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ON THE LOCATION AND P-MEDIAN POLYTOPES

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We revisit classical systems of linear inequalities associated with location
problems and with the p-median problem. We present an overview of the cases for
which these linear systems define integral polytopes. We also give polynomial time
algorithms to recognize these cases.

1. Introduction

Facility location and p-median are among the most well-studied problems in combi-
natorial optimization. They are both NP-hard, so there is not much hope of having
a complete polyhedral characterization of them. The linear programming relaxations
that we use have been known since the 60’s and have been the basis for many heuristics,
branch and bound algorithms, and approximation algorithms. Despite all this work, very
little is known about special cases where these formulations give integral polytopes, and
also there are not many special cases where the associated polytope has been completely
characterized. We have found a characterization of the graphs for which these linear
relaxations define polytopes with all extreme points being integral. Here we present an
overview of all these cases. We also give polynomial time algorithms to recognize these
classes of graphs. Our characterization shows the basic structures that a graph contains
when the polytope has fractional extreme points.

We first deal with location problems, we show that the linear relaxation gives an
integral polytope if and only the graph does not contain a certain type of “odd” cycles.
Then we deal with the p-median problem. We show that there are five configurations
that should be forbidden in order to have an integral polytope. Here the proof consists of
three parts as follows. First we show the result for the so-called Y -free graphs. We denote
by Y some basic configuration in the graph. The result on Y -free graphs is used to start
an induction proof for oriented graphs. These are directed graphs where between any
two nodes u and v, at most one of the arcs (u, v) and (v, u) exists. Here the induction is
done on the number of Y configurations. The third part consists of extending our result
to general directed graphs. Here the induction is done on the number of pairs of nodes
u and v such that both (u, v) and (v, u) exist. The initial step of the induction is given
by the result on oriented graphs.

This paper is organized as follows. Section 2 contains some definitions. Section 3 deals
with location problems. Section 4 covers the p-median problem. In Section 5 we give
an algorithm to recognize the graphs defined in Section 4. Section 6 is devoted to some
extensions.

Date: June 25, 2008.
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2 M. BAÏOU AND F. BARAHONA

2. Preliminary definitions

A directed graph G = (V,A) is called oriented if (u, v) ∈ A implies (v, u) /∈ A. For
a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W ) the set of arcs
(u, v) ∈ A, with u ∈W and v ∈ V \W . Also we denote by δ−(W ) the set of arcs (u, v),
with v ∈W and u ∈ V \W . We write δ+(v) and δ−(v) instead of δ+({v}) and δ−({v}),
respectively. If there is a risk of confusion we use δ+

G and δ−G . A node u with δ+(u) = ∅
is called a pendent node.

A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p− 1, are distinct nodes,
• ai, 0 ≤ i ≤ p− 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ p− 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.
• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the

tail of ai, 1 ≤ i ≤ p.
• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and

also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called odd if p + |Ċ| (or |C̃| + |Ċ|) is odd,

otherwise it will be called even. A cycle C with Ċ = ∅ is a directed cycle. The set of arcs
in C is denoted by A(C).

If we do not require v0 = vp we have a path P . In a similar way we define Ṗ , P̂ and

P̃ , excluding v0 and vp. We say that P is odd if p + |Ṗ | is odd, otherwise it is even. For
the path P , the nodes v1, . . . , vp−1 are called internal.

If G is a connected graph and there is a node u such that its removal disconnects G,
we say that u is an articulation point. A graph is said to be two-connected if at least two
nodes should be removed to disconnect it. For simplicity, sometimes we use z to denote
the vector (x, y), i.e., z(u) = y(u) and z(u, v) = x(u, v). Also for S ⊆ V ∪A we use z(S)
to denote z(S) =

∑

a∈S z(a).

A polyhedron P is a set defined by a system of linear inequalities, i.e., P = {x |Ax ≤ b}.
A face of P is obtained by setting into equation some of these inequalities. An extreme
point of P is given by a face that contains a unique element. In other words, some
inequalities are set to equation so that this system has a unique solution. A polytope
is a bounded polyhedron. A polyhedron is called integral if all its extreme points are
integral.

3. Location problems

Let G = (V,A) be a directed graph, not necessarily connected, where each arc and
each node has weight associated with it. We study a “prize collecting” version of a
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location problem (LP) as follows. A set of nodes is selected, usually called centers, and
then each non-selected node can be assigned to a center. The weight of a node is the
revenue obtained by opening a facility at that location, minus the cost of building the
facility. The weight of an arc (i, j) is the revenue obtained by assigning the location i
to the location j, minus the cost originated by this assignment. The goal is to maximize
the sum of the weights of the selected nodes plus the sum of the weights yielded by the
assignment. The linear system below defines a linear programming relaxation.

max
∑

w(u, v)x(u, v) +
∑

w(v)y(v)
∑

(u,v)∈A

x(u, v) + y(u) ≤ 1 ∀u ∈ V,(1)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(2)

0 ≤ y(v) ≤ 1 ∀v ∈ V,(3)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(4)

For each node u, the variable y(u) takes the value 1 if the node u is selected and 0
otherwise. For each arc (u, v) the variable x(u, v) takes the value 1 if u is assigned to v
and 0 otherwise. Inequalities (1) express the fact that either node u can be selected or
it can be assigned to another node. Inequalities (2) indicate that if a node u is assigned
to a node v then this last node should be selected. The set of integer vectors that satisfy
(1)-(4) corresponds to a transitive packing as defined in [21].

Let P (G) be the polytope defined by (1)-(4), and let LP (G) be the convex hull of
P (G) ∩ {0, 1}|V |+|A|. Clearly

LP (G) ⊆ P (G).

Here we characterize the graphs G for which LP (G) = P (G). More precisely, we show
that LP (G) = P (G) if and only if G does not contain an odd cycle. We also give a
polynomial algorithm to recognize the graphs in this class.

The Uncapacitated Facility Location Problem (UFLP) is a variation where V is parti-
tioned into V1 and V2. The set V1 corresponds to the customers, and the set V2 corre-
sponds to the potential facilities. Each customer in V1 should be assigned to an opened
facility in V2. This is obtained by considering A ⊆ V1 × V2, fixing to zero the variables
y for the nodes in V1 and setting into equation the inequalities (1) for the nodes in V1.
More precisely, the linear programming relaxation for this case is

min
∑

c(u, v)x(u, v) +
∑

d(v)y(v)
∑

(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(5)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(6)

0 ≤ y(v) ≤ 1 ∀v ∈ V2,(7)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(8)

Here we also characterize the cases for which (5)-(8) defines an integral polytope.

We omit the proofs of several technical lemmas, the full details appear in [3]. The
facets of the uncapacitated facility location polytope have been studied in [18], [15], [9],
[10], [7]. In [2] we gave a description of LP (G) for Y -free graphs. The UFLP has also
been studied from the point of view of approximation algorithms in [23], [11], [25], [6]
and others. Other references on this problem are [14] and [20]. The relationship between
location polytopes and the stable set polytope has been studied in [15], [9], [10], [17], and
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others. It would be interesting to know if our results also have an equivalent in terms of
stable set polytopes, but so far we have not found the right transformation.

3.1. Decomposition. In this subsection we consider a graph G = (V,A) that decom-
poses into two graphs G1 = (V1, A1) and G2 = (V2, A2), with V = V1∪V2, V1∩V2 = {u},
A = A1 ∪A2, A1 ∩A2 = ∅. We define G′

1 that is obtained from G1 after replacing u by
u′. We also define G′

2, obtained from G2 after replacing u by u′′. The theorem below
shows that we have to concentrate on two-connected graphs.

Theorem 1. Suppose that the system

Az′ ≤ b(9)

z′
(

δ+
G′

1

(u′)
)

+ z′(u′) ≤ 1(10)

describes LP (G′
1). Suppose that (9) contains the inequalities (1)-(4) except for (10).

Similarly suppose that

Cz′′ ≤ d(11)

z′′
(

δ+
G′

2

(u′′)
)

+ z′′(u′′) ≤ 1(12)

describes LP (G′
2). Also (11) contains the inequalities (1)-(4) except for (12). Then the

system below describes an integer polytope.

Az′ ≤ b(13)

Cz′′ ≤ d(14)

z′
(

δ+
G′

1

(u′)
)

+ z′′
(

δ+
G′

2

(u′′)
)

+ z′(u′) ≤ 1(15)

z′(u′) = z′′(u′′)(16)

We have the following corollary.

Corollary 2. The polytope LP (G) is defined by the system (13)-(16) after identifying
the variables z′(u′) and z′′(u′′).

This last corollary shows that if LP (G′
1) and LP (G′

2) are defined by (1)-(4), then
LP (G) is also defined by (1)-(4). Thus we have to concentrate on graphs that are two-
connected. A result analogous to Theorem 1, for the stable set polytope, has been given
in [12].

3.2. Graph Transformations. First we plan to prove that if G has no odd cycle then
LP (G) = P (G). The proof consists of assuming that z̄ is a fractional extreme point of
P (G) and arriving at a contradiction. Below we give several assumptions that can be
made about z̄ and G, they will be used in the next subsection. The proofs of the lemmas
below consist of modifying the graph and the vector z̄ so that we obtain a new extreme
point associated with a new graph satisfying the assumptions below.

Lemma 3. We can assume that G consists of only one connected component.

Lemma 4. If 0 < z̄(u, v) < z̄(v), we can assume that v is a pendent node with
|δ−(v)| = 1 and z̄(v) = 1.

Lemma 5. We can assume that 0 < z̄(u, v) < 1 for all (u, v) ∈ A.

Lemma 6. We can assume that G is either two-connected or it consists of a single arc.
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If the graph G consists of a single arc it is fairly easy to see that LP (G) = P (G), so
now we have to deal with the two-connected components. This is treated in the next
subsection.

3.3. Treating two-connected graphs. In this subsection we assume that the graph G
is two-connected and it has no odd cycle. Let z̄ be a fractional extreme point of P (G), we
are going to assign labels l to the nodes and arcs and define z′(u, v) = z̄(u, v) + l(u, v)ǫ,
z′(u) = z̄(u) + l(u)ǫ, ǫ > 0, for each arc (u, v) and each node u. We shall see that every
constraint that is satisfied with equality by z̄ is also satisfied with equality by z′. This
is the required contradiction.

Given a path P = v0, a0, . . . , ap−1, vp. Assume that the label of a0, l(a0) has the value
1 or −1. We define the labeling procedure as follows.

For i = 1 to p− 1 do

• If vi is the head of ai−1 and it is the tail of ai then l(vi) = l(ai−1), l(ai) = −l(ai−1).
• If vi is the head of ai−1 and it is the head of ai then l(vi) = l(ai−1), l(ai) = l(ai−1).
• If vi is the tail of ai−1 and it is the head of ai then l(vi) = −l(ai−1), l(ai) =
−l(ai−1).
• If vi is the tail of ai−1 and it is the tail of ai then l(vi) = 0, l(ai) = −l(ai−1).

Notice that the labels of v0 and vp were not defined.

We have to study several cases as follows.

Case 1. G contains a directed cycle C = v0, a0, . . . , ap−1, vp. Assume that the head
of a0 is v1, set l(v0) = −1, l(a0) = 1 and extend the labels as above.

Case 2. G contains a cycle C = v0, a0, . . . , ap−1, vp and Ċ 6= ∅. Assume v0 ∈ Ċ. Set
l(v0) = 0, l(a0) = 1 and extend the labels.

The lemma below is needed to show that for v0, the constraints that were satisfied
with equality by z̄ remain satisfied with equality.

Lemma 7. After labeling as in Cases 1 and 2 we have l(ap−1) = −l(a0).

Notice that after the first cycle has been labeled as in Cases 1 or 2, the properties below
hold, we shall see that these properties hold throughout the entire labeling procedure.

Property 1. If a node has a nonzero label, then it is the tail of at most one labeled arc.

Property 2. If a node has a zero label, then it is the tail of exactly two labeled arcs.

Once a cycle C has been labeled as in Cases 1 or 2, we have to extend the labeling as
follows.

Case 3. Suppose that l(v0) 6= 0 for v0 ∈ C, (v0 is the head of a labeled arc), and
there is a path P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

- v0 is the head of a0,
- vp ∈ C,
- {v1, . . . , vp−1} is disjoint from C.

We set l(a0) = l(v0) and extend the labels. Case 3 is needed so that any inequality (2)
associated with v0 that is satisfied with equality, remains satisfied with equality.
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We have to see that the label l(ap−1) is such that constraints associated with vp that
were satisfied with equality remain satisfied with equality. This is discussed in the next
lemma.

Lemma 8. If vp is the head of ap−1 then l(ap−1) = l(vp). If vp is the tail of ap−1 then
l(ap−1) = −l(vp).

Proof. cf. [3]. Notice that v0 /∈ Ċ, in Figure 1 we represent the possible configurations
for the paths in C between v0 and vp. In this figure we show whether v0 and vp are the
head or the tail of the arcs in C incident to them. These two paths are denoted by P1

and P2.
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v0

vp

Figure 1. Possible paths in C between v0 and vp. It is shown whether
v0 and vp are the head or the tail of the arcs in C incident to them.

Consider configuration (1), these two paths should have different parity. When adding
the path P , an odd cycle is created with either P1 or P2. So configuration (1) will not
occur. The same happens with configuration (2).

Now we discuss configuration (3). These two paths should have the same parity. If vp

is the tail of ap−1 then P would create an odd cycle with either P1 or P2. If vp is the
head of ap−1 then P should have the same parity as P1 and P2. Then l(ap−1) = l(vp).

The study of configuration (4) is similar. The two paths should have the same parity.
If vp is the tail of ap−1 then P would create an odd cycle with either P1 or P2. If vp is
the head of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

For configuration (5) again the two paths should have the same parity. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp). If vp is
the tail of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = −l(vp).

Also in configuration (6) the paths P1 and P2 should have the same parity. If vp is
the tail of ap−1 then P would form an odd cycle with either P1 or P2. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

In configuration (7) also the two paths should have the same parity. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp). If vp is the
tail of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = −l(vp). �

Based on this the labels are extended successively. Denote by Gl the subgraph defined
by the labeled arcs. This is a two-connected graph, so for any two nodes v0 and vp it
contains a cycle going through these two nodes. Thus we can check if Case 3 applies and
extend the labels adding each time a path to the graph Gl. The two lemmas below show
that Properties 1 and 2 remain satisfied.
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Lemma 9. Let vp be a node with l(vp) 6= 0. If vp is the tail of an arc in Gl, then in
Case 3 it cannot be the tail of ap−1. Thus Property 1 remains satisfied.

Lemma 10. Let vp be a node with l(vp) = 0, thus vp is the tail of exactly two arcs in
Gl. Then in Case 3 it cannot be the tail of ap−1. Therefore Property 2 remains satisfied.

Once Case 3 has been exhausted we might have some nodes in Gl that are not pendent
in G and that are only the head of labeled arcs. For such nodes we have to ensure that
inequalities (1) that were satisfied as equality remain satisfied as equality. This is treated
in the following.

Case 4. Suppose that v0 is only the head of labeled arcs, (l(v0) 6= 0), v0 is not
pendent. We have that δ+(v0) 6= ∅ thus there is a cycle C in Gl and there is a path
P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

- v0 ∈ C is the tail of a0,
- vp ∈ C,
- {v1, . . . , vp−1} is disjoint from Gl.

We set l(a0) = −l(v0) and extend the labels. We have to see that the label l(ap−1)
is such that constraints associated with vp, that were satisfied with equality, remain
satisfied with equality. This is discussed below.

Lemma 11. In Case 4 we have that vp is the tail of ap−1 and l(ap−1) = −l(vp). Also
Properties 1 and 2 continue to hold.

To summarize, the labeling algorithm consists of the following steps.

• Step 1. Identify a cycle C in G and treat it as in Cases 1 or 2. Set Gl = C.
• Step 2. For as long as needed label as in Case 3. Each time add to Gl the new

set of labeled nodes and arcs.
• Step 3. If needed, label as in Case 4. Each time add to Gl the new set of labeled

nodes and arcs. If some new labels have been assigned in this step go to Step 2,
otherwise stop.

At this point we can discuss the properties of the labeling procedure. The labels are
such that any inequality (2) that was satisfied with equality by z̄ is also satisfied with
equality by z′. To see that inequalities (1) that were tight remain tight, we need two
observations about Gl:

• Any node that has a nonzero label is the tail of exactly one labeled arc having
the opposite label.
• If u is a node with l(u) = 0, then there are exactly two labeled arcs having

opposite labels and whose tail is u.

Finally we give the label “0” to all nodes and arcs that are unlabeled, this completes the
definition of z′. Lemma 5 shows that inequalities (4) will not be violated. The fact that
nodes v with z̄(v) = 0 or z̄(v) = 1 receive a zero label, shows that inequalities (3) will
not be violated. Any constraint that is satisfied with equality by z̄ is also satisfied with
equality by z′, this contradicts the assumption that z̄ is an extreme point. We can state
the main result of this subsection.

Theorem 12. If the graph G is two-connected and has no odd cycle then LP (G) = P (G).

This implies the following.
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Theorem 13. If G is a graph with no odd cycle, then LP (G) = P (G).

Theorem 14. For graphs with no odd cycle, the uncapacitated facility location problem
is polynomially solvable.

3.4. Odd cycles. In this subsection we study the effect of odd cycles in P (G). Let C
be an odd cycle. We can define a fractional vector (x̄, ȳ) ∈ P (G) as follows:

ȳ(u) = 0 for all nodes u ∈ Ċ,(17)

ȳ(u) = 1/2 for all nodes u ∈ C \ Ċ,(18)

x̄(a) = 1/2 for a ∈ A(C),(19)

ȳ(v) = 0 for all other nodes v /∈ C,(20)

x̄(a) = 0 for all other arcs.(21)

Below we show a family of inequalities that separate the vectors defined above from
LP (G). We call them odd cycle inequalities.

Lemma 15. The following inequalities are valid for LP (G).

(22)
∑

a∈A(C)

x(a)−
∑

v∈Ĉ

y(v) ≤
|C̃|+ |Ĉ| − 1

2

for every odd cycle C.

These inequalities are {0, 1/2}-Chvatal-Gomory cuts, using the terminology of [8]. A
separation algorithm can be obtained from the results of [8]. In [3] we gave an alternative
separation algorithm.

Now we can present the following result.

Theorem 16. Let G be a directed graph, then LP (G) = P (G) if and only if G does not
contain an odd cycle.

Proof. cf. [3]. If G contains and odd cycle C, then we can define a vector (x̄, ȳ) ∈ P (G)
as in (17)-(21). We have

∑

a∈A(C)

x̄(a)−
∑

v∈Ĉ

ȳ(v) =
|C̃|+ |Ĉ|

2
.

Lemma 15 shows that z̄ /∈ LP (G).

Then the theorem follows from Theorem 13. �

3.5. Detecting odd cycles. Now we study how to recognize the graphs G for which
LP (G) = P (G). We start with a graph G and several transformations are needed.

The first transformation consists of building an undirected graph H = (N,E). For
every node u ∈ G we have the nodes u′ and u′′ in N , and the edge u′u′′ ∈ E. For every
arc (u, v) ∈ G we have an edge u′v′′ ∈ E. See Figure 2.

Consider a cycle C in G, we build a cycle CH in H as follows.

• If (u, v) and (u,w) are in C, then the edges u′v′′ and u′w′′ are taken.
• If (u, v) and (w, v) are in C, then the edges u′v′′ and v′′w′ are taken.
• If (u, v) and (v,w) are in C, then the edges u′v′′, v′′v′, and v′w′′ are taken.
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Figure 2

On the other hand, a cycle in H corresponds to a cycle in G. Thus there is a one to
one correspondence among cycles of G and cycles of H. Moreover, if the cycle in H has
cardinality 2q, then q = |Ċ| + |C̃|, where C is the corresponding cycle in G. Therefore
an odd cycle in G corresponds to a cycle in H of cardinality 2(2p + 1) for some positive
integer p. See Figure 3.
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Figure 3. An odd cycle in G and the corresponding cycle in H. The
nodes of H close to a node u ∈ G correspond to u′ or u′′.

In other words, finding an odd cycle in G reduces to finding a cycle of cardinality
2(2p + 1), for some positive integer p, in the bipartite graph H.

For this question, a linear time algorithm was given in [28], a simple O(|V ||A|2) has
been given in [13].

3.6. Uncapacitated Facility Location. Now we assume that V is partitioned into V1

and V2, A ⊆ V1 × V2, and we deal with the system
∑

(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(23)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(24)

0 ≤ y(v) ≤ 1 ∀v ∈ V2,(25)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(26)

If the variables x and y are constrained to be integer, then we have the uncapacitated
facility location problem (UFLP). We denote by Π(G) the polytope defined by (23)-(26).
Notice that Π(G) is a face of P (G). Let V̄1 be the set of nodes u ∈ V1 with |δ+(u)| = 1.
Let V̄2 be the set of nodes in V2 that are adjacent to a node in V̄1. It is clear that the
variables associated with nodes in V̄2 should be fixed, i.e., y(v) = 1 for all v ∈ V̄2. Let
us denote by Ḡ the subgraph induced by V \ V̄2. In this section we prove that Π(G) is
an integer polytope if and only if Ḡ has no odd cycle.

Let us first assume that Ḡ has no odd cycle. As before, we suppose that z̄ is a fractional
extreme point of Π(G). The analogues of lemmas 3, 4 and 5 apply here. Thus we can
assume that we deal with a connected component G′. Lemma 4 implies that any node
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in V̄2 is not in a cycle of G′. Therefore G′ has no odd cycle and P (G′) is an integer
polytope. Since Π(G′) is a face of P (G′), we have a contradiction.

Now let C be an odd cycle of Ḡ. We can define a fractional vector as follows:

ȳ(v) = 1/2 for all nodes v ∈ V2 ∩ V (C),

x̄(a) = 1/2 for a ∈ A(C),

ȳ(v) = 1 for all nodes v ∈ V2 \ V (C).

For every node u ∈ V1 \ V (C), we look for an arc (u, v) ∈ δ+(u). If ȳ(v) = 1 we set
x̄(u, v) = 1. If ȳ(v) = 1/2, then there is another arc (u,w) ∈ δ+(u) such that ȳ(w) = 1/2
or ȳ(w) = 1. We set x̄(u, v) = x̄(u,w) = 1/2. Finally we set x̄(a) = 0 for each remaining
arc a. This vector satisfies (23)-(26), but it violates the inequality (22) associated with
C. This shows that in this case (23)-(26) does not define an integer polytope. Thus we
can state our main results.

Theorem 17. The system (23)-(26) defines an integral polytope if and only if Ḡ has no
odd cycle.

Theorem 18. The UFLP is polynomially solvable for graphs G such that Ḡ has no odd
cycle.

This class of graphs can be recognized in polynomial time as described in Subsec-
tion 3.5.

4. The p-median problem

The p-median problem is closely related to the uncapacitated facility location problem.
Here we need to select a specific number of centers. Formally, let G = (V,A) be a directed
graph, not necessarily connected. We assume that G is simple, i.e., between any two
nodes u and v there is at most one arc directed from u to v. Also for each arc (u, v) ∈ A
and node v ∈ V there is an associated cost c(u, v) and w(v), respectively. The p-median
problem (pMP) consists of selecting p nodes, usually called centers, and then assign each
non-selected node to a selected node. The goal is to select p nodes that minimize the
sum of the costs of the selected nodes plus the sum of the costs yield by the assignment
of the non-selected nodes. This problem has several applications such as location of bank
accounts [14], placement of web proxies in a computer network [27], semistructured data
bases [26, 22].

The following define an integer linear programming formulation for the pMP:

min
∑

(u,v)∈A

c(u, v)x(u, v) +
∑

v∈V

d(v)y(v)(27)

∑

v∈V

y(v) = p,(28)

∑

v:(u,v)∈A

x(u, v) + y(u) = 1 ∀u ∈ V,(29)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(30)

0 ≤ y(v) ≤ 1 ∀v ∈ V,(31)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(32)



ON THE LOCATION AND P-MEDIAN POLYTOPES 11

Denote by Pp(G) the polytope defined by (28)-(32), this give a linear programming

relaxation of the pMP. Let pMP (G) be the convex hull of Pp(G) ∩ {0, 1}|A|+|V |.

The facets of pMP (G) have been studied in [1] and [16]. In [1], new facets have been
presented using a reduction to the stable set problem in the intersection graph of G. The
intersection graph of G is defined as follows: its nodes are the arcs of G and there is an
edge between two nodes (u, v) and (w, t) if u = w or v = w. If we associate the cost
c(u, v) with each node (u, v) of the intersection graph, then the p-median problem in G,
when the cost associated with the nodes of G is zero, is equivalent to find a stable set
with minimum weight of cardinality |V |− p in the intersection graph of G. In [16], other
class of facets have been presented in the class of bipartite graphs.

In this section we characterize all directed graphs such that Pp(G) = pMP (G). To
state our main result we need some definitions.

In Figure 4, we show four directed graphs and for each of them a fractional extreme
point of Pp(G). The numbers near the nodes correspond to the variables y, all the arcs
variables are equal to 1

2 .

H1 H2 H3 H4

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

1 1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Figure 4. Fractional extreme points of Pp(G).

Definition 19. A simple cycle C is called a Y -cycle if for every v ∈ Ĉ there is an arc
(v, v̄), where v̄ is in V \ Ċ.

In Figure 5 we show a fractional extreme point of Pp(G) different from those given in
Figure 4. It consists of an odd Y -cycle with an arc having both of its endnodes outside
the cycle. The values reported near each node represent the node variables, the arc
variables are all equal to 1

2 . These values form a fractional extreme point of Pp(G), with
p = 4.

The theorem below is the main result of this section. It shows that the configurations
in Figures 4 and 5 are the only configurations that should be forbidden in order to have
an integral polytope.

Theorem 20. Let G = (V,A) be a directed graph, then Pp(G) is integral if and only if

• (i) it does not contain as a subgraph any of the graphs H1, H2, H3 or H4 of
Figure 4, and
• (ii) it does not contain an odd Y -cycle C and an arc (u, v) with neither u nor v

in V (C).
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1

2

1

2

1
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0

0

Figure 5. An odd Y -cycle with an arc outside the cycle .

The proof of this theorem consists of three parts presented in Subsections 4.2, 4.3 and
4.4. The last two parts are the subject of two papers, see [4, 5], each requires more than
twenty pages. For these reasons, here we only present an overview of the proof.

In the first part of the proof, Subsection 4.2, we show that Pp(G) is integral in Y -free
graphs with no odd directed cycles. A Y -free graph is an oriented graph that does not
contain as a subgraph the graph Y of Figure 6. This class of graphs has been introduced
in [2].

Figure 6. The graph Y .

In the second part, Subsection 4.3, we prove Theorem 20 when restricted to oriented
graphs. This proof uses an induction on the number of subgraphs Y . The last part
is devoted to the proof of Theorem 20 in general directed graphs and uses the result
in oriented graphs as starting point. We will only present the sufficiency proof. The
necessity proof is illustrated in Figures 4 and 5. The fractional extreme points given in
these figures can be easily extended to any graph that does not satisfy Conditions (i)
and (ii) of Theorem 20. Thus the graphs we consider do not contain as a subgraph any
of the graphs H1, H2, H3 or H4 of Figure 4.

4.1. Preliminaries. Let G = (V,A) be a directed graph. Let l : V ∪A→ {0,−1, 1} be
a labeling function that associates to each node and arc of G a label 0, −1 or 1.

A vector (x, y) ∈ Pp(G) will be denoted by z, i.e., z(u) = y(u) for all u ∈ V and
z(u, v) = x(u, v) for all (u, v) ∈ A. Given a vector z and a labeling function l, we define
a new vector zl from z as follows: zl(u) = z(u) + l(u)ǫ, for all u ∈ V, and zl(u, v) =
z(u, v) + l(u, v)ǫ, for all (u, v) ∈ A, where ǫ is a sufficiently small positive scalar.

The labeling procedure for even cycles. Let C = v0, a0, v1, a1, . . . , ap−1, vp be an
even cycle, not necessarily a Y -cycle.
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• If C is a directed cycle, assume that v0 is the tail of a0, then set l(v0) ← 1;

l(a0)← −1. Otherwise, assume v0 ∈ Ċ and set l(v0)← 0; l(a0)← 1.
• Extend the labels as in Subsection 3.3.

Remark 21. If C is a directed even cycle, then l(ap−1) = l(v0) and
∑

l(vi) = 0.

This remark is easy to see. The second property is given in the following lemma and
it concerns non-directed cycles.

Lemma 22. If C is a non-directed even cycle, then l(ap−1) = −l(a0) and
∑

l(vi) = 0.

We are going to deal with a vector z that is a fractional extreme point of Pp(G).

Recall that the graph G we consider in Subsection 4.2 is Y -free and with no odd
directed cycles and the graph G in Subsections 4.3 and 4.4 do not contain as a subgraph
any of the graphs H1, H2, H3 or H4 of Figure 4. In these graphs the following two
lemmas hold:

Lemma 23. We may assume that z(u, v) > 0 for all (u, v) ∈ A.

Proof. cf. [4]. Let G′ be the graph obtained after removing all arcs (u, v) with z̄(u, v) = 0.
The graph G′ has the same properties as G. Let z′ be the restriction of z̄ on G′. Then
z′ is a fractional extreme point of Pp(G

′). �

Lemma 24. We may assume that |δ−(v)| ≤ 1 for every pendent node v in G.

Proof. cf. [4]. If v is a pendent node in G and δ−(v) = {(u1, v), . . . , (uk, v)}, we can
split v into k pendent nodes {v1, . . . , vk} and replace every arc (ui, v) with (ui, vi). Then
we define z′ such that z′(ui, vi) = z(ui, v) , z′(vi) = 1, for all i, and z′(u) = z(u),
z′(u,w) = z(u,w) for every other node and arc. Let G′ be this new graph. The graph
G′ has the same properties as G. Moreover, it is easy to check that z′ is a fractional
extreme point of Pp+k−1(G

′). �

4.2. Y-free graphs. In [2], we characterized the fractional extreme points of Pp(G)
for Y -free graphs. Then we showed that by adding the family of odd cycle inequalities
associated with each directed odd cycle in G we obtain an integral polytope. An alternate
proof of this result based on matching theory is given in [24].

To prove our main result we do not need the description of pMP (G) in Y -free graphs.
We need its description in a smaller class described by those Y -free graphs with no
odd directed cycle. In this restricted class of graphs Pp(G) is integral, this is a directed
consequence of Theorem 14 in [2]. Below we give a proof based on the matching polytope
in bipartite graphs, which is along the same lines of the proof given in [24].

Theorem 25. If G = (V,A) is a Y -free graph with no odd directed cycle, then for any
p the polytope Pp(G) is integral.

Proof. Let G = (V,A) be a Y -free graph with no odd directed cycle. Assume the contrary,
and let z = (x, y) be an extreme fractional point of Pp(G).

Using Fourier-Motzkin elimination, we obtain the following system of linear inequali-
ties, that defines the projection of Pp(G) onto the arc variables space; call it Qp(G).
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∑

(u,v)∈A

x(u, v) = |V | − p,(33)

x(w, u) +
∑

v:(u,v)∈A

x(u, v) ≤ 1 ∀(w, u) ∈ A,(34)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(35)

Remark that by Lemma 24 and the fact that G is a Y -free graph, we have that
|δ−(v)| ≤ 1 for all v ∈ V . Hence if we omit the orientation of the arcs in G we obtain a
undirected graph I(G) = (V,E), and inequalities (34) and (35) are equivalent to

x(δI(G)(v)) ≤ 1 ∀v ∈ V,(36)

x(e) ≥ 0 ∀e ∈ E.(37)

Combining Lemma 24 and the fact that G does not contain an odd directed cycle,
we obtain that I(G) is a bipartite graph and hence the polytope defined by inequalities
(36) and (37) is the matching polytope of a bipartite graph, so it is integral. Now by
adding the equality

∑

e∈E x(e) = |V |−p to the linear system defined by (36) and (37) the
resulting polytope still integral, this is a well known property of the matching polytope,
see for instance [19]. This proves that Qp(G) is integral.

To finish the proof of our theorem it suffices to see that if z = (x, y) is an extreme
point of Pp(G), then x is an extreme point of Qp(G), which is easy to verify. �

4.3. Oriented graphs. Let G = (V,A) be an oriented graph that satisfies Conditions
(i) and (ii) of Theorem 20. First we study the case when G has no odd Y -cycle, and in
the second case we assume that G has an odd Y -cycle.

4.3.1. G does not contain an odd Y -cycle. Let t ∈ V . The node t is called a Y -node in
G = (V,A) if there are three different nodes u1, u2, w in V such that (u1, t), (u2, t) and
(t, w) belong to A. Denote by YG the set of Y -nodes in G.

The proof is done by induction on the number of Y -nodes. If |YG| = 0 then, the graph
is Y -free with no odd directed cycle, it follows from Theorem 25 in Subsection 4.2 that
Pp(G) is integral. Assume that Pp(G

′) is integral for any positive integer p and for any
oriented graph G′, with |YG′ | < |YG|, that satisfies Condition (i) and does not contain
an odd Y -cycle. Now we suppose that z = (x, y) is a fractional extreme point of Pp(G)
and we plan to obtain a contradiction. The next lemma we need is as follows.

Lemma 26. G does not contain a cycle.

Proof. (Sketch), cf. [4]. The proof of this lemma is a direct application of the labeling
procedure of Section 4.1. We assume that there is a cycle, using Lemma 24, we can
derive an even Y -cycle C, and we assign labels to the nodes and arcs of C following the
labeling procedure of Section 4.1. Extend the labels as follows: for each node v ∈ Ĉ,
choose an arc (v, v̄), v̄ /∈ V (C), and assign the label −l(v) to it. Assign a zero label to all
remaining nodes and arcs. In the last step, using Lemma 23 we show that any constraint
that is satisfied with equality by z is also satisfied with equality by zl. This contradicts
the fact that z is an extreme point of Pp(G). �



ON THE LOCATION AND P-MEDIAN POLYTOPES 15

The graph G must contain at least one Y -node t with its incident arcs (u1, t), (u2, t),
(t, w). Using Lemma 26 we can prove that V can be partitioned into W1 and W2 so that
{u1, t, w} ⊆W1 and u2 ∈W2, and that the only arc in G between W1 and W2 is (u2, t).

Next we show that z(t) = 1
2 . We have that Q(G), the the polytope defined by (29)-

(32), is a face of the polytope P (G) defined by (1)-(4)) studied in Section 3. And by
Theorem 13, we know that P (G) is integral when G does not contain an odd cycle, which
is the case here. Thus Q(G) is also integral. The polytope Pp(G) is obtained from Q(G)
by adding exactly one equation. A simple polyhedral fact is that if Q(G) is integral, then
the values of z are in {0, 1, α, 1 − α}, for some number α ∈ [0, 1]. But since z(t) = 1

2 we

have that all fractional values of z are equal to 1
2 .

Define p1 =
∑

v∈W1
z(v) and p2 =

∑

v∈W2
z(v), so p = p1 + p2. We distinguish two

cases: p1 and p2 are integer; and they are not.

If the numbers p1 and p2 are integer, we define the graphs G1 and G2 as follows. Let
A(W1) and A(W2) be the set of arcs in G having both endnodes in W1 and W2, respec-
tively. Let G1 = (W1, A(W1)) and G2 = (W2∪{t

′, v′, w′}, A(W2)∪{(u2, t
′), (t′, v′), (v′, w′)}).

Let z1 be the restriction of z to G1. Clearly z1 ∈ Pp1
(G1). Define z2 as follows,

z2(u2, t
′) = z(u2, t) = 1

2 , z2(t
′) = 1

2 , z2(t
′, v′) = 1

2 , z2(v
′) = 1

2 , z2(v
′, w′) = 1

2 , z2(w
′) = 1

and z2(u) = z(u), z2(u, v) = z(u, v) for all other nodes and arcs of G2. We have that
z2 ∈ Pp2+2(G

2).

Both graphs G1 and G2 satisfy Condition (i) of Theorem 20 and do not contain an odd
Y -cycle. Moreover, |YG1| < |YG| and |YG2 | < |YG|. Since z1 and z2 are both fractional, the
induction hypothesis implies that they are not extreme points of Pp1

(G1) and Pp2+2(G
2),

respectively. Thus there must exist a 0-1 vector z′1 ∈ Pp1
(G1) with z′1(t) = 0 so that the

same constraints that are tight for z1 are also tight for z′1. Also there must exist a 0-1
vector z′2 ∈ Pp2+2(G

2) with z′2(t
′) = 0 such that the same constraints that are tight for

z2 are also tight for z′2. Now by combining z′1 and z′2 one can define a solution z′ ∈ Pp(G)
that satisfies as equality each constraint that is satisfied as equality by z.

In the case where the numbers p1 and p2 are not integer, we use the same idea as above
but applied for new graphs G1 and G2, where G1 =

(

W1 ∪ {u
′
1}, (A(W1) \ {(u1, t)}) ∪

{(u1, u
′
1), (u

′
1, t)}

)

and G2 =
(

W2 ∪ {t
′, w′}, A(W2) ∪ {(u2, t

′), (t′, w′)}
)

.

Notice that
∑

v∈W1
z(v) = p1 = α + 1

2 and
∑

v∈W2
z(v) = p2 = β − 1

2 , where α and β

are integers and α + β = p. Thus the number of nodes to be selected in G1 (resp. G2)
is α + 1 (resp. β + 1). This concludes the proof.

4.3.2. G contains an odd Y -cycle. We assume that G satisfies conditions (i) and (ii) of
Theorem 20 and contains an odd Y -cycle. We also assume that z is a fractional extreme
point of Pp(G). The first lemma we need is the following.

Lemma 27. The graph G contains exactly one odd Y -cycle.

Let C be the unique odd Y -cycle in G. We showed in [4] that in this case G has the
following special structure. The node set V is partitioned into three subsets, V (C), V ′

and V ′′. Each node in V ′ has exactly one arc incident to it, this arc is directed into a
node in Ċ. Also, each node in V ′′ has exactly one arc incident to it, this arc is directed
away from a node in V (C). Each node in V (C) is adjacent to at most one node in
V ′ ∪ V ′′. We denote by A′ (resp. A′′) the set of arcs incident to the nodes in V ′ (resp.
V ′′). These arcs together with A(C) define the arc-set of G.
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Lemma 28. We may assume that z(u, v) = z(v) for each arc in A(C).

Proof. cf. [4]. If we have an arc (u, v) ∈ A(C) with z(u, v) < z(v), then we remove this
arc and add a new arc (u, v′) and we assign the value z(u, v) to the arc (u, v′) and 1
to the node v′. From Lemma 27, this new graph does not contain an odd Y -cycle and
the associated solution is fractional extreme point. But from subsection 4.3.1, this is
impossible. �

Next we concentrate on Q(G), the polytope defined by (29)-(32). Notice that since
Pp(G) is obtained from Q(G) by adding one equation, then an extreme point of Pp(G) is
either an extreme point of Q(G) or a convex combination of two extreme points of Q(G).
We omit the proof of the following lemma.

Lemma 29. If z is a fractional extreme point of Q(G) with z(u, v) = z(v) for each
(u, v) ∈ A(C), then z(u, v) = 1

2 for each arc (u, v) ∈ A(C), z(v) = 1
2 for each node

v ∈ Ĉ ∪ C̃ and z(v) = 0 for each node v ∈ Ċ.

From this lemma and the definition of G we obtain the following corollary.

Corollary 30. z cannot be an extreme point of Q(G).

Proof. cf. [4]. Assume that z is an extreme point of Q(G). By definition we have z(v) = 1

for each node v ∈ V ′′. From Lemma 29, z(v) = 0 if v ∈ Ċ, so by the definition of V ′ we

have z(v) = 1 for each v ∈ V ′. Again from Lemma 29 we have z(v) = 1
2 if v ∈ C̃ ∪ Ĉ.

Hence
∑

v∈V z(v) = |V ′| + |V ′′| + |C̃|+|Ĉ|
2 but |C̃| + |Ĉ| is odd, so

∑

v∈V z(v) is not an
integer, a contradiction. �

The corollary above implies that the extreme point z of Pp(G) is a convex combination
of two extreme points of Q(G), they are z̃ and ẑ. Thus z = αz̃+(1−α)ẑ, with 0 < α < 1.

Denote by A′′
1 the arcs in A′′ that are incident to a node in Ċ ∪ C̃. Also let Ċ+ be the

set of nodes v ∈ Ċ with z(v) > 0. Using the structure of the graph and the fact that z
is a fractional extreme point of Pp(G), the proof reduces to the following four cases: (1)

A′ = {(u, v)}, A′′
1 = ∅, Ċ+ = {v}; (2) A′′

1 = {(u, v)}, A′ = ∅, Ċ+ = ∅; (3) Ċ+ = {v},
A′ ∪A′′

1 = ∅; (4) Ċ+ = ∅, A′ ∪A′′
1 = ∅.

In each of theses cases, we show that z cannot be an extreme point of Pp(G) if both
z̃ and ẑ are fractional or both are integral. It remains the case when one is integral and
the other is fractional. Notice that if z̃ or ẑ is fractional, then it satisfies the conditions
of Lemma 29, this follows from Lemma 28 where z(u, v) = z(v) if (u, v) ∈ A(C). Using
this together with Lemma 29 the contradiction we obtain is that

∑

v∈V z(v) = q + α
2 ,

where q is an integer.

4.4. General directed graphs. Let us redefine a Y -cycle in this context, that is in the
graphs that do not contain any of the graphs of Figure 4 as a subgraph. With this we
can distinguish the nodes in Ĉ that do not satisfy Definition 19, which is useful in the
proof of Lemma 33.

Definition 31. A simple cycle C is called a Y-cycle if for every v ∈ Ĉ at least one of
the following hold:

• (i) there exists an arc (v, v̄) /∈ A(C), v̄ /∈ V (C), or
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• (ii) there exists an arc (v, v̄) /∈ A(C), v̄ ∈ C̃ and v̄ is one of the two neighbors of
v in C.

For a simple cycle C, denote by Ĉ(i) the set of nodes in Ĉ that satisfy Condition (i) of

the above definition. Notice that we may have nodes in Ĉ that satisfy both (i) and (ii).

We study two cases as follows.

4.4.1. G does not contain an odd Y -cycle. We assume that G = (V,A) is a directed graph
that does not contain any of the graphs H1, H2, H3 or H4 of Figure 4 as a subgraph.
Also we assume that G does not contain an odd Y -cycle.

Assume that z is a fractional extreme point of Pp(G). The first step in the proof is
to show the following lemma, that is an analogue of Lemma 26. Its proof is harder than
the proof of Lemma 26 and requires new definitions and notions. This proof illustrates
one of the main differences between the oriented and the directed case.

Definition 32. Let C be a Y -cycle in a directed graph G = (V,A). A node v ∈ V (C) is
called a blocking node if one of the following hold:

(i) v ∈ C̃, (v, u) ∈ A(C), (u, v) ∈ A \A(C) and u ∈ C̃, or

(ii) v ∈ Ĉ, (u, v) ∈ A(C), (w, v) ∈ A(C), (v, u) ∈ A \ A(C), (v,w) ∈ A \ A(C) and

both u and w are in C̃.

Lemma 33. If z(u, v) = z(v), for all (u, v) with v not a pendent node, then G does not
contain a cycle of size at least three.

Proof. cf. [5]. Assume the contrary. Suppose that G admits such a cycle. The first step
is to derive an even Y -cycle. Let C ′ = v0, a0, v1, a1, . . . , ap−1, vp, be a simple cycle with

p ≥ 3. Suppose that C ′ is not a Y -cycle. Then we can show that there is a node vi ∈ Ĉ ′

with δ+(vi) = {(vi, vi−1), (vi, vi+1)}, where vi−1 and vi+1 are the two neighbors of vi in

C ′ and they belong to Ċ. Now it suffices to define C from C ′, recursively, following the
procedure below:

Step 1. A(C)← A(C ′), V (C)← V (C ′), C ← C ′.

Step 2. If there exist vi ∈ Ĉ, a node not satisfying Definition 31 (i) and (ii), go to Step
3. Otherwise stop, C is a Y -cycle.

Step 3. A(C)← (A(C)\{(vi−1, vi), (vi+1, vi)})∪{(vi, vi−1), (vi, vi+1)}. C is the new cycle
defined by A(C). Go to Step 2.

Each Step 3 decreases by one the number of nodes in Ĉ. Thus the procedure must end
with a Y -cycle C.

The next step is to apply the labeling procedure to an even Y -cycle. Call this labeling
l. We extend l to all other nodes and arcs in order to get a solution zl that satisfies as
equality each constraint satisfied as equality by z. The extension of l is possible only
when the Y -cycle does not contain a blocking node. We show that if we choose a Y -cycle
C with |C(i)| maximum, then this cycle does not contain a blocking node. This completes
the proof of this lemma. �

The lemma above is used to prove the following:

Lemma 34. We cannot have z(u, v) = z(v), for all (u, v) with v not a pendent node.
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Proof. cf. [5]. Denote by Pair(G) the set of pair of nodes {u, v} such that both arcs
(u, v) and (v, u) belong to A.

The proof is by induction on |Pair(G)|. If |Pair(G)| = 0 then G is an oriented graph
that satisfies Conditions (i) and (ii) of Theorem 20. Thus from subsection 4.3.1, Pp(G)
has no fractional extreme point so the lemma is true. Suppose now that |Pair(G)| =
m + 1, for m ≥ 0.

Suppose that z(u, v) = z(v) for each arc (u, v) with v not a pendent node. Notice that
Lemma 33 applies, so G does not contain a cycle. Let (u, v) and (v, u) be two arcs in G.
Denote by G(u, v) the graph obtained from G by removing the arc (u, v) and adding a
new arc (u, t), where t is a new pendent node. Define z̃ ∈ Pp̃(G(u, v)), p̃ = p + 1, to be
z̃(u, t) = z(u, v), z̃(t) = 1 and z̃(r) = z(r), z̃(r, s) = z̄(r, s) for every other node and arc.

The graph G(u, v) is directed with no multiple arcs and satisfies Condition (i) of
Theorem 20. Since G does not contain a cycle, we have that G(u, v) has no odd Y -cycle.
Moreover |Pair(G(u, v))| ≤ m, hence the induction hypothesis applies for G(u, v). We
have that z̃ is a fractional vector in Pp̃(G(u, v)) with z̃(u, v) = z̃(v) for each arc (u, v),
with v not pendent. By the induction hypothesis z̃ is not an extreme point. Thus, there
exists a set of extreme points of Pp̃(G(u, v)), z1, . . . , zk, where each constraint that is

tight for z̃ is also tight for each of z1, . . . , zk, and z̃ is a convex combination of z1, . . . , zk.
We can show that all these extreme points are in 0-1.

Let z1, with z1(v, u) = 1. Define z′′ ∈ Pp(G) as follows: z′′(u, v) = z1(u, t) and
z′′(r, s) = z1(r, s), z′′(r) = z1(r), for all other nodes and arcs. All constraints that are
tight for z are also tight for z′′. To see this, it suffices to remark that z′′(v) = z1(v) = 0
and z′′(u, v) = z1(u, t) = 0. This contradicts the fact that z is an extreme point of
Pp(G). �

Let v a node in G. We call v a knot if δ−(v) = {(u, v), (w, v)}, u 6= w and both (v, u)
and (v,w) belong to δ+(v).

Suppose that G does not contain a knot. From Lemma 34 we may assume that there
is an arc (u, v) with z(u, v) < z(v) and v is not a pendent node. We may assume that
G′ the graph obtained from G by removing (u, v) and adding a new pendent node v′ and
the arc (u, v′) contains an odd Y -cycle C. Otherwise, instead of considering G with z,
we consider G′ with z′, z′(u, v′) = z(u, v), z′(v′) = 1, and z′(s, t) = z(s, t), z′(r) = z(r)
for all other arcs and nodes.

Since G contains no knot, this implies that δ+
G(u) = {(u, v)} and δ−G(u) = {(s, u), (v, u)},

where s and v are the nodes that are adjacent to u in C. Remark that v must be in Ċ,
otherwise C is also an odd Y -cycle in G, which is not possible.

We have that δ−(v) = {(u, v)}. In fact, since v ∈ Ċ we must have an arc (v,w) in C.
Because G has no knot this implies that the arc (w, v) cannot exist. So suppose (w′, v)
is an arc of G with w′ 6= w, w′ 6= u. Since w is in C, it is not a pendent node and hence
G does not satisfies Condition (i) of Theorem 20.

We must have z(v, u) = z(u). Otherwise, we can construct the pair G′ and z′ as above.
But in this case, one can check that equation (29) with respect to v is violated.

This permit us to apply an induction on the number of knots in G to finish the proof.

4.4.2. G contains an odd Y -cycle. Let C be an odd Y -cycle in G. Assume that z is a
fractional extreme point of Pp(G).
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Lemma 35. The node set of any cycle of size at least three in G coincides with V (C).

Lemma 36. Let G = (V,A) be a directed graph and (u, v) and (v, u) two arcs in A.
If Pp(G) admits a fractional extreme point z̄ with z̄(v, u) > 0, then Pp̃(G(u, v)) 6=
p̃MP (G(u, v)), where p̃ = p + 1. The graph G(u, v) was defined in the last subsection.

Proof. cf. [5]. Let z̄ be a fractional extreme point of Pp(G) with z̄(v, u) > 0. Suppose that
Pp̃(G(u, v)) = p̃MP (G(u, v)). Define z̃ ∈ Pp̃(G(u, v)) to be z̃(u, t) = z̄(u, v), z̃(t) = 1
and z̃(r) = z̄(r), z̃(r, s) = z̄(r, s) for all other nodes and arcs. The solution z̃ is fractional,
so z̃ is not an extreme point of Pp̃(G(u, v)). Since Pp̃(G(u, v)) is integral, there is a 0-1
vector z∗ ∈ Pp̃(G(u, v)) with z∗(v, u) = 1, so that the same constraints that are tight
for z̃ are also tight for z∗. From z∗ define z′′ ∈ Pp(G) as follows: z′′(u, v) = z∗(u, t) and
z′′(r) = z∗(r), z′′(r, s) = z∗(r, s), for all other nodes and arcs. All constraints that are
tight for z̄ are also tight for z′′. To see this, it suffices to remark that z′′(v) = z∗(v) = 0
and z′′(u, v) = z∗(u, t) = 0. This contradicts the fact that z̄ is an extreme point of
Pp(G). �

The proof of Theorem 20 in this case is by induction on |Pair(G)|, the number of pairs
of nodes {u, v} with both (u, v) and (v, u) in A. If |Pair(G)| = 0 then G is an oriented
graph that satisfies Conditions (i) and (ii) of Theorem 20. Hence the result follows from
Subsection 4.3.

Let (u, v) and (v, u) be two arcs in A. Lemma 23 implies z(v, u) > 0, so Lemma 36
applies and implies that

(38) Pp̃(G(u, v)) 6= p̃MP (G(u, v)).

Using Lemma 35 and the definition of G, we can see that G(u, v) satisfies Conditions
(i) and (ii) of Theorem 20. Since |Pair(G(u, v))| < |Pair(G)|, we can apply the induction
hypothesis so Pp̃(G(u, v)) = p̃MP (G(u, v)). This contradicts (38). Thus the proof of our
main result is complete.

5. Recognizing the graphs defined in Theorem 20

In this section we show how to decide if a graph satisfies conditions (i) and (ii) of
Theorem 20. Clearly Condition (i) can be tested in polynomial time. Thus we assume
that we have a graph satisfying Condition (i), then we split all pendent nodes as in
Lemma 24, then we pick an arc (u, v), we remove u and v, and look for an odd Y -cycle
in the new graph. We repeat this for every arc. It remains to show how to find an odd
Y -cycle.

In Subsection 3.5 we gave a procedure that finds an odd cycle if there is any. We
remind the reader that a cycle C is odd if |V (C)|+ |Ĉ| is odd. Since an odd cycle is not
necessarily a Y -cycle, we are going to modify the graph so that an odd cycle in the new
graph gives an odd Y -cycle in the original graph. The main difficulty resides in how to
deal with nodes that satisfy condition (ii) of Definition 31. Such a node should appear
in a pair {(u, v), (v, u)}. Instead of working with such a pair we are going to work with
a maximal bidirected path P = v1, . . . , vq, this is a path where the arcs (vi+1, vi) and
(vi, vi+1) belong to G, for i = 1, . . . , q− 1. Notice that if the graph contains a bidirected
cycle (when v1 = vq), then it is easy to derive an odd Y -cycle. So in what follows we
assume that there is no bidirected cycle. The transformation is based on the following
two remarks.
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Remark 37. There is at most one arc (u, v1), u /∈ P , and at most one arc (v, vq), v /∈ P .
Otherwise the graph H4 is present.

Remark 38. If the arc (u, v1) is in A, u /∈ P , and there is an arc (v1, w) also in A,
w /∈ P , then w is a pendent node. Otherwise we obtain one of the graphs in Figure 4.

Let C be a Y -cycle that goes through P . We have three cases to study.

Case 1. δ−(P ) = {(u, v1), (v, vq)}. In this case C contains all nodes in P and also the
arcs (u, v1) and (v, vq). Since C contains all nodes from P , the only variable that can

change the parity of C is the parity of |Ĉ ∩ P |.

Notice that if q ≥ 5 and if there is a Y -cycle going through P then we can always
change the parity of it if needed. In fact, we can always join the nodes v1 and vq using

arcs of P in such a way that |Ĉ ∩ P | = 1 as shown in Figure 7 (a), or |Ĉ ∩ P | = 2 as
shown in Figure 7 (b). It follows that if there is a cycle C ′ going through P then there

is a cycle C of the same parity, whose nodes in |Ĉ ∩ P | satisfy Definition 31 (ii).

(b)(a)

v1 v5 v1 v5

Figure 7. Case 1, q ≥ 5. In bold the Y -cycle C. In dashed line the
other arcs of P .

It remains to analyze the cases when q ≤ 4. The only cases when a transformation is
required, are the following two:

• q = 4 and neither v1 nor v4 is adjacent to a pendent node. In this case we should
have |Ĉ ∩ P | = 1. To impose that when looking for an odd cycle, we replace P
by a bidirected path with two nodes. See Figure 8.

(a) (b)

v1 v2 v3 v4 v1 v4

Figure 8. Case 1, q = 4. (a): before transformation. (b): after transformation.

Let P ′ the new bidirected path. Any cycle C ′ with |Ĉ ′ ∩ P ′| = 1 can be

extended to a cycle C with |Ĉ ∩ P | = 1 and where the node in Ĉ ∩ P satisfies
Definition 31 (ii).
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• q = 3 and at most one of v1 or v3 is adjacent to a pendent node. Also here we
have |Ĉ ∩ P | = 1. To impose that when looking for an odd cycle, we remove the
arc (v2, v3).

(b)(a)

v1 v2 v3 v1 v2 v3

Figure 9. Case 1, q = 3. (a): before transformation. (b): after transformation.

In Figure 9, we supposed that v3 is adjacent to a pendent node and v1 is not.

The two remaining cases below follow the same philosophy as above.

Case 2. δ−(P ) = {(u, v1)}. In this case C contains (u, v1), all the nodes in P and
one arc (vq, v), v /∈ P . Here we have two cases to analyze.

• q ≥ 3 or q = 2 and v1 is adjacent to a pendent node. If |Ĉ ∩ P | is even, we can

assume that |Ĉ ∩P | = 0. If |Ĉ ∩P | is odd, we can assume that |Ĉ ∩P | = 1. Here
no transformation is needed.
• q = 2 and v1 is not adjacent to a pendent node. Here we should have |Ĉ∩P | = 0.

To impose that when looking for an odd cycle, we remove (v2, v1).

Case 3. δ−(P ) = ∅. In this case C contains an arc (v1, u), u /∈ P , all nodes in P , and
an arc (vq, v), v /∈ P . Again we have two cases to analyze.

• q 6= 3 or q = 3 and v2 is adjacent to a pendent node. If |Ĉ ∩ P | is even, we can

assume that |Ĉ ∩P | = 0. If |Ĉ ∩P | is odd, we can assume that |Ĉ ∩P | = 1. Here
no transformation is needed.
• q = 3 and v2 is not adjacent to a pendent node. Here we should have |Ĉ∩P | = 0.

To impose that when looking for an odd cycle, we remove (v1, v2) and (v3, v2).

After preprocessing the graph as in Cases 1, 2, and 3, we look for an odd cycle; if
there is one, it gives an odd Y -cycle in the original graph.

6. Related polyhedra

In many applications, the underlying graph associated with the p-median problem
may be a bipartite (oriented) or an undirected graph. Also, when the cost function is
positive, then the problem always reduces to an instance in a bipartite graph. In this
section we will consider the polyhedra associated with these two special cases. We will
show how Theorem 20 is used to study the integrality of the linear relaxation of the
p-median problem in bipartite and undirected graphs.
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6.1. Bipartite graphs. This is the standard case when V is partitioned into V1 and V2

and A ⊆ V1 × V2. The customers are the nodes in V1 and the potential locations are the
nodes in V2. Here we deal with the system

∑

v∈V2

y(v) = p,(39)

∑

(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(40)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(41)

y(v) ≥ 0 ∀v ∈ V2,(42)

y(v) ≤ 1 ∀v ∈ V2,(43)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(44)

Let Πp(G) be the polytope defined by (39)-(44), in this section we characterize the
bipartite graphs for which Πp(G) is an integral polytope.

Let us recall some notations introduced in Subsection 3.6 when dealing with bipartite
graphs. Let V̄1 be the set of nodes u ∈ V1 with |δ+(u)| = 1. Let V̄2 be the set of nodes in
V2 that are adjacent to a node in V̄1. It is clear that the variables associated with nodes
in V̄2 should be fixed, i.e., y(v) = 1 for all v ∈ V̄2. Let Ḡ be the graph induced by V \ V̄2.

Let H be a graph with node set {u1, u2, u3, v1, v2, v3, v4} and arc set

{(u1, v1), (u2, v2), (u3, v3), (u1, v4), (u2, v4), (u3, v4)}.

If the graph Ḡ contains H as a subgraph then we can construct a fractional extreme
point as follows: Assign the value 1

2 to each arc in H and to each node vi, i = 1, . . . , 4,

set to zero all other node and arc variable of G. If Ḡ contains an odd cycle and one
extra node in V2 \ V̄2, we can also construct a fractional extreme point. Now we prove
that these are only configurations that should be forbidden in order to have an integral
polytope.

Theorem 39. The polytope Πp(G) is integral if and only if

• (i) Ḡ does not contain the graph H as a subgraph, and
• (ii) Ḡ does not contain an odd cycle C and one extra node in V2 \ V̄2.

So let G be a graph such that Ḡ does not contain these two configurations. We assume
that z is a fractional extreme point of Πp(G). As in Subsection 4.1, we can assume that
z(u, v) > 0 for every arc (u, v) ∈ A.

Lemma 40. We can assume that z(u, v) = z(v) for each arc (u, v) such that v ∈ V2 \ V̄2.

Proof. cf. [5]. Suppose that z(u, v) < z(v) for an arc (u, v) and v ∈ V2 \ V̄2. We can
add the nodes u′, v′, the arcs (u′, v′), (u, v′) and remove the arc (u, v). Then define
z′(u′, v′) = z(v′) = 1, z′(u, v′) = z(u, v), and z′(s, t) = z(s, t), z′(w) = z(w), for all other
nodes and arcs. Let G′ be the new graph. Then z′ is an extreme point of Πp+1(G

′). The
graph G′ satisfies the hypothesis of Theorem 39. �

The proof of Theorem 39 is divided into the following three cases:

(1) Ḡ does not contain an odd cycle nor the graph H.
(2) Ḡ does not contain H and contains an odd cycle C that includes all nodes in

V2 \ V̄2, and |V2 \ V̄2| ≥ 5.
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(3) Ḡ does not contain H and contains an odd cycle C that includes all nodes in
V2 \ V̄2, and |V2 \ V̄2| = 3.

We treat these three cases below.

6.1.1. Ḡ does not contain an odd cycle nor the graph H.

Lemma 41. For all u ∈ V1 we have |δ+(u)| ≤ 2.

Proof. cf. [5]. Since Ḡ has no odd cycle, the polytope defined by (40)-(44) is integral,
this is Theorem 17 in Subsection 3.6. Thus z is a convex combination of two integral
vectors satisfying (40)-(44). Therefore |δ+(u)| ≤ 2. �

Now we build an auxiliary undirected graph G′ whose node-set is V2 \ V̄2. For each
node u ∈ V1 such that δ+(u) = {(u, s), (u, t)}, {s, t} ⊆ V2 \ V̄2, we have an edge in
G′ between s and t. This could create parallel edges. Notice that any node v in G′ is
adjacent to at most two other nodes. If v was adjacent to three other nodes, we would
have the sub-graph H in Ḡ.

Lemma 40 implies that if z(v) = 1 for v ∈ V2 \ V̄2, then v is not adjacent to any other
node in G′. A node v ∈ V2 \ V̄2 is called fractional if 0 < z(v) < 1. So G′ consists of a set
of isolated nodes, and a set of cycles and paths. We have to study the four cases below.

• If G′ contains a cycle, it should be even, because Ḡ has no odd cycle. For a cycle
in G′ we can label the nodes with +1 and −1 so that adjacent nodes in the cycle
have opposite labels. This labeling translates into a labeling in G as follows: If
s and t have the labels +1 and −1 respectively, and the arcs (u, s) and (u, t)
are in G, then (u, s) receives the label +1 and (u, t) receives the label −1. If s
has the label l(s) and the arcs (u, s) and (u, t) are in G with t ∈ V̄2, then (u, s)
receives the label l(s) and (u, t) receives the label −l(s). All other nodes and
arcs receive the label 0. This defines a new vector that satisfies with equality the
same constraints that z satisfies with equality.
• If there is a path with an even number of fractional nodes we label them as before.

This translates into a labeling in G as follows. If s and t have the labels +1 and
−1 respectively, and the arcs (u, s) and (u, t) are in G, then (u, s) receives the
label +1 and (u, t) receives the label −1. If s has the label l(s) and the arcs
(u, s) and (u, t) are in G with t ∈ V̄2, then (u, s) receives the label l(s) and (u, t)
receives the label −l(s). All other nodes and arcs receive the label 0. This defines
a new vector that satisfies with equality the same constraints that z satisfies with
equality.
• If G′ has two paths with an odd number of fractional nodes then again we can

label the fractional nodes in these two paths and proceed as before.
• It remains the case where G′ contains just one path with an odd number of

fractional nodes. Let v1, . . . , v2q+1 be the ordered sequence of nodes in this path.
We should have z(vi) = α if i is odd, and z(vi) = 1 − α if i is even, with
0 < α < 1. This implies

∑

v∈V2
z(v) = r + α where r is an integer. We have then

a contradiction.

6.1.2. Ḡ does not contain H and contains an odd cycle C that includes all nodes in
V2 \ V̄2, and |V2 \ V̄2| ≥ 5. Here we use several transformations to obtain a new graph G̃

that satisfies conditions (i) and (ii) of Theorem 20, and we use the fact that Pp(G̃) is an
integral polytope.
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Lemma 42. Let u, v ∈ V (C), then there is no arc (u, v) /∈ A(C).

Proof. cf. [5]. If such an arc exists, then the graph H would be present. �

Lemma 43. A node u ∈ (V1 \ V̄1) cannot be adjacent to more than one node in V̄2.

Proof. cf. [5]. Suppose that the arcs (u, v1) and (u, v2) exist with v1 and v2 in V̄2. We
can add and subtract ǫ to z(u, v1) and z(u, v2) to obtain a new vector that satisfies with
equality the same constraints that z does. �

Lemma 44. We can assume that (V1 \ V̄1) \ V (C) = ∅

Proof. cf. [5]. Consider a node u ∈ (V1 \ V̄1)\V (C) and suppose that the arcs (u, v1) and
(u, v2) exist, with v1, v2 ∈ V (C). If both paths in C between v1 and v2 contain another
node in V2, then there is an odd cycle in Ḡ and an extra node in V2 \ V̄2. Then we can
assume that there is a node w ∈ V (C) and (w, v1), (w, v2) ∈ A(C). If there is another
node v3 ∈ V (C) such that the arc (u, v3) exists, then the graph H is present, this is
because |V2 \ V̄2| ≥ 5. Thus u cannot be adjacent to any other node in V (C). Lemma 40
implies

z(u, v1) = z(w, v1),(45)

z(u, v2) = z(w, v2).(46)

Then we remove the node u and study the vector z′ that is the restriction of z to G\u. If
there is another vector z′′ that satisfies with equality the same constraints that z′ does,
we can extend z′′ using equations (45) and (46), to obtain a vector that satisfies with
equality the same constraints that z does.

If there is a node u ∈ (V1 \ V̄1) \ V (C) that is adjacent to exactly one node v ∈ V (C),
then u is adjacent also to a node w ∈ V̄2. It follows from Lemma 43 that the node in V̄2

is unique. Lemma 40 implies

(47) z(u, v) = z(v),

and we also have

(48) z(u, v) + z(u,w) = 1.

Then we remove the node u and study the vector z′ that is the restriction of z to G\u. If
there is another vector z′′ that satisfies with equality the same constraints that z′ does,
we can extend z′′ using equations (47) and (48), to obtain a vector that satisfies with
equality the same constraints that z does.

The resulting graph does not contain H and contains the odd cycle C. �

Now consider a node u ∈ V̄1 that is adjacent to v ∈ V̄2. We should have z(u, v) = 1
and z(v) = 1. We remove u from the graph and keep v with z(v) = 1.

Finally we add slack variables to the inequalities (43) for each node in V2 \ V̄2. For
that we add a node v′ and the arc (v, v′), for each node v ∈ V2 \ V̄2. Then we add the
constraints

z(v) + z(v, v′) = 1,

z(v, v′) ≤ z(v′),

z(v′) = 1,

z(v, v′) ≥ 0.
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Let G̃ be this new graph, and p̃ = p + |V2 \ V̄2|. It follows from Lemmas 42, 43 and

44 that G̃ is a graph satisfying conditions (i) and (ii) of Theorem 20. Here we have a

face of Pp̃(G̃); because z(v) = 0 for all v ∈ V1. Since Pp̃(G̃) is an integral polytope,
there is an integral vector z̃ that satisfies with equality the same constraints that z does.
From z̃ ∈ Pp̃(G̃) one can easily derive z̃′ ∈ Pp(G) that satisfies with equality the same
constrains that z ∈ Pp(G) satisfies with equality.

6.1.3. Ḡ does not contain H and contains an odd cycle C that includes all nodes in
V2 \ V̄2, and |V2 \ V̄2| = 3. Let p′ = p − |V̄2|. If p′ = 3, we should have z(v) = 1 for all
v ∈ V2. Then it is easy to see that we have an integral polytope. So we assume that
p′ ≤ 2. Let V2 \ V̄2 = {v1, v2, v3}.

Consider first p′ = 2. If z is fractional, then at most one variable z(vi) can take the
value one, so assume that

z(v1) = 1,

1 > z(v2) > 0,

1 > z(v3) = 1− z(v2) > 0.

We give the label l(v2) = +1 to v2, the label l(v3) = −1 to v3, and l(v) = 0 for every
other node in V2. Then for each arc (u, v) with z(u, v) = z(v), we give it the label
l(u, v) = l(v). If there is a node u ∈ V1 that has only one arc (u, v) incident to it that is
labeled, pick another arc (u,w) with z(u,w) > 0 and give it the label l(u,w) = −l(u, v).
For all the other arcs give the label 0. These labels define a new vector that satisfies
with equation the same constraints that z does.

Now suppose that

1 > z(v1) > 0,

1 > z(v2) > 0,

1 > z(v3) > 0.

Then for every node u ∈ V1 there is at most one arc (u, v) such that z(u, v) = z(v).
Otherwise there is a node w ∈ V2 \ V̄2 with z(w) = 1. Let us define a new vector z′ as
follows. Start with z′ = 0. Set z′(v1) = z′(v2) = 1, z′(v3) = 0, and z′(v) = 1 for all v ∈ V̄2.
Then for each arc (u, v1) with z(u, v1) = z(v1) set z′(u, v1) = 1. Also for each arc (u, v2)
with z(u, v2) = z(v2) set z′(u, v2) = 1. For each node u with

∑

(u,v)∈δ+(u) z′(u, v) = 0,

pick an arc (u, v) with v 6= v3 and set z′(u, v) = 1. This new vector satisfies with equality
all the constraints that z does.

Finally suppose p′ = 1 and

z(v1) > 0,

z(v2) > 0,

z(v3) > 0.

We define a new vector z′ as below. We set z′(v1) = 1, z′(v2) = z′(v3) = 0, and z′(v) = 1
for v ∈ V̄2. For each node u ∈ V1, if the arc (u, v1) exists, we set z(u, v1) = 1; otherwise
there is a node v ∈ V̄2 such that the arc (u, v) exists, we set z′(u, v) = 1. We set
z′(s, t) = 0 for every other arc. Every constraint that is satisfied with equality by z is
also satisfied with equality by z′.
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6.2. Undirected graphs. For a undirected graph G = (V,E) we denote by
←→
G = (V,A)

the directed graph obtained from G by replacing each edge uv ∈ E by two arcs (u, v)
and (v, u).

Theorem 45. Let G be a connected undirected graph. Then Pp(
←→
G ) is integral for all p

if and only if G is a path or a cycle.

Proof. cf. [5]. If G is a path or a cycle, then
←→
G satisfies conditions (i) and (ii) of Theorem

20 and so Pp(
←→
G ) is integral.

Suppose G is not a path nor a cycle. Then G contains a node of degree at least 3. Thus
←→
G contains H4 as a subgraph. Again Theorem 20 implies that Pp(

←→
G ) is not integral

for all p. �
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