.stanford.edu/group/morrinst/hgdp.html) database has data
from very large number of ethnic groups, we found that the SNP density was not adequate for our analysis.
We use the HapMap III database: this includes samples from eleven populations with the subcontinental
divide as follows:

1. Four African (Af) populations: LWK, MKK, YRI and ASW.

2. One South-Asian (sA) population: GIH.

3. Three East-Asian (eA) populations: CHB, CHD, and JPT.

4. One American (Am) population: MEX.

5. Two European (Eu) populations: CEU and TSI.

This is summarized in the following table.
label population sample number of samples

LWK Luhya in Webuye, Kenya 100
MKK Maasai in Kinyawa, Kenya 180

YRI Yoruba in Ibadan, Nigeria 180
ASW African ancestry in Southwest USA 90
GIH Gujarati Indians in Houston, Texas 100

CHB Han Chinese in Beijing, China 90
CHD Chinese in Metropolitan Denver, Colorado 100

JPT Japanese in Tokyo, Japan 91
MEX Mexican ancestry in Los Angeles, California 90
CEU Utah residents with Northern and Western 180

European ancestry from the CEUPH collection
TSI Toscans in Italy 100

Some details on the SNP data. The SNP genotype data was generated from 1115 samples, collected using
two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP
6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. The Illumina
Human 1M Beadchip is focused on tagSNPs, SNPs in genes, and SNPs and non-polymorhic markers in
known and novel copy number variation regions. There are ≈ 950,000 tag SNPs and ≈ 100,000 non-
HapMap SNPs. There are 565,000 SNPs in and near coding regions and for the CNVs identification there
are ≈ 260,000 markers. The Affymetrix SNP 6.0 chip includes more than 906,600 SNPs containing an
unbiased selection of 482,000 SNPs from the Array 5,0, a selection of additional 424,000 tag SNPs, new
SNPs added in the dbSNP database and SNPs in recombination hotspots. On the X-chromosome, there are
approximately 16,500 SNPs in HGDP and 31,000 SNPs in HapMap III.

1.1 Screening Criteria

I. Identifying Potential Pitfalls. It is important to recognize the irrecoverable errors that any analysis
may produce to avoid possible misinterpretation of the results. We identify two primary sources that a
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recombinational-analysis must be wary of: presence of copy number variations (CNV) and segmental du-
plication (SD) in the input data. Our focus is on phylogeographic studies and thus to avoid the interplay
of any potential selection and the recombinational landscape, we avoid the putative gene regions on the
chromosome. Note that most phasing techniques are challenged by regions of low LD and by low frequency
haplotypes. Thus to avoid phantom recombinations due to possible phasing errors, in the female samples,
we pick only those that are homozygous in the screened region.

II. Enhancing signal-to-noise ratio. Note that not all SNPs are typed in all the populations in the database:
we pick only those that are typed in all the eleven populations. Further, we eliminate those regions that do
not have a sufficient number of SNPs (we use a cut-off limit of 80).

The details of our screening of the database, accounting for I and II above, is summarized below.

1. ChrX Regions: X chromosome of HapMap III (www.hapmap.org) data.

(a) at least 50 Kb away from genes. This information comes from Ensembl v37 (Feb 06) which is
the last version of Build 35, retrieved using BioMart
(http://feb2006.archive.ensembl.org/Homo-sapiens/martview).

(b) at least 50 Kb away from copy number variation (CNV) regions. This was done using Database
of Genomic Variants (http://projects.tcag.ca/variation/ ), Build 35.

(c) at least 50 Kb away from segmental duplication (SD) regions. This was done using Segmental
Duplications Database (http://humanparalogy.gs.washington.edu), Build 35.

2. Samples: In each selected ChrX region, males or homozygous females are selected.

3. SNPs: In each selected ChrX region of the samples, we picked the SNPs by applying the following
rules (in the order they are listed):

(a) SNP typed in all 11 populations,

(b) a total of at least 80 SNPs in the region,

(c) minor allele frequency (MAF) > 0.1 of total population.
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SNPs Recombinations
Label Start End size (bp) No. density samples ρ Hotspots
1 22505979 22728622 222643 95 1/2394 477 3.608 5
2 23071760 23213016 141256 96 1/1456 504 3.355 2
3 25715611 26016381 300770 83 1/3957 505 0.660 4
4 (Cg) 35038017 35504132 466115 81 1/5755 560 0.603 4
5 38875482 39480082 604607 179 1/3378 490 1.237 9
6 84704863 84952842 247979 80 1/3306 579 0.255 2
7 86338463 86609425 270962 90 1/3188 452 1.604 2
8 87288915 87838907 549992 204 1/2736 406 1.691 8
9 (Eg) 93522874 94555707 1032833 180 1/5738 392 0.895 6
10 (Dg) 112181012 112602418 421406 92 1/4581 514 0.375 2
11 116631417 116865805 234388 82 1/2894 527 1.849 2
12 120875730 121450338 574608 157 1/3831 431 1.335 7
13 (Bg) 125833172 126301999 468827 81 1/5787 492 0.526 3
14 (NH) 126499106 126892013 392907 72 1/5457 669 0.182 0
15 140883556 141050268 166712 99 1/1755 433 5.122 3
16 141376625 141647366 270741 88 1/3148 460 3.847 4
17 143563468 143896320 332852 96 1/3579 509 1.533 6
18 144769060 145266667 497607 162 1/3110 446 2.106 4

7197205

Figure 1: The 18 viable ChrX regions. The recombination rate ρ and the number of hotspots are computed
from HapMap II data: NH is the only region without hotspots by this computation.

1.2 The 18 Viable ChrX Regions

This screening gives us 18 viable regions on the human X Chromosome for recombinational exploration.
The distribution of these regions on the chromosome is shown in the ideogram. Further details on these
regions are shown in Fig 1.

Recombination rates and the location and the number of recombination hotspots were estimated from
Phase II HapMap data, release 21 (www.hapmap.org) using methods described in [MMH+04]. In
Section 4.1 we discuss the possible interplay of hotspots with our analysis. We characterize the viable
regions of the human ChrX: Fig 2 gives the breakdown of the samples by population and the value of
minimum number of recombinations, RM , for each population (see [HSW05] for RM ).

2 Method

Each region, which is a contiguous segment on the chromosome, is handled independently.
Biological Insights. The authors in [GSN+02] established the existence of haplotype blocks in humans.

Exploiting this characteristic that appropriately chosen SNP’s in a neighborhood on the chromosome exhibit
linkage disequilibrium (or the lack of independence), we segment the input haplotypes into some g-sized
chunks of adjacent SNPs. g is called the grain size. The analysis flow is summarized in the box.
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ChrX Regions Sample Break-down by Ethnicity
LWK MKK YRI ASW GIH CHB CHD JPT MEX CEU TSI

Cg samples 42 69 90 29 45 39 39 46 28 80 53
SNPs=81 RM 14 14 16 12 10 10 5 5 5 12 10

Region 6 samples 41 84 87 33 42 45 38 43 46 80 40
SNPs=75 RM 11 11 11 9 6 5 4 2 5 11 7

Eg samples 24 65 69 24 35 30 20 27 13 51 32
SNPs=180 RM 39 53 57 44 26 27 19 21 14 32 24

Dg samples 37 78 80 32 43 38 30 34 24 78 40
SNPs=92 RM 25 26 24 21 13 11 10 8 12 12 12

Bg samples 32 64 78 28 38 41 41 40 22 69 39
SNPs=81 RM 11 15 15 16 15 11 7 10 13 17 16

NH samples 41 69 89 29 59 67 62 73 30 92 58
SNPs=72 RM 12 12 12 12 5 3 2 1 8 10 8

Figure 2: The RM estimates of the populations in the different ChrX regions.

ANALYSIS FLOW:

(Statistical Analysis of Input)
LOOP

Choose block size g
Is this choice statistically sound? (Section 2.1)

YES: Exit LOOP
END LOOP

(Combinatorial Analysis)
Proceed to use IRiS with block size g (Section 2.2)

(Statistical Analysis of Output)
Analyze shared recombinations (Section 3.1)
Analyze recombination per population/sample (Section 3.2)

2.1 Statistical Analysis (using p-value estimations)

Are we justified in using g SNP’s as a block (or pattern)? Using k, the number of distinct patterns of the
g SNPs across the samples, as a proxy for the extent of LD in this block, we estimate the p-value of k.
Loosely speaking, when these g SNPs are in linkage equilibrium (or independent), k should be much larger
than when they are in LD. An alternative view is that k is an estimate of the number of lineages for the g
sized segment of the chromosome.

Let the number of samples be n and let the number of SNPs be N . Further, let V be a column vector of
size n. Since the SNPs are assumed to be bi-allelic, V which represents the value of a SNP in the n samples
is binary. We use two schemes, based on the mode of definition of the N vectors, to estimates the p-value.
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The range of values of k seen in our data is 2 ≤ k ≤ 16 and we study the p-value estimates in this range.

1. RandV: In this scheme, V1, V2, . . . , VN are defined randomly. In other words, each entry of each
V is picked independently and uniformly from a set of two alleles. We use 10000 replicates and the
distribution of the number of g-sized patterns is shown in Fig 3. The p-values estimated based on this
scheme is shown in the table below. The p-values are ≈ 0.0 for every value of k.

2. PermV: While the RandV Scheme is not incorrect, we make some domain-dependent modifications
to design another scheme. In the PermV scheme we

(i) mimic the allele frequencies seen in the input data and

(ii) use the population distribution (by ethnicity) of the screened samples in the chromosomal region.

This is done as follows: the individual V vectors are plucked from the X-Chromosome of the HapMap
III data, (but the SNPs span the entire chromosome) and any untyped SNP (i.e., N in the database) in
the vector is given a value in agreement with the allele frequency of that column. Further, we use only
those V ’s that have RAF ≥ 0.1, as is done in the screening process. We again use 10000 replicates
and for each replicate, we randomly permute the N vectors. The distribution of the number of g-
sized patterns is shown in Fig 3 (b). The p-values estimated based on this is shown in the table below.

k 2..9 10 11 12 13 14 15 16 17
randV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

permV 0.0 4.8e-7 4.8e-7 9.5e-7 2.4e-6 2.9e-6 1.3e-5 7.8e-5 1.4e-4

k 18 19 20 21 22 23 24 25 26
randV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

permV 1.9e-4 2.3e-4 2.8e-4 4.5e-4 8.9e-4 2.1e-3 5.3e-3 1.0e-2 2.0e-2

If for a block, k has an insignificant p-value, then the subsequent analysis risks becoming unreliable. We
then reduce the grain size. An alternative is to discard the offending SNPs of the block, thus fragmenting the
region. In our experiments we used a grain size g = 5 and the p-values obtained for this on all the regions
were acceptable. The haplotypes are re-coded as sequence of these SNP patterns for the combinatorial
analysis.

2.2 Combinatorial Analysis (using IRiS)

Computational Insights. Note that the general task of computing a phylogenetic network is computationally
hard. Striking a balance between computational hardness and biological reality, we use a compatible model
that makes our problem tractable. Our approach can be briefly summarized as follows. We first cluster,
possibly overlapping, haplotypes that display no evidence of recombinations and a representative haplotype
of each cluster is extracted for the next phase. Then exploiting the coherence seen in such data, each
haplotype is recoded using blocks of SNPs (patterns seen across different haplotypes) of granularity g.
Finally, a network is constructed from the recoded representative haplotypes. Using a divide-and-conquer
paradigm, the haplotype is segmented to give simple structures and then these individual structures are
merged to give a unified topology using a DSR (Dominant Subdominant Recombinant) Scheme. This gives
a plausible explanation of the data through recombinations. The underlying mathematical model along with
some tests on simulated data had been earlier presented in [PMC+08]. In a subsequent work, we give a
mathematical proof of the effectiveness of our algorithm in terms of distance from the ideal optimal along
with results on a three-population HapMap II data [PJM+09]. To avoid digression, some relevant details are
presented in the Appendix for the interested reader.
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Figure 3: Distribution of k for g = 5 for the ChrX region Eg. Recall that the randV Scheme is independent
of the region but the permV Scheme is not, since it uses the population distribution of the region (and allele
frequency distribution of the entire ChrX) for a more realistic estimation.
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Figure 4: Using HapMap II data.
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3 Results

As expected, the application of our method on the X Chromosome regions gives extremely complex network
of recombinations on samples. Note that potentially we are exploring L lineages per sample where L could
be as large as 100 or more. Compare this with one lineage per sample in a phylogenetic tree analysis. Due
to the enormity and the depth of the available information, we systematically analyze the results at different
levels with different perspectives, using well-established and accepted methods (such as MDS, PCA, Mantel
Test). Our analysis can be categorized as follows.

1. Populations-specific. We estimate pairwise population distances using recombinations (details in Sec-
tion 3.1). We use two methods to interpret these distances: (1) visualization of the pairwise distances
of the eleven populations using multidimensional scaling (MDS) and (2) compare with traditional
FST distances using Mantel Test. In this context our results are two-fold. Firstly, we demonstrate the
presence of recombinations-based evidence in short segments of the genome to detect subcontinental
divide in the populations. Secondly, we make the surprising observation that the effect of the popula-
tion dynamics that shapes the allele-frequency variations between populations is also reflected in the
purely recombination-based variations.

2. Recombinations-specific. Using a 11-dimensional vector for each recombination where each dimen-
sion denotes a population and each value indicates the number of support of individuals from that
population, we do a PCA analysis of the data for each region. Here we again observe the subconti-
nental separation of the samples within the short segments.

A next step is to use a M -dimensional vector per recombination where each dimension corresponds
to a sample. The results of this analysis is not ready at this time.

Further details on these is described below.

3.1 Recombinational-Distances of Populations

Shared Recombinations. The networks generated by IRiS are analyzed to associate each recombination
event with participating populations. If in the set of haplotypes with a recombination event x, there are at
least l members of population Z1 and l of populations Z2, then recombination event x is said to be shared
between populations Z1 and Z2. In our analysis we set l = 1. Similarly, we can extend this notion to sharing
of a recombination event between three or more populations.

Recombinational-Distance Matrix Dr Computation. We use the number of recombinations shared by
two populations Z1 and Z2 as a measure of similarity between Z1 and Z2. Let S be the similarity matrix
with each element written as sij denoting the number of shared recombinations between population Zi and
Zj . Then matrix S is converted to a normalized distance matrix Dr where each entry is written as dij .
Firstly, the similarity is converted to a distance by taking the reciprocal of the value. Roughly speaking, this
indicates that larger the number of shared recombination events smaller the distance and vice versa. Note
that sii denotes the number of population-specific recombinations, but this is not used in the definition of dij .
Hence, sii is set to 0 for subsequent computations. This is then normalized (scaled) with the the minimum
of the total number recombinations seen in population Zi and in population Zj . Precisely speaking,

dij =
min

(∑
i sij ,

∑
j sij

)

max(1, sij)
, for all i < j. (1)
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The distance between a population and itself is 0. Thus for all i, dii = 0. The distance is symmetric, i.e.
for all i, j, dij = dji holds. We give one complete example below for the reader. Since the matrices are
symmetric, we show only the upper diagonals of the matrices. This is the distance matrix for the ChrX
region Eg.

S =




LWK MKK YRI ASW GIH CHB CHD JPT MEX CEU TSI
− 80 93 60 27 21 15 18 14 28 16 LWK

− 116 77 44 41 31 35 28 47 38 MKK
− 85 41 42 31 34 26 37 28 YRI

− 44 33 29 29 26 41 32 ASW
− 43 41 39 26 40 40 GIH

− 45 49 22 33 31 CHB
− 39 19 21 23 CHD

− 22 29 28 JPT
− 26 27 MEX

− 45 CEU
− TSI




.

As a concrete example we compute the distance between populations MKK and YRI d23 using s23. Note
that S is a symmetric matrix although we do not display all the values here. The diagonal entries for the
calculation purposes are set to zero. Then

∑

i

si2 = 537,
∑

i

si3 = 533,

d23 =
min(537, 533)

116
= 4.5948 ≈ 4.60

Recombinational-distance matrix Dr for the similarity matrix S is shown below.

Dr =




0 4.65 4 6.2 13.78 17.14 19.6 17.89 16.86 12.40 19.25
0 4.60 5.92 8.75 8.78 9.49 9.2 8.43 7.38 8.11

0 5.36 9.39 8.57 9.48 9.47 9.08 9.38 11.00
0 8.75 10.91 10.14 11.10 9.08 8.46 9.63

0 8.37 7.17 8.26 9.08 8.68 7.7
0 6.53 6.57 10.73 10.52 9.94

0 7.54 12.42 14 12.78
0 10.73 11.10 11.00

0 9.08 8.74
0 6.84

0




.

3.1.1 Multidimensional Scaling (MDS) Visualization

Figs 5, 6, 7 give the Multidimensional Scaling (MDS) analysis done using MATLAB. The figures show the
subcontinental separation in the regions.

3.1.2 Comparison with FST Distances (Mantel Test)

Next for each region, we compare distance matrix Dr (defined in Section 3.1) with the FST measure that
Arlequin software (http://cmpg.unibe.ch/software/arlequin3/) computes on the 11 popu-
lations, using Mantel test [SR95] with 10000 replicates. The results are shown in Fig 8.
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11



−10

0

10

−10

0

10
−10

0

10

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

−10

0

10

0

−10

0

10

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

(1) Region 7: stress 4.8% (2) Region 8: stress 5.6%

−10

0

10

−10

0

10
−10

0

10

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

−20

0

20

−20

0

20
−20

0

20

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

(3) Region 9 (Eg): stress 5.5% (4) Region 10 (Dg): stress 3.2%

−60

0

60

−60

0

60
−60

0

60

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

−10

0

10

−10

0

10
−10

0

10

LWK
MKK
YRI
ASW
GIH
CHB
CHD
JPT
MEX
CEU
TSI

(5) Region 11: stress 0.014% (6) Region 12: stress 4.7%
(some numerical instability in the MDS software)

Figure 6: MDS plots of ChrX regions 7-12.
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Figure 7: MDS plots of ChrX regions 13-18.
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SNPs Recombs IRiS Mantel Test MDS
Label size (bp) No. density Smp ρ H # r p-value stress
1 222643 95 1/2394 477 3.608 5 365 0.721 10−4 3.7
2 141256 96 1/1456 504 3.355 2 243 0.645 10−4 6.4
3 300770 83 1/3957 505 0.660 4 67 0.455 2.8× 10−3 6.1
4(Cg) 466115 81 1/5755 560 0.603 4 94 0.566 5× 10−4 3.5
5 604607 179 1/3378 490 1.237 9 225 0.720 < 10−6 7.6
6 247979 80 1/3306 579 0.255 2 24 −.044 0.5733 2.6
7 270962 90 1/3188 452 1.604 2 104 0.741 < 10−6 4.8
8 549992 204 1/2736 406 1.691 8 171 0.368 8.8× 10−3 5.6
9(Eg) 1032833 180 1/5738 392 0.895 6 254 0.542 3× 10−4 5.5
10(Dg) 421406 92 1/4581 514 0.375 2 116 0.630 1.1× 10−3 3.2
11 234388 82 1/2894 527 1.849 2 128 0.146 0.158 .014
12 574608 157 1/3831 431 1.335 7 258 0.611 10−3 4.7
13(Bg) 468827 81 1/5787 492 0.526 3 75 0.566 < 10−6 8.6
14(NH) 392907 72 1/5457 669 0.182 0 32 0.480 2.3× 10−3 4.7
15 166712 99 1/1755 433 5.122 3 243 0.568 6× 10−4 6.1
16 270741 88 1/3148 460 3.847 4 214 0.576 2× 10−4 6.0
17 332852 96 1/3579 509 1.533 6 202 0.531 < 10−6 6.5
18 497607 162 1/3110 446 2.106 4 261 0.435 8× 10−4 6.3

7197205 3076

Figure 8: Brief descriptions of the ChrX regions and evaluation of our method. Recombination rate ρ and
the number of hotspots H is computed using LDhat. IRiS # is the number of recombinations detected by
IRiS. The two evaluations are: (1) Mantel Test with the recombination matrix Dr (correlation coefficient is
shown as r) and (2) stress factor in the MDS analysis.
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3.2 Specificity Analysis

Recall that we have recovered, through IRiS estimation of recombinations, a population structure that fits
what is known through traditional population genetic analysis. Now we go further in recovering the speci-
ficity of each population given by the repertoires of chromosomes (samples) harboring particular sets of
recombinations. There are several ways to organize the output of IRiS. In any case, the output is organized
in the two formats below.

• Format 1: A 11-dimensional vector for each recombination where each dimension denotes a popu-
lation and each value indicates the number of support of individuals from that population. As the
number of samples varies among the populations, a direct comparison may be misleading. We exper-
iment with three ways of accounting for this non-uniformity in the input data. Each entry (i, j) in the
matrix is scaled by 1/xj . In Scheme I, xj is the number of samples in population j. In Scheme II,
xj is the sum of the entries of column j in the matrix. In Scheme III, xj is the number of non-zero
entries in column j of the matrix. We found that Scheme II and III work well and give similar results.
We adopted Scheme II for the analysis shown in supplement.

• Format 2: An M -dimensional vector per recombination where each dimension corresponds to a sam-
ple. This format is more exhaustive and will have a wider interest in the complete analysis of historical
recombinations.

It is important to note that due to the limited number and the sampling process, the presence/absence of
recombination events in the population may not be interpreted as deterministic markers.

Population-Overlap Study. Here we use heuristics to ascertain the significance of a recombination and
display the distribution of these significant recombinations in the populations in a few regions. This is done
primarily to gain an understanding of the overlaps of the populations in terms of recombination events. The
table confirms the inherent complexity of the recombination networks. The subcontinental-population labels
of Section 1 are used here.
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ChrX Regions→ 1 2 3 4 5 9 10 12 18 total
Af 65 69 12 26 70 63 40 60 70 475
sA 1 1
eA 2 3 2 5 1 3 1 1 1 19

Am 1 1 2
Eu 4 2 3 2 11

Af & sA 1 0 1 1 1 4
Af & eA 3 2 1 1 8 1 3 19
Af & Eu 4 6 3 7 3 1 2 2 28
sA & eA 1 1 2 4

sA & Am 1 2 3
sA & Eu 1 2 1 1 5

eA & Eur 1 1 2
eA & Am 1 2 3
Am & Eu 1 1

Af & eA & sA 2 4 1 1 3 1 12
Af & Eu & sA 2 1 1 3 2 3 3 15

Af & eA & Am 1 1 1 1 1 5
Af & eA & Eu 5 3 4 2 2 16

Af & Am & Eu 10 2 1 13
sA & Eu & eA 2 1 1 1 5

Af & eA & sA & Eu 2 2 6 3 3 5 21
sA & Eu & eA & Am 1 1 2 1 5
sA & Eu & Af & Am 1 1 1 3

sA & Eu & Af & Am & Eu 8 3 3 5 12 13 4 4 8 60

Multivariate Analysis. Here there are several possibilities: principal component analysis (PCA), corre-
spondence analysis (as the data is a frequency table), discriminant analysis or more genetic-centered like
STRUCTURE (http://pritch.bsd.uchicago.edu/structure.html) . The last two require
data in format 2.

We show the results for regions 1 and 2: see figures at the end of the document. The details of Region 1
is discussed here and the same follows for Region 2. PCA gives gives us powerful results, with very strong
discrimination both at continental as well as population level. The first principal component clearly separates
Africans from non-Africans, with 27% of the variance explained while the second principal component, with
16% makes a good separation of MKK from the other three African populations. This result has also been
found in traditional genetic analysis based on allele frequency or those based on phylogeography. The
third component, with 13% of variance, separates at the same time MKK from other Africans and Asian
populations from the rest on non-Africans. There is low discrimination between TSI (Italy) and GIH (India)
and between CEU (North Europe) and MEX (Mexico).

Population specificity can be achieved, nonetheless just by taking the next components. Considering
those that are significant in the PCA, shown in the table, it is possible to see how particularly each pop-
ulation is shaded by the most important contributions to the component. Thus the frequencies that each
recombination is found in each population gives a clear picture of population differentiation.

To see at a glance both effects, of population differentiation and the contribution of each of the detected
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recombination, a correspondence analysis has also been done and the plotted results can be interpreted in a
similar way. In the representation of dimensions 1, 2 and 3 (see figures), the clouds of recombination events
show how they pull the populations to segregate among them.

To conclude, results shown graphically are nothing but a simplification of the numerical analysis in
which all the significant factors are considered simultaneously.

(Results from the analysis of data in Format 2 are not ready)

4 General Discussion

Here we comment on existing notions and concepts along with our observations based on insights gained
through this work.

4.1 Recombination Hotspots: Friend or Foe?

The occurrences of meiotic recombinations in the human genome (and some other genomes) is not uniform,
but rather there are regions called hotspots (usually 1-2 kb in width) where the frequency of recombination
is 10 to several thousand times higher than the average in the background, and almost all recombination
events happen within them [LZZ06]. Recent studies have shown that hotspots are a ubiquitous feature of
the human genome, and recombination hotspots are also the main contributor of the block-like pattern of
haplotypes. So the pattern (blocks) that we exploit in the IRiS model owes its existence to hotspots.

In Fig 9 we compare two existing popular methods of computing recombination rates. We selected a
fixed region in ChrX. In the first, we transposed the results from HapMap II from the website onto our ChrX
regions in the HapMap III database. In the second we used the PHASE algorithm:
http://stephenslab.uchicago.edu/software.html.

The common intuition is that recombination hotspots must confound any recombinational analysis. At
this stage of our work, it is not clear to us that it has affected our analysis- we do recognize that the number of
recombination events estimated by our analysis may actually be a gross underestimate around the hotspots.
Further we expect high p value estimates of Section 2.1 of the g blocks if a hotspot region displays a
likelihood of very many lineages.

4.2 FST Adjustment under LD (dependence) Assumptions

The FST distance measure comes in various forms [JHTS04]. Basically the difference in computation lies
in the details of the measure of allele frequency differences in two populations. There is an underlying
assumption that, any pair of alleles is independent and thus a simple aggregation over all the alleles suffice.

The very basic premise of our model is that there is a fair chance of two alleles being dependent (having
the same lineage or identical genealogical history), at least in a population. This is also seen through our
RM analysis of the individual populations in Fig 2. It is unclear whether this FST estimate is sufficiently
accurate for this analysis.

Our suggestion for modifying the to F ′
ST is as follows. Let b1, b2, . . . , bK be blocks of alleles such that

each block bi has a high LD (or estimated to have the same genealogical history, say through a TM analysis)
in at least one of the populations. For example for the two populations CHB and CHD, the blocks in each
population are as follows:

CHB: 3 20 26 27 43 45 51 66 80 83 91

CHD: 3 6 10 45 47 54 66 83 85 91

Here the numbers refer to the position of the cluster boundary in terms of SNP blocks. Thus the first cluster
of three blocks occurs in both the populations. The next two cluster boundaries are at positions 6 and 10 in
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Figure 9: Comparison of the recombination rate ρ for the region Dg using two sources. HapMap II result is
the one posted on HapMap website where software LDhat has been used. HapMap III results are computed
using the software Phase. HapMap II uses Build 35 and HapMap III uses Build 36, hence the positions
marked along the x-axix in the two plots do not match exactly but the SNPs have been vertically aligned
(using the RS ids).

the second population followed by position 20 in the first population. Proceeding in this manner, the blocks
for the two populations are:

CHB or CHD: 3 6 10 20 26 27 43 45 47 51 54 66 80 83 85 91

In this case K = 16. Then the FST distance is adjusted as follows:

F ′
ST =

∑
i FST (bi)

K
,

where FST (bi) is the usual FST distance between the two populations restricted to the alleles in the block
bi. Roughly speaking, this will adjust the biases due to strong LD segments (or blocks).

Acknowledgments We thank Hafid Laayouni for his efforts on the PCA analysis. We gratefully acknowl-
edge Ajay Royyuru’s enthusiastic support, and more, of the work.
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Appendix

Our Underlying Mathematical Model

We propose a model, that exploits the contiguous patterns in the extant sequences to construct a phylogenetic
network. A striking difference from the other network models is that ours permits multiple roots. Further,
a recombination is modeled as a hybrid of stretches (or segments) of parental sequences. We do this by
extending the notion of compatible trees to networks that models recombinations in a fairly generalized
form. The network is defined in terms of a segmentation S of the aligned extant sequences into say K
segments. Every edge in the network is associated with at least one segment (from the K segments). When
the network is restricted only to the edges of fixed segment, the resulting topology is a phylogenetic tree of
only that segment from all the extant sequences.

We formally define the compatible network here. Let I be the given input matrix with n rows and
m columns. Each row corresponds to an extant sequence or haplotype. The matrix I has two kinds of
elements, solid characters and dont-care. As our model will not only consider single character (where it
would be normal to use the four nucleotides A, C, G, T) but combinations of them (see grain below) the
nomenclature is not restricted to four states. A dont-care is written as ‘-’ and its semantics will be discussed
later. Further, for ease of exposition, let all occurrences of a character c be within a single column of I .

The segmentation S of the m columns of input I , written as the closed interval [1,m], is a collection of
non-overlapping intervals such that each column j is in at most one segment. For example, given 5 columns,
a possible segmentation of [1, 5] is:

S = {[1, 2], [3, 4], [5, 5]}
For convenience, the three segments are denoted simply by integer labels 1, 2 and 3.

A compatible network N is a directed acyclic graph (DAG) that explains input I with a segmentation S.
N is defined as follows: It has three kinds of nodes. A node with no incoming edge is a root node and N
may have multiple root nodes. A node with no outgoing edges is a leaf node and there can be no more than
n leaf nodes in N . Every other node is an internal node. An internal node has at most two incoming edges.
When a node has exactly one incoming edge, it is called a mutation node and the incoming edge is called a
mutation edge. When the node has two incoming edges, the node is called a recombination or a hybrid node
and the incoming edges are called recombination edges. A mutation edge is labeled with element(s) from
the matrix I . A recombination edge is labeled with segment(s) of S.

Each node in N is labeled by a sequence of length m. Let e be the mutation edge coming into node v
with labels c1, c2, . . . cl. Let ci occur in column ji of I . Then the label of v is obtained from the label of its
only parent, by replacing positions j1, j2, . . . , jl with values c1, c2, . . . , cl respectively.

Let e1 and e2 be two recombination edges coming into a node v with segment labels s1, s2, . . . sl1

and r1, r2, . . . rl2 of parents 1 and 2 respectively. The label of node v is a hybrid sequence with segments
s1, s2, . . . sl1 from the label of the first parent and segments r1, r2, . . . rl2 from the label of the second parent.
Each position in the missing segments, i.e. neither from parent 1 nor from parent 2, in the label is written as
φ. The interpretation of φ is that it is a sort of a filler, that is not reflected in any way in the extant sequences
and could be ignored for all practical purposes. In genetic terms these are partial sequences that have been
lost and their existence is known because only part of it (a recombinant fragment) has reached the present.
An interesting example is found in the ABO sequence variations [FSF+04].

Next, the network N is compatible with input I with segmentation S if the two conditions hold:

(1) the label of a leaf node corresponds to a row in matrix I and every row in matrix I is the label of some
leaf node in N .

(2) For each column j in I , every solid character (of j) occurs exactly once in the label of some mutation
edge in N .
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The Compatible Network Construction Problem

For a segment s ∈ S, Restricted(N, s) is the network obtained by doing the following two operations. (1)
Removing all recombination edges that do not have the label s. (2) Let character c occur in column j and
j 6∈ s, then the label c can be removed from the mutation edge label.

Fact 1 For each segment s ∈ S, Restricted(N, s) is a forest, i.e., each connected component is a tree.

L(N, s, c) is the collection of rows corresponding to leafnodes reachable from node v in Restricted(N, s)
where v has an incoming mutation edge with the label c. Note that for a fixed c, the node v is unique in a
compatible network. We pose the following optimization problems.

Problem 1 (Minimal Segmentation) Given I , the task is to compute a compatible network N with minimum
number of elements in segmentation S of I .

Problem 2 (Minimal Recombination) Given I , the task is to compute a compatible network N with mini-
mum number of recombinations in N .

Note that the number of recombinations in a compatible network is at least K − 1, where K is the number
of segments in the segmentation S.

Fact 2 (Nonuniqueness) Two distinct segmentations S 6= S′ can give distinct compatible networks N and
N ′. Moreover, it is possible that a segmentation S, can give two distinct compatible networks N1 and N2.

Fig ?? shows a character matrix I and two distinct compatible networks for the same segmentation S (the
interested reader can see an example in Fig ??, where two distinct segmentations of the same size (K = 2)
is possible for the same character matrix).

We propose to tackle Problem 1 in a three step process: In the first step we transform the input haplotypes
into a character matrix; in the second step we split this character matrix into segments where a phylogenetic
forest can explain each segment and then in the final step construct the compatible network from the forests.
The details follow.

(Step 1) Staging the Input: Haplotypes to ‘Character’ Matrix

The input is a collection of haplotypes, in the form of a matrix I ′ where each row is an ordered vector of
SNP values as they appear along a chromosome. A running example of 25 haplotypes each with 85 SNP’s
is shown in in Fig 10. A reference sequence is shown at the top. The asterisk in the haplotype denotes
agreement with the reference sequence.

We process this data into a smaller matrix (I) of blocks of SNPs that we call characters (not unlike taxo-
nomic characters) since each column may now take on multiple values and further, the order is unspecified.
This processing is carried out in the following three stages.

1. Removing redundancies: Without loss of generality, no two rows are identical in I ′. However, since
our interest is in recombinations, identical columns are not considered redundant for the purpose of extract-
ing the topology of the phylogenetic network. Note, however that the information regarding the redundant
rows is retained for the final analysis.
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1234567890123456789012345678901234567890123456789012345678901234567890123456789012345
Ref GCCCCCACGGAGGCGGTGCCGGCGCCTGCTAGCAGACCTGAAGGGTCAGAGACCGATACGGCAGCCGCTAGCGCGCTCATGCCGG

1 CT*G***T*A*****ACCGGTC***G****CT***************GA*************************A********AA
2 CT*G***T*A*****ACCGGTC***G*****T***************GA*************************A********AA
3 CT*G***T*A*****A*CGGTC***G*****T***************GA*************************A********AA
4 CT*G***T*A*****ACCGGTC***G*****T***************GA*************************A********AA
5 CT*G***T*A*****ACCGGTC***G****CT***************G**************************A********AA
6 CT*G***T*A*****ACCGGTC***G*****T***************G**************************A********AA
7 ***A******GA*****TGGCC***GC******GA***C*************T**********A******A************AA
8 ***A*******A*T***TGGCT**GGC********************************************************AA
9 ***A*******A*T***TGGCT**GGC*********************A**********************************AA
10 ***A*******A*T***TGGCT**GGC*********************A**********************************AA
11 ***A*******A*T***TGGCT**GGC***************CA****A**********************************AA
12 ***A*******A*T***TGGCT**GCC***************CA****A**********************************AA
13 ***A*******A*T***TCCCT**GCC***********************************G********************AA
14 ***A*******A*T***TCCCT**GGC******C****************************G********************AA
15 ***A*******A*T***TGGCTT*GGC******C****************************G****************CCC*A*
16 ***A*******A*T***TGGCT**GGC********************************************************A*
17 ***A*******A*T***TGGCT**GGC********************************************************AA
18 ***A*******A*T***TGGCT**GGC********************************************************AA
19 ***A*******A*T***TGGCT**GGC************A********************A*****C*CG****A***G*****A
20 ***A*******A*T***TGGCT**GGC************A********************A*****C*CG****A***G*****A
21 ***G*******AA*A**TGGCC***GC******G*****A********************A*****C*CG****A***G*****A
22 ***A*******A*T***TGGCC**GGCA**********C**G******************A****TC*C*****A*********A
23 ***A*******A*T***TGGCC**GGCA**********C**G******************A****TC*C*****A*********A
24 ***A*******A*T***TGGCC**GGCA*****CA***C**G******************A****TC*C*****A*********A
25 ***A*******A*T***TGGCC**GGCA*****CA***C**G******************A****TC*C*****A*********A

(1) I ′: Input matrix of SNPs.

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
7 2 2 2 0 1 3 2 1 2 1 3 0 2 1 1 2 2 0 1 1 1 0 1 0 2 1 1 1 1
8 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1
9 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1
10 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1
11 2 2 2 3 2 3 2 2 3 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1
12 2 2 2 3 2 3 2 2 4 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1
13 2 2 2 3 2 3 3 2 4 1 3 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1
14 2 2 2 3 2 3 3 2 3 1 3 3 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1
15 2 2 2 3 2 3 2 0 3 1 3 3 1 1 1 2 2 1 1 1 2 1 1 1 2 1 0 0 2
16 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 2
17 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1
18 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1
19 2 2 2 3 2 3 2 2 3 1 3 1 1 2 1 2 2 1 1 1 3 1 2 3 1 1 3 3 1
20 2 2 2 3 2 3 2 2 3 1 3 1 1 2 1 2 2 1 1 1 3 1 2 3 1 1 3 3 1
21 2 1 2 3 0 3 2 1 2 1 3 0 1 2 1 2 2 1 1 1 3 1 2 3 1 1 3 3 1
22 2 2 2 3 2 3 2 1 3 2 3 1 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
23 2 2 2 3 2 3 2 1 3 2 3 1 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
24 2 2 2 3 2 3 2 1 3 2 3 5 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
25 2 2 2 3 2 3 2 1 3 2 3 5 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1

(2) I ′′: Blocking g = 3 SNPs of I ′.

cluster 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 920 1 2 3 4 5 6 7 8 9 (rows of I ′′)
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2 3 4)
2 2 2 2 3 2 3 2 1 3 0 3 1 2 0 1 2 2 1 1 1 3 0 2 1 1 1 1 3 1 (22 23 24 25)
3 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 (9 10)
4 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 (8 17 18)
5 2 2 2 3 2 3 2 2 3 1 3 1 1 2 1 2 2 1 1 1 3 1 2 3 1 1 3 3 1 (19 20)
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (1)
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 (5)
8 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 (6)
9 2 2 2 0 1 3 2 1 2 1 3 0 2 1 1 2 2 0 1 1 1 0 1 0 2 1 1 1 1 (7)
10 2 2 2 3 2 3 2 2 3 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 (11)
11 2 2 2 3 2 3 2 2 4 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 (12)
12 2 2 2 3 2 3 3 2 4 1 3 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 (13)
13 2 2 2 3 2 3 3 2 3 1 3 3 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 (14)
14 2 2 2 3 2 3 2 0 3 1 3 3 1 1 1 2 2 1 1 1 2 1 1 1 2 1 0 0 2 (15)
15 2 2 2 3 2 3 2 2 3 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 2 (16)
16 2 1 2 3 0 3 2 1 2 1 3 0 1 2 1 2 2 1 1 1 3 1 2 3 1 1 3 3 1 (21)

(3) I: Clustering of the rows of I ′′.

Figure 10: The steps involved in processing input SNP matrix I ′ to obtain the character matrix I ′′. See text
for details and Fig 11 for the explanation of one of the clusters represented in I .
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1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 920 1 2 3 4 5 6 7 8 9
cluster 2

= I[2]

�
2 2 2 3 2 3 2 1 3 0 3 1 2 0 1 2 2 1 1 1 3 0 2 1 1 1 1 3 1

22 2 2 2 3 2 3 2 1 3 2 3 1 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
23 2 2 2 3 2 3 2 1 3 2 3 1 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
24 2 2 2 3 2 3 2 1 3 2 3 5 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1
25 2 2 2 3 2 3 2 1 3 2 3 5 2 3 1 2 2 1 1 1 3 3 2 1 1 1 1 3 1

22,23 24,25

cluster 2

Figure 11: Possible evolutionary history of cluster 2. The putative root node (vector) for this history is row
2 of I of Fig 10.

2. Grouping the columns (grain g): A fixed number, g, of consecutive columns of I ′ are blocked together
to obtain I ′′. Thus, each column of I ′′ represents a block of g consecutive SNPs from the input matrix I ′.
Each distinct pattern in I ′′ is assigned a distinct integer label. Note that for the purposes of extracting the
topology, it is adequate to distinguish different patterns in a single column. Thus a label ‘2’ in column one
may represent an entirely different pattern from label ‘2’ in column four. (Note that we used uppercase
alphabets for these labels, instead of integers, in the previous section for ease of exposition.)

In Fig 10 a grain size of g = 3 is used on I ′ to give a 25×29 matrix I ′′. Each column represents a block
of three consecutive SNPs (except the very last column which has only one SNP). Each distinct pattern is
assigned a distinct integer. For example, in column 1, pattern CTC (or CT* in I ′) is assigned integer 1;
pattern GCC (or *** in I ′) is assigned integer 2.

Wild character 0 in I ′. A unique pattern in a column is assigned 0. Note that a single column may have
multiple 0’s. For example, in Fig 10 (2), column 12 has a value 0 at rows 7 and 21. The pattern GAA appears
only in row 7 and the pattern GGA appears only once in row 21 in that column.

3. Clustering the rows: In this step, we reduce the number of rows of I ′′ by identifying clusters of rows
that (possibly) do not have any recombinations in their evolutionary history.

Each cluster is represented by a single vector that is the putative root node of the evolutionary history
(tree) of the cluster elements.

We use a greedy iterative algorithm to compute the clusters. This is based on uninterrupted patterns across
the rows of the matrix and the process is summarized below.

Wrapper Procedure:
(Step 1) In each column of I ′′, replace a unique entry by 0.
(Step 2) Collapse I ′′ to Ĭ , where a row in Ĭ is the putative root of a cluster of rows of I ′′ (see below).
(Step 3) IF I ′′ is identical to Ĭ , terminate the process

ELSE Update Ĭ to I ′′ and go to Step 1.
The pseudcode for Collapse, the process of clustering multiple rows into one putative root vector, is given
below. This is a recursive process and the very first call is made with c = 1; rmax is the number of rows
and cmax is the number of columns in I; and pat is initialized to the empty string φ. The concatenation of
string pat followed by string p is written as pat⊕p: this is the putative root vector that is built incrementally
in the successive calls of the routine. The calls terminate either when singleton sets (S) are reached or the
rightmost column cmax is reached.
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Collapse(I , c, cmax,rmax, pat)
(1) IF (c > cmax) THEN rows of I is a cluster and pat is the putative root
(2) ELSE {
(3) Szero ← {i | I[i, c] is ‘0’}
(4) FOR each p 6= ‘0’ in column c of I {
(5) Sp ← {i | I[i, c] is p} ∪ Szero

(6) Restrict I only to the r (= |Sp|) rows of Sp to get Ĩ

(7) IF (r > 1) THEN Collapse(Ĩ , c + 1, cmax, r, pat⊕ p)
(8) }
(9) }

The structure of the tree (plausible evolutionary history) of a cluster with the putative root is embedded in
the run-time history of the wrapper procedure and the recursive calls of Collapse(). We omit the details
here to avoid digression. It suffices to assume that this tree can be constructed with ease. Note that it is
possible to get overlapping clusters using Collapse(), due to the use of Szero in the procedure: see line (5)
above. When a sample, say i, appears in multiple clusters, the result is to be interpreted as follows: for the
granularity used, the analysis is unchanged whether i is in one cluster or the other(s). The strength of this
approach is in the flexibility it provides in terms of alternative plausible hypotheses for a data set.

Fig 10 (3) shows a clustering of the samples of I ′′. Fig 11 describes cluster 2 from the example and
shows its possible evolutionary history as a tree. Note that the four rows 22, 23, 24, 25 of I ′′ are identical
except in column 12 where rows 22 and 23 have a value 1 and rows 24 and 25 have a value 5. Thus these
two groups are split in the tree shown in Fig 11. The vector representing the putative root of this cluster has
a value of 1 in column 12. This is because the value 5 does not appear in any of the remaining rows (other
than rows 22, 23, 24, 25) in I ′ at column 12; however value 1 does appear in some of the others. Were it the
case, that value 1 did not appear in any of the remaining rows, then the vector would have had a value 0 in
this column.

(Step 2) Computing Segmentation S

In this step we segment the matrix I into as small a number of segments as possible, such that for each
segment there exists a compatible forest (described in Problem 3 at the end of the section). However, we
must first introduce some terminology to understand this problem setting and its proposed solution.

Let S be a segmentation with K segments of the input n×m character matrix I . For each 1 ≤ k ≤ K,
let the kth segment be sk = [jk

1 , jk
2 ]. For convenience, the size of the kth segment is szk = jk

2 − jk
1 + 1.

Then Ik is the n× szk sub-matrix obtained by extracting the columns jk
1 ≤ j ≤ jk

2 of I .
The segmentation S is such that for each (sub)matrix Ik there exists a compatible network Nk with no

recombination nodes and a single segment in its segmentation. In other words, Nk is a forest, i.e., every
connected component is a tree.

Character array I to multisets C’s. Let column j of the matrix I have Lj distinct characters, where none
of the characters is a dont care (‘-’). Let these characters of column j be cj

1, c
j
2, . . . , c

j
l , . . . , c

j
Lj . For each

distinct character cj
l of column j, define a set of rows (or sample numbers) as follows:

Cj
l = {i | I[i, j] is cj

l }.

Thus each column j can be written as a multiset (or, set of sets):

Cj = {Cj
1 , C

j
2 , . . . , C

j
l , . . . C

j
Lj}.

Let Cj
0 is the set of 0’s or wild cards in column j and is called the zeroset of column j.
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Two sets C1 and C2 straddle if both the conditions hold: (1) the intersection of C1 and C2, C1 ∩ C2,
is not empty, and, (2) both the set differences C1 \ (C1 ∩ C2) and C2 \ (C1 ∩ C2) are non empty. As an
example, let C1 = {1, 2, 3}, C2 = {2, 3, 4}, C3 = {3, 4} and C4 = {5, 6}. Then C4 does not straddle with
any of the other sets and C3 does not straddle with C2. However, C1 and C2 straddle; C1 and C3 straddle.

Two nodes v1 and v2 are incomparable if there exists no segment label s such that there is a s-path from
a root to a leaf node with both v1 and v2 in the path.

Fact 3 (incomparable mutation nodes) Let v1 and v2 be two mutation nodes with incoming edges e1 and e2

respectively with solid character labels c1 and c2 at column j. Then v1 and v2 must be incomparable in the
compatible network.

Problem 3 (Compatible Forest Problem) Given a matrix I , the task is to find if there exists some partitioning
of the zeroset Cj

0 of each j such that any pair of columns j and k are compatible using the partitions of the
zerosets for the given A.

It is possible to ignore the wild characters by replacing each by a non-zero (unique) integer. Further, when
the character matrix I is binary and the wild characters are ignored, this problem has been called perfect
phylogeny in literature. Even this restricted problem is known to be NP-hard.

We use a greedy algorithm to segment the matrix I into as small a number of segments as possible,
such that for each segment there exists a compatible forest. Fig ?? shows a example of I and three possible
segmentations using A = 1, i.e., at most one character per column is designated as a dont care. The first
one has the minimum number of segmentations, i.e, 1. Nevertheless, we study two more segmentations
for illustrative purposes. For partitioning of zerosets, consider the multisets for columns 5, 6 and 7 of I of
Fig ?? (1):

C5 C6 C7

C5
0 = {1},

C5
1 = {3, 6},

C5
2 = {2, 4, 5}.

C6
0 = {1, 2, 4, 6},

C6
1 = {3, 5}.

C7
1 = {1, 2, 3, 6},

C7
2 = {4, 5}.

Pattern ‘1’ of column 5 and pattern ‘1’ of column 7 are designated dont care characters (‘-’) in the respective
columns in Fig ?? (3). Next only C6

1 is augmented with elements of the zeroset C6
0 to obtain {1, 2, 3, 4, 5, 6}.

C5 C6 C7

C5
0 = {1},

C5
2 = {2, 4, 5}. C6′

1 = {1, 2, 3, 4, 5, 6}. C7
2 = {4, 5}.

Now, it can be easily verified that each pair of columns (5, 6, 7) is compatible and a compatible tree is shown
in Fig ?? (3b).

(Step 3) Forests to Networks: The DSR Algorithm

Segmentation suggests a method to compute a compatible network: Given I , a possible segmentation and
the corresponding forests are first constructed and then the compatible network is constructed from the
forests. Thus we set the stage to solve the following problem.

Problem 4 (Consensus Compatible Network Problem) Given two networks N1 on a vertex set U and N2

on a vertex set V , defined on the same set of samples, and with no common mutation edge labels, the task is
to compute N3 on some vertex set W , with two segments s1 and s2 such that for each edge label c1 in N1

and each edge label c2 in N2, the following holds:

L(N3, s1, c1) = L(N1, s1, c1),
L(N3, s2, c2) = L(N2, s2, c2).

25



Overview of the approach. We solve this problem using a topology based method. Our approach is
iterative, bottom-up working at one level of N1 and N2 at a time. The method gets its name from the need to
give one of three possible “colors” (Dominant or Subdominant or Recombinant) assignment to nodes at each
stage, which is central to this approach. Roughly speaking, a dominant node in W uses the edge labels of
N1 and N2; a subdominant uses one of the edge labels of N1 and N2 (but not both); and a recombinant uses
neither of the edge labels of N1 and N2 and is indeed a recombinant node in N3. In the iterative procedure,
the “color” of a dominant or a subdominant node may change to recombinant. For the DSR algorithm, the
label of the leafnode is the set of samples or rows represented by that node. We begin by considering the
bottommost level in both N1 and N2 and computing the intersection matrix X . Let Pu be the leaf nodes in
N1 and Pv be lefnodes in N2. For convenience, the P ’s of iteration i are written as P i

u and P i
v. P i

u and P i
v

are updated through the iterations as follows:

P i
u = {u ∈ U | for all descendants x of u in N1, x ∈ P i′

u holds for some i′ < i},
P i

v = {v ∈ V | for all descendants x of v in N2, x ∈ P i′
v holds for some i′ < i}.

Compatible DSR assignment of X. An appropriate assignment of DSR is required so that a network N3 can
actually be built. The DSR assignment of matrix X is compatible if it satisfies the following two conditions:

1. Each row and each column in matrix X has at most one dominant. If there is no dominant, then it has
at most one subdominant.

2. A non-recombinant element can have another non-recombinant in its row or its column but not both.

It can be verified that if any one of the above conditions is violated, it would be impossible to construct a
compatible network N3. Although in the discussion above N1 and N2 are forests, the same method can be
extended to the case when one or both are not forests (see the original papers).

The correctness of the DSR algorithm follows from the two observations which can be verified.

Fact 4 (Incomparable P ’s) If u1, u2 ∈ P i
u, at some iteration i, then u1 and u2 are incomparable in N1.

Similarly for v1, v2 ∈ P i
v.

Fact 5 (Incomparable w’s) If two solid characters c1 and c2 are edge labels at position j, incident on nodes
w1 and w2 in N3, then w1 and w2 are incomparable in N3.

Approximation Factor of the Greedy DSR Scheme

In this section, we compute the approximation factor of the greedy version of the DSR Scheme. Let the
number of new recombination events produced by the DSR algorithm in G3 be NDSR. Let the optimal
number of new recombinations be Nopt. We use the following definition of the true approximation factor:

approxtrue =
NDSR −Nopt

Nopt
. (2)

For given graphs G1 and G2 let zl = max(nl,ml) where nl > 0 and ml > 0 are the number of nodes at
level l in G1 and G2 respectively. Further, let Z be the sum of all zl over all the levels (excluding the leaf
level). Let Lv(G) be all the leafnodes (extant units) reachable from node v in G. For each level, l > 0, i.e.
excluding the leafnodes, consider Lvi(G1), 1 ≤ i ≤ nl, where each vi is at level l in G1. Similarly consider
Lui(G2), 1 ≤ i ≤ ml, where each ui is at level l in G2. Let xl be the number of non-empty intersections
between the two collection of sets and let Y be the sum of xl over all the levels (excluding leaf level). Note
that if G1 and G2 are the same (isomorphic) graphs then Y = Z and Nopt = 0.
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Figure 12: In (a) & (b) G1 and G2 have segmentation S = {2, 3, 4}. (b) The two parents of node ‘R’ have
labels {4, 2} and {3, 2}. Thus, the network restricted to segment label 2, shown in (c), has a closed path
defined by the nodes labeled ‘Z’, ‘W’, ‘U’, ‘R’ and ‘V’. Hence the network in (b) is not compatible.
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Figure 13: Given trees T1 in (a) and T2 in (b), each of height 3. (c) These two trees define Xl, 1 ≤ l ≤ 3, for
each level l.Note that the entries in Xl, l > 1 differ in details depending on the choices the DSR algorithm
makes. While ‘∅’ denotes an empty set, ‘?’ (including ‘{·}’) could be either empty or non-empty, again
depending on the choices the DSR Scheme makes.
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2 : 1 2 : 2 2 : 3 2 : 4 –φ–
1 : 1 {d} ∅ ∅ {c} ∅
1 : 2 ∅ ∅ {a} ∅ ∅
1 : 3 ∅ {e} ∅ {b} ∅
–φ– ∅ ∅ ∅ ∅

2 : 5 2 : 6 –φ–
1 : 4 ∅ {d12, ∅

d13}
–φ– {d11, ∅

sy11}

2 : 7 –φ–
1 : 5 {d21} {d11}
–φ– {sy21}

2 : 1 2 : 2 2 : 3 2 : 4 –φ–
1 : 1 D R d11

1 : 2 D d12

1 : 3 S D d13

–φ–
d11 sy11 d12 d13

2 : 5 2 : 6 –φ–
1 : 4 D d21

–φ– S
sy21 d21

2 : 7 –φ–
1 : 5 S − d31

–φ– −
d31

(a) Level 1: X1 (b) Level 2: X2 (c) Level 3: X3

Figure 15: X-matrices of Network G1 of Fig 14 (a). The Xl matrix is shown on the top and the DSR
assignment shown in the bottom row for each l, 1 ≤ l ≤ 3.

Theorem 1 . approxtrue ≤ Z

max (1, Y − Z)
. (3)

Proof: Let Nmax (Nmin) be the maximum (minimum) number of new recombinations produced by the DSR
scheme over all possible DSR assignments. Then we first show the following:

Nmin ≤ Nopt ≤ NDSR ≤ Nmax. (4)

Clearly Nopt ≤ Nmax holds (else it contradicts the optimality of Nopt). Next we have to show that Nmin ≤
Nopt holds as well. For this we need a few more characterizations of the network.
Recombination Node Descriptor F1|F2: Let Y be the set all given haplotypes (or taxa). A split or biparti-
tion is written as Z1|Z2 where Z1 and Z2 are nonoverlapping subsets of Y with Y = Z1∪Z2. A tripartition
Z1|Z2|Z3 is defined similarly. In earlier works a mutation event has been associated with a bipartition of Y
and a recombination event with a tripartition. However, the latter requires certain restrictions in the form of
network G, i.e., a recombination node cannot be a direct descendent of another recombination node. Here
we define recombination nodes as a bipartition of an appropriate subset of features.

For a fixed segment s, let s-path be a path in the graph with mutation edge(s) and recombinant edge(s)
with s in its label. For any v, note that there is a unique s-path from a root to v. Further, let v be a
recombination node and lbl1 and lbl2 be the labels of the two incoming (recombination) edges u1v and u2v
respectively. For s1 ∈ lbl1 but s1 6∈ lbl2, let feature f1 be such that s1 : f1 is in the label of the closest
mutation edge on the s1-path from v. Then F1 is the set of all such features. F2 is defined similarly. For
example consider in G1 of Fig 12(a), consider the recombination leafnode labeled with haplotype a. Here
lbl1 = {2}, lbl2 = {3} and the descriptor for this node is F1|F2 = {2:4}|{3:5}. For the recombination
node labeled ‘R’, lbl1 = {4}, lbl2 = {2, 3} and the descriptor is F1|F2 = {4:7} | {2:9, 3:8}.
Isomorphism (G1 ≡ G2)): Let Lv(G) be all the leafnodes (extant units) reachable from node v. Let s:f
be in the label of the unique incoming edge on mutation node v and then let Ls:f (G) be the same as Lv.
Two compatible networks G1 and G2 on the same segmentation S are isomorphic (or identical), written as
G1 ≡ G2, if the following two conditions hold: (1) For each element s:f in G1, Ls:f (G1) = Ls:f (G2) and
viceversa, and, (2) For each recombination node v in G1 with descriptor F1|F2, there exists a recombination
node in G2 with the same descriptor and viceversa.
Canonical Form: It is possible to bubble up or down an element in the mutation edge label to obtain G′

such that G′ ≡ G. Our convention will be to bubble down the element of the mutation edge label, towards
a leafnode. A network G is in the canonical form (1) if no node has only one outgoing edge and (2) if no
element of any mutation edge label can be bubbled down to obtain G′ with G′ ≡ G. For example see Fig 14.
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2 : 1 2 : 2 2 : 3 2 : 4 –φ–
1 : 1 {d} ∅ ∅ {c} ∅
1 : 2 ∅ ∅ {a} ∅ ∅
1 : 3 ∅ {e} ∅ {b} ∅
–φ– ∅ ∅ ∅ ∅

2 : 5 2 : 6 –φ–
1 : 4 {d13} {d12} ∅
–φ– {d11} {ry11}

2 : 7 –φ–
1 : 5 {d21} {d11}
–φ– {sy21}

2 : 1 2 : 2 2 : 3 2 : 4 –φ–
1 : 1 D R d11

1 : 2 D d12

1 : 3 D R d13

–φ–
d11 d13 d12 ry11

2 : 5 2 : 6 –φ–
1 : 4 S D d21

–φ– − −
sy21 d21

2 : 7 –φ–
1 : 5 S − d31

–φ– −
d31

(a) Level 1: X1 (b) Level 2: X2 (c) Level 3: X3

Figure 16: X-matrices of Network G2 of Fig 14 (b). Also see Fig 15 for a description of the matrices.

Since the levels of nodes in a canonical network are unique, the following can be readily verified (see also
concrete examples in Figs 13 and 19).

Lemma 1 Let G3 be the consensus of G1 and G2 which are in canonical forms, with lmax (lmin) as the
maximum (minimum) of the heights of G1 and G2. Then there exist some X-matrices, X1, X2, . . ., Xlmax

whose DSR assignments produce G3. This is written as G3
∼= X1, X2, . . . , Xlmax .

Back to the proof: We have to show that Nmin ≤ Nopt holds. Assume the contrary, i.e., Nopt < Nmin. In
other words, the optimal number of new recombinations is even lower than the minimum produced by the
algorithm over all possible choices. Then consider this network G′

3 with Nopt new recombinations. Then by
Lemma 1, there exist a sequence of X-matrices G′

3
∼= X1, X2, . . . , Xlmax with some DSR assignments for

each Xl. Thus by these choices of the algorithm Nmin ≤ Nopt must hold, again leading to a contradiction.
Hence Nopt 6< Nmin. Here ends the proof of correctness of Eqn 4. Next, we give a few characterizations of
the DSR assignment to facilitate the counting of the new recombinations.
Type I & II (new) Recombination Events: Let v be a recombination node in G3 with labels lbl1 and
lbl2 on the two incoming edges and descriptor F1|F2. The recombination event is new if, without loss of
generality, lbl1 ⊆ S1 and lbl2 ⊆ S2. In other words, this recombination node is a result of the consensus
of G1 and G2 (and not a recombination that existed in G1 or G2). A new recombination node v is of two
types: Let e1 (e2) be a mutation edge in G1 (G2) with a label in F1 (F2). Without loss of generality, let
level(e1, G1) = l. Then the recombination is of Type I at level l if level(e2, G2) = l and is of Type II
at level l if level(e2, G2) > l. Further, let the number of (non-empty) entries assigned dominant be nD

l ,
subdominant be nS

l and recombinant be nR
l in an X-matrix Xl. Then the following can be verified.

Lemma 2 The number of Type I recombination events at level l in G3 is nR
l . The number of Type II

recombination events at level l in G3 is ≤ nD
l + nS

l . Also, the number of recombination events in a network
is bounded below (Nmin) by the number of Type I recombination events and above (Nmax) by the sum of the
number of Type I and Type II recombination events.

Islands in X: We now give tighter bounds on nD
l , nS

l and nR
l for our analysis. Consider a bipartite graph

B(V, E) with V partitioned into (1) nl nodes, corresponding to the rows and (2) ml nodes corresponding
to the columns of Xl. The adjacency matrix X ′

l is obtained from Xl where an empty set entry is replaced
with 0 and a non-empty set entry with 1. Let the number of connected components of graph B(V,E) be Cl.
Each connected component corresponds to an island in Xl which is a collection of rows and columns of Xl.
Thus Xl is fragmented into Cl islands, Xl,i, written as: Xl = Xl,1 + Xl,2 + . . . + Xl,Cl

. See Fig 17 for an
example. Note that this fragmentation is for analysis purposes only. Further,

∑lbnd
l=1

∑Cl
i=1 yl,i, for any yl,i,
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c1 c2 c3 c4 c5 c6

r1 {·} {·} {·}
r2 {·} {·}
r3 {·}
r4 {·}
r5 {·}

c1 c3 c5 c6 c2 c4

r1 {·} {·} {·}
r3 {·}
r5 {·}
r2 {·} {·}
r4 {·}

(a) Xl (b) The three islands: Xl = Xl,1 + Xl,2 + Xl,3

Figure 17: (a) Xl has five rows and six columns. (b) The rows and columns have been permuted (shuffled)
to reveal the three islands (or three connected components in the associated bipartite graph).

will be written simply as
∑lbnd

l,i yl,i. Let island Xl,i have xl,i non-empty entries and let the number of entries
assigned Y (D or S or R) in Xl,i be nY

l,i. Within an island the number of non-recombinants cannot exceed
max(nl,i,ml,i) by Rules 1 and 2. Thus the following is easily verified:

Lemma 3 For each l and i (i.e., island Xl,i),

nD
l,i + nS

l,i = max(nl,i, ml,i) (by Rule 3 in island Xl,i),
nR

l,i = xl,i −max(nl,i,ml,i) (since xl,i = nD
l,i + nS

l,i + nR
l,i).

Back to the proof: Next, let Nc max(≥ Nmax) and Nc min(≤ Nmin) be some computable functions of the
input.Using Lemmas 2 and 3, we define appropriate (computable) Nc max and Nc min as follows:

Nmax ≤
lmin∑

l

xl = Nc max (5)

Nmin =
lmin∑

l,i

nR
l,i =

lmin∑

l,i

(xl,i −max(nl,i, ml,i)) ≥
lmin∑

l

xl −
lmin∑

l

max(nl,ml) = Nc min (6)

Note that the greedy Rule 3 encourages fragmentation of Xl, l > 1, into islands and under the best case
scenario we get nD

l + nS
l =

∑lmin
l max(nl, ml), which is used in Eqn 6 above. Finally, using Eqn 2, we

have

approxtrue =
NDSR −Nopt

Nopt
≤ Nc max −Nc min

Nc min
≈ Nc max −Nc min

max(1, Nc min)
(7)

The correctness of Eqn 3 is established by setting Z =
∑lmin

l,i max(nl,ml) and Y =
∑lmin

l xl. Here ends
the proof. ¤

Figure 36: Region 2 Principal Component Analysis
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Figure 18: The network on segment Chr X: 87390235-87412114 of the three populations us-
ing HapMap II data. The leafnodes are labeled with (a set of) clusters of the input haplo-
types. A label on an internal node is for reference purposes only. An element of the edge
label is to be interpreted as segment-id:position-id:pattern-id. Further details are available at
http://www.cs.nyu.edu/parida/res/public/Xchr08.
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Figure 19: Consensus of a tree and a network.
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Figure 20: Stepwise construction of G3 of Fig 19 (c) as consensus of T1 and G2: (a)-(e) The X matrices
and the DSR assignments. (f)-(j) The construction of G3 using the DSR assignments of (a)-(e).
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Figure 21: MDS plots of all regions and the best thirteen: stress factor 4% and 4.64% respectively.

Figure 22: Region 1 Principal Component Analysis
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Figure 23: Region 1 Principal Component Analysis

Figure 24: Region 1 Principal Component Analysis

34



Figure 25: Region 1 Correspondence Analysis

Figure 26: Region 1 Correspondence Analysis
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Figure 27: Region 1 Correspondence Analysis

36



Fact.1 Fact.2 Fact.3 Fact.4 Fact.5 Fact.6 Fact.7 Fact.8 Fact.9 Fact.10
LWK 10.23 10.16 0.00 31.29 25.93 11.29 1.35 0.54 0.11 0.02
MKK 16.74 59.07 13.75 0.54 0.08 0.08 0.27 0.07 0.28 0.04
YRI 36.73 9.45 2.19 27.41 8.47 3.49 1.17 1.66 0.30 0.05
ASW 3.09 3.72 3.38 5.72 1.16 60.03 0.25 12.22 1.28 0.05
GIH 3.61 0.19 0.07 32.67 44.36 3.34 5.75 0.27 0.49 0.15
CHB 6.07 3.37 13.13 0.02 1.60 1.90 9.24 1.70 9.32 44.55
CHD 5.08 0.88 11.64 0.08 0.04 1.21 15.19 10.55 24.70 21.53
JPT 7.01 2.04 6.19 0.04 8.78 0.03 11.57 7.98 24.06 23.20
MEX 4.20 7.24 23.98 0.81 0.57 0.00 32.47 19.18 1.68 0.78
CEU 4.14 3.76 25.58 0.23 5.75 15.03 11.23 24.75 0.08 0.37
TSI 3.10 0.13 0.10 1.19 3.26 3.60 11.49 21.07 37.70 9.26

Fact.1 Fact.2 Fact.3 Fact.4 Fact.5 Fact.6 Fact.7 Fact.8 Fact.9 Fact.10
LWK 3.29 0.00 0.85 0.27 36.84 4.92 41.93 0.34 2.08 0.39
MKK 17.07 63.60 4.76 0.62 2.67 0.00 1.81 0.02 0.08 0.29
YRI 47.62 19.09 2.43 14.44 1.95 2.60 1.74 0.01 0.21 0.81
ASW 2.26 9.54 0.09 73.98 1.78 2.06 0.19 0.19 0.00 0.81
GIH 3.93 0.01 1.67 1.41 2.67 64.12 0.34 16.04 0.27 0.45
CHB 5.59 0.76 2.37 3.78 32.11 7.90 15.08 19.30 2.62 1.40
CHD 4.26 0.46 8.00 0.84 0.92 2.90 3.80 2.53 37.04 30.17
JPT 5.61 0.91 8.23 1.90 1.43 5.06 0.04 51.31 5.32 11.09
MEX 2.87 0.96 1.85 2.02 17.28 9.58 35.05 8.60 2.00 10.70
CEU 3.89 3.11 56.96 0.69 0.83 0.10 0.02 0.57 15.24 9.50
TSI 3.61 1.56 12.78 0.06 1.52 0.77 0.00 1.09 35.13 34.39

Figure 28: Regions 1 and 2: Principal Component Analysis
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Figure 29: Region 2 Principal Component Analysis

Figure 30: Region 2 Principal Component Analysis
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Figure 31: Region 2 Principal Component Analysis

Figure 32: Region 2 Correspondence Analysis
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Figure 33: Region 2 Correspondence Analysis

Figure 34: Region 2 Correspondence Analysis

40




