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Abstract—Received power measurements at spatially dis-
tributed, passive, monitors contain valuable information on
the active wireless transmitters, which can be usefully ex-
ploited to make various inferences. In this paper, we study
blind estimation of the number of active wireless sources, their
transmission powers and their locations in the network based
on received power measurements at multiple monitoring
nodes, without assuming any prior knowledge or statistical
characterization of these parameters. Utilizing geometrical
analysis and algorithmic approach we present estimation al-
gorithms for these parameters under signal combination from
multiple transmitters. We present useful non-trivial insights
regarding such inferences, and also present simulation results
verifying the analysis and quantifying the performance of the
estimation algorithms.

Index Terms—Transmit-power estimation, Wireless

I. INTRODUCTION

Transmission power emitted by wireless nodes decay
spatially in the environment according to the physical laws
of power propagation. As such, the measured received
power at spatially distributed locations is highly correlated
and contains valuable information on the wireless network.
By exploiting this correlation, one can make valuable infer-
ences about the wireless network. In this paper, we explore
this concept and utilize received power measurements at
multiple trusting monitors to make “blind” estimation of
the transmission power of active nodes. Specifically, using
only the received power measurements at multiple moni-
tors, we deduce the number of active transmitters and the
transmission powers used by them, without assuming any
a-priori knowledge of the locations of the transmitters or
any statistical distribution of their transmit powers.

Estimation of transmit power of wireless sources has
applicability in a multitude of scenarios such as passive
monitoring of wireless networks, user detection in cognitive
radio systems and event detection in sensor networks.
Passive transmit-power monitoring of a wireless network is
important in detecting abnormal or malicious behavior of
nodes that can cause excessive signal interference, thereby,
causing signal jamming-attack [1] or channel capturing [2].
In cognitive radio, transmit-power estimation can be used to
better estimate the interference levels caused by the active
users, and the regions where secondary user transmissions

would be permissible. In sensor networks, transmit power
estimation can be used to identify multiple transient events
and their intensities.

In this paper, we consider the following setup: There
are multiple wireless sources, and a-priori the number
of transmitters, their transmission powers and locations
are not known. There are a set of monitors at known
locations, each of which measures the ‘combined’ signal
from the transmitters. Note that since we are utilizing only
the received signal strength information, it is implicitly
assumed that the received signals from different sources
are indistinguishable from each other. For the purposes of
simplicity, we assume that the power decays determinis-
tically with distance according to the power law. Under
this setup, we present algorithms to estimate the number of
wireless sources, the transmission power of each source and
the locations of active transmitters. We present simulation
results quantifying the performance of our algorithms and
also point out the limitations.

The above setup is unique in important aspects. First, we
consider only passive received power measurements which
can be done very easily using simple techniques at the
receiver; thus requiring no knowledge of the underlying
protocols used by the wireless system. Second, the esti-
mation is done in a blind way, wherein no prior knowledge
is assumed about the transmission powers, the locations of
the wireless sources, or even the number of sources.

The problem that we consider is unique also from much
of the research work in the literature, hence, there is no di-
rect solution applicable to our scenario. In sensor networks,
there is an increasing body of literature that deals with
sensor node localization [3], [4], [5], [6]. The main problem
here is to locate all the nodes in the network based on
inter-node distance measurements and using known location
information for a small set of nodes, referred to as anchor
nodes. A significant difference with this work is that in our
case the number of sources and their transmit powers are
unknown a-priori. Another related work is MAC layer mon-
itoring wherein specific characteristics of the MAC layer
protocol are utilized to monitor wireless nodes’ behaviors,
for instance, inferring the number of contending nodes [9],
finding and isolating selfish nodes [7], [8]; however, in our
setup no protocol specific information is considered.



In preliminary work in [10], we studied the geometric
aspects of cooperative power estimation of a single trans-
mitter with up to three monitors. We provide in [11] a
more thorough investigation of the problem under wireless
fading, giving a formal estimator design, geometrical in-
sights, asymptotic optimality and numerical results based
on a data-set of field measurements. While our prior work
considered the scenario when the monitors can “decom-
pose” the received signal into the ones from individual
transmitters, in this paper we explore the system model
where each monitor can only measure the combined signal
strength from multiple transmitters.

The rest of the paper is organized as follows. Sec-
tion II introduces the system model and the two prob-
lems (estimations of the number of transmitters and their
transmit-powers) that we aim to solve. Section III presents
the methodologies and approaches for solving the two
problems. Numerical results for evaluating our estimation
strategies are presented in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

We consider a wireless network consisting of a set
of K transmitters (or ‘sources’), {t1, t2, · · · , tK}, whose
locations in the two-dimensional space are (x1, y1), · · · ,
(xK , yK), respectively. The transmit power of the source
ti is respectively denoted by Pi. We assume K, {Pi}, and
{(xi, yi)} are all unknown.

Also there are a set of N monitors, {m1,m2, · · · ,mN},
whose locations are known and denoted by {(x̂j , ŷj)} for
j = 1, · · · , N . Henceforth we use the notation i to index
the transmitters and j to index the monitors.

We denote by P̂i,j the received power of ti’s signal at
monitor mj . We assume all monitors are placed in the same
wireless transmission medium of all sources, so that each
monitor can receive signals transmitted by all sources, i.e.,
P̂i,j is positive, though it can be arbitrarily small, for all
pairs (i, j).

However, at each monitor mj , the received signal from all
sources are added up together to generate the (combined)
measured power value, P̂j =

∑K
i=1 P̂i,j . In other words,

the monitors cannot distinguish the received signals from
different sources, but can only measure the combined signal
strength.

In this paper, we consider the deterministic signal propa-
gation model, where the received power decays in the power
of distance between the source and the receiver, i.e.,

P̂i,j =
Pi

dα
i,j

, (1)

where di,j =
(
(xi − x̂j)2 + (yi − ŷj)2

)1/2 is the Euclidean
distance between the source i and the receiver j, and
path-loss exponent α is assumed to be a known constant,
typically between 2 and 6. We use the above deterministic
model to achieve the fundamental insights on our multi-
transmitter power estimation problem, and to establish a
foundation for future work that can consider more sophisti-
cated assumptions such as wireless fading, unknown signal
decay exponents, etc.

According to the above propagation model, the measure-
ment values at the monitors from K transmitters are

P̂j =
K∑

i=1

Pi

dα
i,j

, for j = 1, · · · , N, (2)

where K, Pi, di,j for i = 1, · · · ,K are all unknown.
Given N received power values P̂j and monitors’ loca-

tions {(x̂j , ŷj)} for j = 1, · · · , N , one would be interested
in finding out, 1) how many transmitters there are (i.e.,
what is K?), and 2) the transmission power of each of the
K transmitters (i.e., what are Pi’s?), that satisfy the set of
N equalities in Eq. (2).

Note that, however, given the fixed number of monitors,
if there exists a k-source solution for Eq. (2), then there
exists some solution of k′ > k sources. Therefore, our goal
in this paper is to find out
• the lower bound kmin of K, (i.e., at least how many

transmitters there should be), and;
• the transmit powers of k sources, Pi, i = 1, · · · , k,

when k = kmin,
which satisfy the N equations in Eq. (2).

We call in this paper the first goal the MIN-NUM-TX
problem, and the second one the POWER-ESTIMATE(k)
problem.

III. ESTIMATION METHOD

In this section, we study the problem of (at least) how
many transmitters there should be given the measured
received power at n monitors. We first begin with a special
case for which we can find an analytic, closed-form solution
to the decision version of MIN-NUM-TX for finding out
whether there are more than one transmitters. Then we
provide a generic approach to determining the minimum
number of transmitters.

A. Number of Source Estimation: Geometric Approach

The decision problem, MIN-NUM-TX-k, is to determine
whether there are more than k transmitters, from which the
solution for MIN-NUM-TX can be obtained by kmin =
arg mink {MIN-NUM-TX-k = TRUE}. In this subsection,
we handle a special case of MIN-NUM-TX-1, i.e., whether
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Fig. 1. Schematic diagram showing the circular trajectory of the
transmitter given received power measurements at two monitors.

there are more than one transmitters, and provide a solution
based on a geometric approach.

The geometric solution for MIN-NUM-TX-1 can be sum-
marized as follows: Suppose we have the received power
values at some monitors. We first make an hypothesis that
these monitored values are generated by a single transmitter.
Then under this hypothesis, we draw the geometry of
the possible location(s) of the (assumed) single transmitter
based on the received powers. If this geometry indicates
that there exists some location of the transmitter satisfying
all measurement values, then we conclude that MIN-NUM-
TX-1 = TRUE, i.e., the minimum number of transmitters
is one. Otherwise, we say MIN-NUM-TX-1 = FALSE, i.e.,
there must be more than one transmitters.

Let us begin with the case that there are only two
monitors. According to Proposition 1 in [10], given two
distinct received signal power levels observed by a pair
of monitors, the possible locations of the transmitter has a
circular trajectory (Figure 1), which is drawn from the ratio
of those two received power values. Therefore, given any
pair of received power levels (P̂1, P̂2) (from any number of
transmitting sources), we can always find the solution for a
single transmitter’s location, leading to the (quite possibly
wrong) conclusion that the hypothesis that there is a single
transmitter is correct.

With three monitors, we may or may not be able to
identify multiple sources, depending on the locations of
the transmitters with respect to the monitors. Consider the
case with two transmitters and three monitors. Let the
coordinates of monitor 1 be (0, 0), the coordinates of
monitor 2 be (x2, 0) and the coordinates of monitor 3 be
(x3, y3). And let us denote the distance between monitors
i and j be dij . Therefore, d12 = x2, d13 = (x2

3 + y2
3)

1/2.

Let c1 = ( P̂2

P̂1
)1/α and c2 = ( P̂3

P̂1
)1/α be the ratios be-

tween the measured received powers. Under the hypothesis
that there is only one signal source unless specified, the
algorithm in [10] can be used to identify the position as

well as transmit power of such (single) source. Thus, based
on these two ratios, two circles can be drawn, and their
equations are respectively

C1 : (1− c2
1)x

2 + (1− c2
1)y

2

+2c2
1d12x− c2

1d
2
12 = 0 (3)

C2 : (1− c2
2)x

2 + (1− c2
2)y

2

+2c2
2x3x + 2c2

2y3y − c2
2d

2
13 = 0 (4)

If these two circles intersect, there exists a solution of
the possible location of the single transmitter. As shown
in [10], with three monitors, these two intersecting circles
must intersect at two points, and therefore ‘another’ solution
also exists. In this case, the monitors draw the conclusion
that there is only one transmitter located on either points
of these two solutions. This conclusion, however, can be
wrong in some cases since multiple transmitters can also
leave the received power levels of three monitors that result
in the intersection of these two circles. On the other hand,
if these two circles do not have any intersections (i.e., no
possible locations of the single transmitter exist), the three
monitors now definitely know that presuming one single
signal source is wrong, and can conclude that the received
signals must be actually coming from multiple transmitters.

As a result, the problem of determining whether there
are solutions for a single transmitter can be transformed to
the one of determining if there are intersections between
the circles as the following algorithm:

Let R1 and R2 denote the radius of C1 and C2,
respectively, and let d be the distance between the centers
of C1 and C2.

Algorithm 1: MIN-NUM-TX-1
if d > R1 and d > R2

if (R1 + R2)2 < d2, then k > 1
else k = 1

else
if (R1 −R2)2 > d2, then k > 1
else k = 1

end if

The above algorithm can be used to determine whether
there are more than one transmitters with the received power
values at three monitors. But the remaining question is: in
what case the above algorithm gives you the correct answer?
We explore its answer by looking at the geometry of the
so-called ‘detectable region’ as follows.

Let us assume that we are given the location (xA, yA) of
a transmitter (node A), we are going to explore the region
defined by the locations of the other transmitter (node B)
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Fig. 2. The detectable region for the position of transmitter B given
the positions of the three monitors and transmitter A.

that leads to non-intersection circles. We denote this region
as the detectable region, where the monitors can identify
that the received signal is from more than one sources.

When d > R1 and d > R2, c1 < 1 and c2 < 1,

(R1+R2)2−d2= c2
1d

2
12

1−c2
1
+ c2

2d
2
13

1−c2
2
+ c1c2(2d12d13+c1c2(d2

12+d2
13−d2

23))
(1−c2

1)(1−c2
2)

.

Consider a special case that d12 = d13 = d23, then
there are no possible solutions for one transmitter if

(c1 + c2)2 − (c1c2)2

(1− c2
1)(1− c2

2)
< 0. (5)

The LHS of (5) is regarded as the discriminant for the
existence of the solution: If it is less than zero, there
are no solutions for single transmitter. (Otherwise, there is
solution).

Figure 2 illustrates geometrically an example of the
detectable region drawn via numerical simulation. In the
figure, the darkest area represents the detectable region of
the second transmitter, node B, when the location of the first
transmitter (node A) is given. It can be seen that, when the
transmitter A is closer to one of the monitors (monitor 1 in
the figure) than the others, the detectable region corresponds
to regions around the other two monitors. It turns out that
the closer is the transmitter node A to one of the monitors,
the larger becomes the detectable region. As a side note, the
detectable region will also shrink as the difference between
the two transmit powers PA and PB increases.

With four or more monitors, the existence of single-
transmitter solutions is determined by the existence of
common intersections of any three of the circles that do
not have any triangular dependency. Our conjecture is that
the cooperation among four or more number of monitors
is capable to detect the existence of multiple sources under
the deterministic model (i.e., with full detectable region).

Though we have not been able to verify this conjecture
rigorously, our simulation result shows this is the case (i.e.,
100% accuracy with 4 monitors); the reader is referred to
Section IV.A for the numerical results.

We note that this geometrical approach can be extended
also in the case when the signal decay exponent α is
unknown. For instance, when α is only known to be in some
range, [αmin, αmax], the possible locations of the transmit-
ter inferred from two monitors’ measurement (in Figure
1) become a torus instead of a circle. Thus the required
modification would be that one needs to find if there are
intersections of two or more tori to determine whether there
can be single transmitter for the given measurement values.

B. Generic Solution to Number of Source Estimation

Now we provide a solution to MIN-NUM-TX problem
for general number of transmitters, in which our goal is to
determine whether there are at least kmin transmitters. In
principle, if we have an ideal solution to the decision prob-
lem MIN-NUM-TX-k that can (correctly) tell whether there
are more than k transmitters, kmin can be correctly decided
(i.e. kmin = K) by kmin = arg mink>0 {Output(MIN-
NUM-TX-k) = TRUE}.

Note, however, the ability of a monitoring system in
providing the solution to MIN-NUM-TX problem is the-
oretically limited by the available number of monitors N .
Specifically, in order to correctly determine whether there
are at least K transmitters, the monitoring system requires
at least 3(K − 1) + 1 monitors. This is because if there are
only 3(K − 1) monitors, whose measured received powers
constitute a system of 3(K − 1) equations, one can find a
solution that consists of 3(K−1) variables for K−1 trans-
mitters (Pi, xi, and yi, for i = 1, · · · , k−1). This means, if
there are K transmitters but less than 3(K−1)+1 monitors,
one can always determine (incorrectly) that kmin = K − 1
due to insufficient information.

Therefore, given N monitors and the corresponding N
equations in Eq. (2), our ‘best’ estimate k∗min is the smallest
k, k = 1, 2, · · · , such that there exists a feasible solution
{(Pi, xi, yi), i = 1, · · · , k } to (2). In principle, such k∗min

would correctly indicate the actual number of transmitters
K given enough number of monitors (i.e., N > 3(K− 1)),
while it would ‘under-estimate’ K (k∗min < K) if there are
less monitors than required (i.e., when N ≤ 3(K − 1)).
Note that, in a special case that it is known a-priori K ≤
2, the analytic solution in Section III-A correctly outputs
k∗min = 1 or 2.

However, the non-linearity (especially due to α ≥ 2)
makes it intractable to find a closed-form solution to Eq. (2)
for general k > 2. We found that even numerical approaches
based on optimization criteria are quite often unable to find
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a feasible solution to all equalities of (2). Hence, we here
provide a numerical searching strategy based on a relaxed
inequality constraint for the feasibility (as opposed to the
strict equality constraint of (2)).

Specifically, given P̂j , {(x̂j , ŷj)}, j = 1, · · · , n, we say
{(Pi, xi, yi), i = 1, · · · , k}, Pi > 0 for i = 1, · · · , k, is
ε-feasible if

n∑

j=1

(
P̂j −

k∑

i=1

Pi

dα
i,j

)2

< ε, (6)

where a constant ε ≥ 0 is a design parameter. In other
words, we allow some margin of quantity ε to the square-
sum of n equations of Eq. (2) for the feasibility condition.
Then our estimate k∗min is the least k such that there exists
an ε-feasible solution with k-transmitter.

The effect of introducing the ε margin on the performance
of the kmin estimator is clear: a large ε allows more
data points to satisfy (6), hence making the numerical
search to a feasible solution ‘easier’. However, a negative
impact is that, if ε is too high, some data points of k′

transmitters for k′ < K may be found ε-feasible, making us
‘under-estimate’ the minimum number of transmitter (even
with sufficient number of monitors). On the other hand, a
small ε would make the under-estimating case k∗min < K
unlikely, whereas it can make it difficult to find even a
legitimate solution k∗min = K, leading us to ‘over-estimate’
K (especially when N is large).

While we recognize the importance of choosing ε for a
good estimation quality, we leave a rigorous investigation to
it as a future research topic. In our performance evaluation
in Section IV, we used a fixed value for ε.

C. Estimating Transmit Powers

Having presented how to estimate the number of
sources, we now proceed to our second problem POWER-
ESTIMATE(k) of estimating the transmit powers of k
sources. Now that we notice solving the set of N equations
of Eq. (2) is analytically intractable for general k, our
estimate of Pi is based on numerical optimization.

Specifically, given k, let θ be the unknown vector of 3k
parameters Pi, xi, yi, i = 1, · · · , k, and Ω be the set of
all admissible values for θ. Then given k, P̂j , {(x̂j , ŷj)},
j = 1, · · · , N , our estimate θ∗ is the optimal one for the
following least-square optimization problem:

θ∗ = arg min
θ∈Ω

n∑

j=1

(
P̂j −

k∑

i=1

Pi

dα
i,j

)2

,

s.t. Pi ≥ 0, i = 1, · · · , k. (7)

Note that the above optimization provides the estimate
θ∗ which consists of the optimal location (x∗i , y

∗
i ) as well

as P ∗
i for i = 1, · · · , k. In other words, given N monitors’

locations and their received power values, we also estimate
the locations of multiple sources along with their transmit
powers. This means our method can be utilized for local-
izing positions of multiple wireless sources with additional
unknown parameters of their transmit powers.

IV. NUMERICAL ANALYSIS

In this section, we present the performance evaluation
result of our estimation methods using numerical analyses
on synthetic dataset. The dataset is generated as follows.

For a given number of transmitter, K, we pick uniformly
at random the locations of K transmitters in a square-area
[−S,S]×[−S,S], with S = 10, and select the transmit
power of each transmitter uniformly at random in [0, Pmax]
where Pmax = 100. We generate 100 different sets of such
K transmitters.

For each set of K transmitters, we also pick a random
locations of N monitors within the same area, for N =
1, · · · , 10, for which we generate the received power values
based on the deterministic path-loss model in Eq. (2).

The quality of our estimation on the number of sources
and the transmit powers depends upon the accuracy of
the numerical methods for the optimization. However, the
nonlinearity of our objective function and ε-feasibility con-
straint makes numerical search susceptible to falling in local
minima, prohibiting it from finding the ‘true’ optimal or
feasible solution.

A remedy to this problem is to iterate the optimization
multiple times independently. Therefore, in our evaluation
below, we introduce a design parameter R, which represents
the number of independent iterations that the optimal search
is performed, with each search starting from randomly
chosen initial parameter θ0. For ε-feasibility test for MIN-
NUM-TX, the search stops when a feasible solution is
found for the first time, while for the power-estimation,
we pick the values that result in the smallest objective
function out of all R iterations. Essentially, we tradeoff the
computational overhead of repeating the search R times
with the accuracy of our estimate: we expect the accuracy
of our estimation would increase with larger R.

A. Number of Sources Estimation

Here we present preliminary results for K = 2 for
MIN-NUM-TX estimation with ε = 10−4. We simulated
both the geometric and generic approaches introduced in
the previous section. Though we consider K = 2 for
both approaches in the simulations, they represent different
decision levels. Note that the geometric approach is for
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Fig. 3. Estimation accuracy of MIN-NUM-TX-1 geometric approach
with K = 2.

determining whether there is one or more transmitters (i.e.,
whether K > 1), while the generic approach provides a
more general decision of whether there are more than k
transmitters (i.e., whether K > k, for general k).

Figure 3 shows the estimation accuracy of the geometric
approach (for determining whether K > 1) against the
number of cooperating monitors with K = 2, the result
is based on 100 random sets of transmitters and monitors
positions. As explained in Section III.A, we can see from
the figure that one and two monitors give zero accuracy,
three monitors give about 23% accuracy, and full accuracy
can be achieved with four monitors.

Figure 4 shows the performance of our MIN-NUM-TX
estimator using ε-feasibility test. The three curves in Figure
4(a) depicts the ratio of the transmitter sets (to the total
100 sets), for which the number of monitors in the x-
axis result in the correct estimation (kmin = K), under-
estimation (kmin < K), and over-estimation (kmin > K)
with K = 2 after R = 100 iterations. As we have argued
in the previous section, if there are not sufficient number
of monitors (N < 4), the estimator results mostly in under-
estimating the number of sources. But as N grows, the cases
of correct estimation gets dominating (up to 85%, while
there are some under-estimating and over-estimating results.
The under-estimation is due to the margin that we give
in ε-feasibility condition, whereas the over-estimation takes
place when the numerical search for the feasible solution
fails.

While the under-estimation could be made smaller by
having smaller ε margin, this generally comes at the expense
of increased over-estimation probability. But The over-
estimating cases can be suppressed as well by trading it
off with the increased computational resources, namely the
increased number of search iteration R. This is illustrated
in Figure 4(b), where it can be seen that the over-estimation
probability (when N is large) shrinks down to 5% as we
increase the number search iterations.
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Fig. 4. Performance of MIN-NUM-TX estimation (K = 2).

B. Transmit-power and Location Estimation

We now show the performance of the power and location
estimation, assuming the correct number of transmitters
are given. The result here is obtained for K = 2. First,
we define the power estimation error (Perr) and location
estimation error (Lerr) for given number of transmitters K:

Perr = 1
K

(∑K
i=1

(
P ∗i −Pi

Pi

)2
)1/2

, (8)

Lerr = 1
K

∑K
i=1

((x∗i−xi)2+(y∗i−yi)2)
1/2

2S . (9)

Note that a normalized term 2S is included in the location
error to see the dis-location of the estimated (x∗i , y

∗
i ) relative

to the the scale of the considered area (2S is the side length
of the area we generate the transmitters).

Figures 5(a) and 5(b) illustrate how the Perr and Lerr,
respectively, vary with the number of cooperating monitors.
Here we show the results for N = 4 to 10 as a set of
monitors N < 4 are not likely to estimate the correct
number of transmitters as we have seen in Section IV-A.
In finding the optimal solution, we added the additional
constraints on the location of the transmitters such that
(xi, yi) ∈ (−3S, 3S) × (−3S, 3S), i = 1, · · · ,K, to avoid
solutions converging to prohibitively off-position. Each dot
represents the value of Perr and Lerr of the corresponding
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Fig. 5. The accuracy of power and location estimation.

N for each case out of 20 sets of transmitters, and the line
connecting the dots across different N shows the median
values. We can see that as the number of monitors increases
up to ten, both Perr and Lerr become very small; The
estimation quality of transmit-power is within 10% of the
actual value, and the location error is within 2% of the
actual location with respect to the overall length of the area.
This is quite an impressive result considering we have not
assumed any a-priori knowledge on the power and location
(other than the large bound on the location), and once
again verifies that the estimation accuracy increases with
the number of cooperating monitors.

V. CONCLUSION

We studied blind estimation of the number of active
transmitters, their transmit-powers and their locations based
on received power measurements at spatially distributed
monitors, without assuming any prior knowledge of these
parameters. Specifically, the setup consisted of a set of pas-
sive monitors that measure received power levels from mul-
tiple transmitting sources and the goal was to utilize these
measurements to estimate the above parameters. We pre-
sented geometrical analysis which provided useful insights
to the problem. We also proposed estimation algorithms
based on a numerical optimization approach and provided
illustrative simulation results quantifying the performance
of these algorithms. Our work highlights that received
power measurements at spatially distributed locations can

be utilized to make useful inferences on various network pa-
rameters. An important extension of this work in the future
will be to investigate the estimation problem under non-
deterministic/uncertain signal propagation characteristics.
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