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ABSTRACT
A common vocabulary is vital to smooth business operation,
yet codifying and maintaining an enterprise vocabulary is an
arduous, manual task. We present a fully automated process
for creating an enterprise vocabulary, by extracting terms
from a domain-specific corpus, and extracting their types
from LOD (Linked Open Data). We applied this process to
create a vocabulary for the IT industry, using 58 Gartner
analyst reports as a corpus, and the LOD subset consisting
of DBpedia and Freebase. We present novel techniques for
linking, cleansing, and extending the types in this LOD sub-
set, resulting in an improvement of 55% for our IT domain
results. We further improved our results through NER over
the corpus. Our NER training is completely automated, ex-
ploiting Wikipedia and DBpedia. Altogether, we achieved
46.3% recall and 78.1% precision.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Linguistic processing, Machine learning

Keywords
Linked Open Data, DBpedia, Enterprise vocabulary

1. INTRODUCTION
Most enterprises operate with their own domain-specific

vocabularies. A vocabulary can be anything from a set of
semantic definitions to a formal ontology. Vocabularies are
necessary to work effectively in a global environment and
to interact with customers. They facilitate common tasks,
such as searching an intranet or product catalog, and under-
standing general trends. However, building and maintaining
a vocabulary manually is both time-consuming and error-
prone. Coverage is a continual problem. It is never clear
whether the vocabulary terms will keep up with common
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search terms. Terminology is continually evolving, so that
maintaining a vocabulary is a game of catch-up.

This paper presents a process to fully automate the con-
struction of a domain-specific vocabulary. The constructed
vocabulary is a set of terms and types, where we label each
term by its type. We applied this process to the IT (infor-
mation technology) domain. For example, we discover that
IBM is a term, Company is a domain-specific type, and the
type of IBM is Company.

Our approach is based on two simple observations. First,
vocabulary terms are typically embedded in the documents
of an enterprise. We use 58 IT analyst reports from Gartner
as our corpus for extracting terms. Second, people searching
for term definitions on the Web usually find answers in either
a glossary or Wikipedia. We use LOD (Linked Open Data)
as our source for domain-specific types. This is attractive,
since repositories such as DBpedia associate entities with
types, such as those from the YAGO and Wikipedia type
hierarchy [1].

As a separate goal, we were interested in how useful LOD
is for real problems. LOD contains billions of RDF triples
and is growing at a rapid pace. Since there is no data vali-
dation process, the quality of the data is an open question.

For the IT industry domain, the most relevant subset of
LOD is DBpedia and Freebase. We therefore focused on
these two datasets as our reference data. Both datasets
derive from Wikipedia; DBpedia is primarily the result of
extracting the structured parts of Wikipedia (such as in-
foboxes), and Freebase is largely manually edited. We found
three technical challenges with this subset of LOD that we
addressed to improve it as a source for our domain-specific
type extraction:

• The linked data sets are not really linked. Although
Freebase and DBpedia are derived from Wikipedia, the
mapping from Freebase to DBpedia is not straightfor-
ward. We describe how we linked these sets in Sec-
tion 21.

• Both datasets have a certain degree of noise. Given
the size of the dataset in question, we need automated
techniques to discover the noisy parts of the data. We

1Freebase and DBpedia became linked very recently. Our
work is still valid because it characterizes the nature of this
mapping.



describe a set of novel techniques to automatically dis-
cover noisy data in Section 3, which relies on semi-
automated extraction of ontological constraints, and
the use of reasoning for noise detection.

• The coverage of LOD is weak. Even when the basic
terms are found in LOD, their types are often miss-
ing. For instance, about 580K instances out of 2.2M
Freebase instances are missing any type, even after the
mapping to DBpedia instances and types. We describe
a set of statistical techniques to automatically extract
domain and range constraints on DBpedia properties,
and apply it to infer types for instances in LOD in
Section 4.

Domain-specific terms may have different senses in LOD.
Many or all of these senses may be unrelated to the domain.
In the vocabulary extraction process, we use statistical tech-
niques to isolate domain-specific types found in LOD. These
types are used to label corpus terms. Our LOD cleansing
techniques improved the recall of this process by 55%. We
improved recall further by performing NER (Named Entity
Recognition) to the corpus, using the domain-specific types.
There are several novel features of our NER algorithm. We
train and build a statistical model completely automatically,
using seeds generated directly from LOD, we exploit struc-
tural information in both Wikipedia and DBpedia to gener-
ate high quality contextual patterns (features) for the model,
and we build an effective, general-purpose NER model that
works well across different corpora. Our model was trained
on Wikipedia and applied to the domain-specific corpus, the
IT analyst reports. Finally, we achieved 46.3% recall and
78.1% precision. The vocabulary extraction process is de-
scribed in Section 5.

2. LINKING FREEBASE AND DBPEDIA
To exploit information from Freebase and DBpedia to

build our IT vocabulary, the first step was to link these
two datasets. For DBpedia, we used data dumps for DB-
pedia 3.1. For Freebase, we used the WEX data dumps
from July [2]. This combined dataset consists of 137 million
RDF triples for DBpedia, and 116 million RDF triples for
Freebase.

2.1 Linking DBpedia and Freebase instances
To link the Freebase and DBpedia data, we converted

the WEX names for Freebase instances (guids) into DB-
pedia URLs by encoding names as URLs with the prefix
dbpedia: and searched for their corresponding DBpedia en-
tities. We were unable to match 4,946 Freebase instances
out of 2.2 million instances in the WEX file. Manual checks
revealed that these Freebase instances indeed did not have
corresponding DBpedia instances. A somewhat surprising
discovery was that the instance mapping from Freebase to
DBpedia was often not one-to-one. Freebase often groups
instances together that are semantically the same. For ex-
ample, Freebase has a single instance (or guid in Freebase’s
terms) that maps to 29 different names, all of which are
characters from Atlas Shrugged. DBpedia represents each
character as two different instances with redirects to each
other (e.g., dbpedia:Dick_McNamara, dbpedia:Characters_
in_Atlas_Shrugged23Dick_McNamara). Of 2.2M Freebase
instances, 2.19M instances mapped to a single DBpedia in-
stance. Of the remainder, 47,403 instances mapped to two

DBpedia instances. At the extreme, a Freebase instance was
mapped to 106 DBpedia instances. As described in Section
3, errors do exist in this mapping, and they also increase
the noise in the data. The output of this step is to augment
the LOD dataset with owl:sameAs edges between mapped
DBpedia and Freebase instances.

2.2 Linking DBpedia Redirects
In DBpedia, resource redirects are common (e.g., dbpedia:

International_Business_Machines redirects to dbpedia:

IBM). Semantically, this often means that the two resources
are the same (similar to owl:sameAs), see [3]. There are
often multiple levels of redirects (e.g., dbpedia:Desktop_

Wiki redirects to dbpedia:Microsoft_Windows, and numer-
ous other resources such as dbpedia:HTML redirect to dbpedia:

Desktop_Wiki).
We first tried to treat all resources in the transitive closure

of all redirect edge as the same resource, following the se-
mantics of owl:sameAs. Unfortunately, taking the transitive
closure of dbpedia:Microsoft_Windows resulted in 44,955
resources, with disparate resources such as dbpedia:yoga

and dbpedia:Microsoft_Windows mapped to the same en-
tity. It appears that property:redirect is used in multiple
ways: when an entity is the subject of a single redirect rela-
tion, it indicates that information pertaining to this entity is
the object of the relation. But when an entity is the subject
of more than one redirect, this appears to indicate a collec-
tion of related but distinct entities. We therefore decided to
add owl:sameAs edges between instances that are connected
by a singleton redirect edge. This process of including redi-
rects introduces some noise, when the redirects are noisy in
DBpedia.

2.3 Linking DBpedia and Freebase types
Freebase and DBpedia specify types at different levels of

granularity. For instance, Freebase has broad types such as
freebase:/business/company, whereas DBpedia has spe-
cific types such as yago:FoodCompaniesEstablishedIn1994,
yago:InternetCompaniesEstablishedIn1996. Although DB-
pedia does have a hierarchy that links these specific types to
higher level types, such as Company, through subclass rela-
tionships, these relationships are not always reliably present,
and are sometimes incorrect.

We chose to establish a mapping from the finer granular-
ity DBpedia types to coarser Freebase types. This allows us
to automate noise detection later, as described in Section 3,
and to check our type inference as described in Section 4. To
do this mapping, we computed the relative frequency with
which a given DBpedia type A co-occurs with a Freebase
type B, for all instances that were typed with A; i.e., the con-
ditional probability p(FreebaseType|DBpediaType). We
considered a mapping valid if this conditional probability
was greater than .80. Manual inspection of a random sam-
ple of 110 pairings revealed that 88% mappings were cor-
rect. With this technique, we were able to map 91,558
DBpedia out of 152,696 DBpedia types to Freebase types
(we excluded mappings which mapped to the freebase type
/common/topic because its a top level type like owl:Thing

or yago:Entity). In all, because a single DBpedia type can
map to multiple Freebase types (e.g., yago:InternetCompanies
EstablishedIn1996 maps to freebase:/business/company

and freebase:/business/employer), we had 140,063 map-
pings with the 80% threshold. If we adopted a stricter



threshold and restricted ourselves to those types with a con-
ditional probability of 1.0, we mapped 71,594 types, and had
102,833 mappings. Table 1 shows sample selected mappings.
We augmented the LOD dataset with owl:equivalentClass

linkages for these mappings.
Low conditional probabilities in mappings were caused by:

(a) instances not having any Freebase type at all, (b) in-
stances with wrong Freebase types, (c) instances with wrong
DBpedia types. Table 2 shows an example of (c) where the
type yago:Editor110044879 is mapped to people and soft-
ware at the instance level, because yago:LinuxTextEditors

and yago:AmericanMagazineEditors are subclasses of yago:
Editor110044879 in YAGO.

3. NOISE DETECTION
Noise in LOD comes from three different sources. First,

the entity categories in Wikipedia are sometimes wrong. For
example, http://en.wikipedia.org/wiki/United_Farmers_
of_Alberta has an incorrect category Federal political par-
ties in Canada. This noise gets propagated to DBpedia
which converts these categories into YAGO types. Second,
these YAGO types automatically mapped to higher level en-
tities in WordNet [1] with a noise factor of 5%. Finally, the
extraction process from Wikipedia to Freebase is noisy. For
instance, freebase:winnie-the-pooh refers to the fictional
character Winnie the Pooh as a person.

Our main focus was to reduce noise from the type as-
sertions for entities in LOD. Manually checking every type
assertion is not practical, but reasoning can potentially help
automate noise detection by finding assertions that are log-
ically inconsistent. This approach has been used in prior
work to identify noise in text extraction [4]. The core idea
is to define a set of constraints in an ontology (e.g., a set dis-
joint types such as Person, Place etc.), and use reasoning to
identify the inconsistencies in the data at the points where
the constraints are violated. For example, if an instance a
is declared as both a Person and a Place then the reasoner
would identify the constraint violation involving a because
this would produce a logical inconsistency.

The problem with applying this approach to Web scale
data like LOD is that it is impossible to manually define
these constraints for the number of types and properties
in DBpedia. DBpedia has 159,379 YAGO types and 39,345
properties present in the data, and Freebase has 4,158 types.
Alternatively, using a type hierarchy, it is possible to spec-
ify disjoints at the level of “roots” in the hierarchy manu-
ally, even when the hierarchy has many classes. However,
LOD does not have a well-defined, clean hierarchy. Although
YAGO types are organized in a hierarchy, there are no ob-
vious levels in the hierarchy to insert disjoints. Freebase
has no hierarchy at all — the type structure is completely
flat. It is impossible to determine which types are disjoint
in Freebase, since there are 4,158 types.

Our approach to solving this problem is therefore to first
infer a type hierarchy for Freebase, and then use that hier-
archy to define disjoint classes to detect noise.

3.1 Inferring a Type Hierarchy
Our type inference technique is based on whether cer-

tain relationships between types exist or not. The types
in Freebase typically fall into broad groups, e.g. freebase:

astronomy/dwarf_planet and freebase:astronomy/comet/

both denote objects in space, and most types that are dis-

joint from one are disjoint from both. Therefore, we could
infer that neither of these types is a subtype of the other.
Furthermore, freebase:astronomy/celestial_object ap-
pears to encompass both of these types, thus being essen-
tially a supertype.

Because Freebase has no type structure, each instance in
Freebase is annotated with a flat set of types, in which more-
general types occur along with less-general types. We use
this fact to approximate the usual notion of supertype: a
supertype Y by definition contains all the instances of its
subtype X, and, in normal circumstances, X does not con-
tain all the instances of Y . Thus, in a sufficiently large set of
data, we would expect to see the following, where P denotes
probability:

P ( i ∈ Y |i ∈ X ) == 1

P ( i ∈ X|i ∈ Y ) << 1

Because the Freebase data is noisy, the first probability will
most likely be less than 1; furthermore, because some in-
stances of Y are instances of X, it is unclear how low the
second probability will actually be. To account for this, we
can recast the above constraints as follows:

P ( i ∈ Y |i ∈ X ) > τ

P ( i ∈ X|i ∈ Y ) < P ( i ∈ Y |i ∈ X )

Thus, X ⊂ Y if instances of X are almost always instances
of Y , and the other way round is less likely. Therefore, we
define the following:

P (X ⊂ Y ) ≡{
P ( i ∈ Y |i ∈ X ) , P ( i ∈ Y |i ∈ X ) > P ( i ∈ X|i ∈ Y )
0 , otherwise

Finally, this allows us to estimate a set of “root” types R,
which are types at the base of the hierarchy. We define our
notion of disjointness at this this level of types. The root
types are simply those that are very unlikely to be a subtype
of anything:

R ≡ {T |∀XP (X ⊂ T ) < ε}

Using this procedure, we found 78 roots, with τ set to .65
and ε set to .01. Of these, 26 roots had no subclasses, and the
largest root had 409 subclasses. The examples below show a
sample of roots and sample “subclasses” we found for classes
relevant to the IT domain (URLs have been abbreviated
for brevity). Note that Freebase allows user added types.
System types are separated from user types, which tend to
be more idiosyncratic.

• Software:

– System Types:

/computer/software

/computer/web_browser

– User Types:

/window_manager

/relational_database_software

/revision_control_system

We turn now to the issue of declaring disjoint classes, so
we can automate the detection of inconsistencies in the data.
Note that, in principle, the sets of types under each root need
not be disjoint. In practice, we found that 54 classes were
classified as subtypes of multiple roots.



DBpedia Type Freebase Type
#Both Types

#DBpedia Type
p
(

FreebaseType
DBpediaType

)
yago:BirdsOfMexico freebase:../default_domain/bird 1009/1261 0.800159
yago:Byway102930645 freebase:/transportation/road 377/471 0.800425
yago:BirdsOfIndia freebase:../default_domain/bird 730/912 0.800439
yago:BirdsOfGuatemala freebase:../default_domain/bird 285/356 0.800562

Table 1: Sample mappings between Freebase and DBpedia

DBpedia Type Freebase Type
#Both Types

#DBpedia Type
p
(

FreebaseType
DBpediaType

)
yago:Editor110044879 freebase:/people/deceased_person 1495/4585 0.326063
yago:Editor110044879 freebase:/book/author 614/4585 0.133915
yago:Editor110044879 freebase:/computer/software 189/4585 0.041221
yago:Editor110044879 freebase:/film/editor 186/4585 0.040567
yago:Editor110044879 freebase:/film/writer 176/4585 0.038386

Table 2: Excluded mappings between Freebase and DBpedia

3.2 Determining Disjointness
Deciding whether or not two types must be disjoint is not

a process we felt should be automated completely. At some
point, the understanding that a computer program and a
person are not the same thing must be allowed to override
any amount of statistical data that claims that they might
be. So our approach is to group types under a small set
of roots using the hierarchy techniques above, then group
together related sets of root types, and then decide manually
which of the sets of roots must be disjoint from each other.

We need to group the roots into sets due to noise. For
instance, it might seem that /astronomy/asteroid ought
to be a subtype of /astronomy/celestial_object; how-
ever, while almost all appropriate types under /astronomy/
celestial_object are indeed subtypes of /astronomy/celestial_
object with very high probability, /astronomy/asteroid is
not, based on the data in Freebase. We decided manually
that types under the root /astronomy/asteroid should be
grouped with types under the root /astronomy/celestial_
object. We denote this as a relation S (T1, T2), which is
true when we have grouped T1 and T2 together.

After grouping the roots, we are left with only 35 groups
of types, and we adopted the default that these sets of types
should always be pairwise disjoint unless we decide other-
wise. That is defined as follows (where Ri is a root, Tj is a
type):

D (T1, T2) ≡ ∃R1, R2

 {R1, R2} ⊂ R∧
T1 ⊂ R1 ∧ T2 ⊂ R2∧
¬S (R1, R2)


In practice, we needed 5 pairwise exceptions for types

that are in fact used together heavily and our fully auto-
matic technique did not capture completely. In particular,
the /location/location types are often used in Freebase
for things that have a location but are not really locations
themselves. So, we had to decide that a location is al-
lowed to co-occur with certain other root types: time/event,
astronomy/celestial_object and business/employer. But
even in such cases our hierarchy simplified the task since we
only had to define such compatibility for the groups of roots
we identified in the system.

3.3 Noise Detection Results
We applied reasoning to detect noise in type assertions in

DBpedia. To summarize our previous step, we obtained an
hierarchy of 78 root types, and we manually coalesced them
into 35 groups of disjoint types. This hierarchy covered a
total of 1281 types out of the 4,158 Freebase types overall
in the data.

We found a total on 2,246 Freebase entities with a dec-
laration of inconsistent types, and we examined a random
sample of 201 of them to determine causes. We found that
most of them were caused by inconsistent type declarations
in Freebase and DBpedia, where inconsistency was deter-
mined manually, e.g., an entity is not allowed to be a film
and a person. The breakdown of errors in typing in our
sample are as follows:

1 was caused by an error in the type mapping from DB-
pedia to Freebase described in Section 2.3. Statistics
suggested that recipients of the Polish military honor
Virtuti Militari were all people, but in fact the city
of Verdun received the honor, and that caused a clash
between person and city.

5 were caused by errors in the mapping between Freebase
and DBpedia instances. These result from Freebase
instances were mapped to multiple DBpedia entities
with conflicting types, as described in Section 2.1.

43 were the results of our disjoint types being too ag-
gressive. Most of these came from two sources. First,
some types, such as /location occur along with many
other types, but we required them to be disjoint from
most groups. Second, types that we took to be sub-
types of /people/person based on statistics did in fact
have significant numbers of other uses, like /award/

award_winner being used in conjunction with busi-
ness/company.

152 were the results of declared types that we decided were
correctly deemed inconsistent.

We ran the noise detection algorithm to get rid of the
problem of aggressive disjoint types, and now found 2,111
instances with noisy explicitly declared types. If we include
supertypes from the YAGO hierarchy along with the ex-
plicitly declared types and check for noise, we find 18,750
instances with noisy declared types, which is approximately
1% of the data. Given that this is dramatically more than



without the hierarchy, and our evaluation showed our type
mapping is very good, it is likely that many of these ex-
tra clashes are caused by erroneous supertype edges. This
technique can be used to debug the YAGO hierachy in the
future.

4. COVERAGE
The technique we use to improve coverage extracts a fuzzy

domain and range restrictions for properties in DBpedia,
and uses reasoning to infer types for instances2. Take as an
example the instance yago:Ligier, which is a French auto-
mobile maker that makes race cars. DBpedia has the types
yago:FormulaOneEntrants and yago:ReliantVehicles as
types, neither of which is a company. Yet, dbpedia:Ligier
has a number of properties that are rather specific to compa-
nies, such as dbpedia-owl:Company#industry, dbpedia-owl:
Company#parentCompany, etc. If we had a predefined ontol-
ogy, where dbpedia-owl:Company#industry had a domain
of the type yago:Company, we could have used reasoning to
infer that yago:Ligier is really a Company. However, man-
ually defining domain and range restrictions is not an option,
because DBpedia has 39,345 properties. We therefore used
statistical techniques to define a fuzzy notion of domains
and ranges automatically to infer types, as discussed in the
next section.

4.1 Type Inference
Our approach to type inference is based on correlating

what properties an entity has with what explicit types. The
idea is that if many instances of a particular type have a
certain set of edges, then other entities with that same set
of edges probably are instances of that type too.

More formally, we define the notion of a property implying
a type based on the fraction of the given edge that pertain
to instances with that property being greater than some
threshold τ . Note that this notion applies to both subjects
and objects of edges.

Isubj (p, t) ≡ |{p(x, y) |x : t}|
|{p(x, y) |∃t1x : t1 }|

> τ

Iobj (p, t) ≡ |{p(x, y) |y : t}|
|{p(x, y) |∃t1y : t1 }|

> τ

where i : t is an rdf:type assertion between an instance
i and a type t, and p(i, x) is a role assertion which links
instance i to instance x on a property p. This step can be
thought of as inferring domains and ranges for properties,
as was done in [5]; however, rather than use these types
directly as such constraints, we use them in a voting scheme
to infer types for subject and object instances.

Given the notion of a property implying a type, we define
the notion of properties voting for a type, by which we sim-
ply mean how many of a given instance’s properties imply
a given type:

V (i, t) ≡
∣∣∣∣{p ∣∣∣∣ ∃x p(i, x) ∧ Isubj (p, t)∨

∃x p(x, i) ∧ Iobj (p, t)

}∣∣∣∣
We additionally define the notion of all edges that take

part in voting, i.e. the number of edges that pertain to a
2We don’t consider the Freebase properties because when
Freebase properties are specified, the types are specified as
well, and there is no opportunity to infer types based on
properties

given instance that imply any type:

Vany (i) ≡
∣∣∣∣{p ∣∣∣∣∃t( ∃x p(i, x) ∧ Isubj (p, t)∨

∃x p(x, i) ∧ Iobj (p, t)

)}∣∣∣∣
Finally, given the notion of voting, we define the implied

types of an instance simply as those types that receive the
greatest number of votes from properties of that instance
compared to the total number of properties of that instance
that could vote for any type:

T (i) ≡
{
t

∣∣∣∣(∀t1V (i, t) ≥ V (i, t1)) ∧ V (i, t)

Vany (i)
≥ λ

}
We applied this technique to our data with the following

conditions to infer new types:

• We set τ and λ to be .5

• Inferred implied types were included only if they were
not disjoint, as defined in Section 3.

We divided the implied types into 4 categories, and report
all our statistics in terms of Freebase types (to avoid the
problem that many DBpedia instances are redirects of each
other, and are basically synonyms for the same entity):

1. Verified for the entities for which at least one of the
implied types is the same as an explicitly declared one.
This category had 808,849 instances.

2. Additional inferred types for the entities for which the
implied types were not disjoint with any existing type
assertion, i.e. these denote additional inferred type as-
sertions that helps improve coverage in DBpedia. This
category had 279,407 instances.

3. Invalid for the entities for which at least one of the im-
plied types conflicted with an explicitly asserted type.
This category had 6,874 instances.

4. Inconsistent for those entities for which we inferred
multiple types that were themselves disjoint, we made
no inference. We had 5,955 instances in this category.

To determine the accuracy of our implied types, we took
samples of the invalid and additional inferred types, and
evaluated the precision for these categories with two random
samples of 200 instances each. An instance was considered
to be typed correctly if all the inferred types for an instance
were correct. The results for the two categories are provided
below. In the additional inferred types category, we typed
177 instances correctly, and 23 incorrectly. In the invalid
category, we typed 21 instances correctly, and 179 wrong.
Taking the overall results for all the categories into account,
we achieved a net recall of 49.1% and an estimated precision
of 95.8% accuracy.

On closer inspection, we realized that our technique worked
exceedingly well for certain types, and not others. To illus-
trate this, Table 3 shows the top 5 Freebase declared types
for instances in each category.

As shown in Table 3, both the invalid and the inconsis-
tent instances had common top types involving radio sta-
tions and fictional characters. For radio stations, we tended
to infer that they were locations instead, and for fictional
characters, we tended to infer that they were real people.
Given the relatively small number of types that led to many
of our wrong inferences, we could investigate these specific
types to determine which specific properties are responsible
and adjust our inference appropriately.



Category
type URI count

Inconsistent
freebase:.../fictional_character 654
freebase:broadcast/radio_station 635
yago:Weapon104565375 385
yago:FictionalCharacter109587565 374
freebase:broadcast/broadcaster 291

Additional
yago:Landmark108624891 7446
freebase:music/composition 3775
freebase:music/song 3771
yago:City108524735 3564
yago:Village108672738 3405

Verified
freebase:people/person 256920
freebase:location/location 216326
freebase:location/dated_location 124885
yago:LivingPeople 119010
freebase:location/citytown 118394

Invalid
freebase:broadcast/radio_station 2473
freebase:broadcast/broadcaster 1412
yago:RadioStation104044119 1094
freebase:.../fictional_character 948
freebase:people/person 557

Table 3: Top 5 Declared Types in each Category

5. VOCABULARY EXTRACTION
We now return to our original goal, to automatically gen-

erate a domain-specific vocabulary. Our process extracts
domain specific terms from a domain-specific corpus, and
labels these terms with appropriate domain-specific types.
This is a different problem than traditional NER. Off-the-
shelf NERs are typically trained to recognize a fixed set of
high-level types such as Person, Organization, Location etc.
In our case, we need to discover the types for a specific
domain, and use these discovered types to label terms in
the corpus. For the IT domain, we would like to capture
types such as Distributed Computing Technology, Applica-
tion Server, and Programming Language, and use them to
label terms like “Cloud Computing”, “IBM WebSphere”,
and “SmallTalk”. We rely on sources outside the corpus,
in particular LOD, since appropriate types may not even
appear in the corpus.

Figure 1 illustrates our process for creating a vocabulary.
Briefly, our process performs the following steps:

1. Extract a population of terms from the domain corpus.
This is the set of all noun phrases.

2. Extract a seed set of domain-specific terms from the
corpus.

3. Apply statistical techniques to extract domain-specific
types from LOD, using the seed terms from step 2.

4. Filter the set of all terms from step 1, based on the
domain-specific types from step 3. The result is a set
of domain-specific terms, labeled by their type.

All Terms

   Domain
     Types

Filtered
Terms/Types

  Additional
   Learned
 Terms/Types

Improved
LOD

Domain
Corpus

   Domain
 Seed Terms

Wikipedia

Figure 1: Vocabulary Extraction Process

5. Apply NER to the corpus to further improve coverage
for the specific domain. The NER algorithm finds ad-
ditional terms which belong to a subset of the types
found in step 3.

The following subsections provide the details of each of
these steps, and results for the IT domain.

5.1 Term Population
We extract the noun phrases from a domain corpus, using

a standard NLP part-of-speech tagger (from OpenNLP3).
These noun phrases comprise the population of all terms.
For our case study, the domain corpus was 58 IT analyst
reports from Gartner, available internally to IBM in the
July timeframe. The resulting term population extracted
consisted of approximately 30,000 terms.

To measure the precision and recall of our process, we
created a gold standard from the term population. We ran-
domly selected 1000 terms from the population, and four
people judged whether each term in this sample was rele-
vant to the domain. A term was considered relevant only if
all four judges agreed. In the end, 10% of the sample terms
were considered relevant to the IT domain. Therefore, we
expect 3,000 terms in the population to be relevant.

5.2 Domain-Specific Seed Terms
The next step is to extract an initial set of domain-specific

terms from the corpus. These terms are subsequently used
to look up types in LOD. For this task, it is more impor-
tant to find a precise set of domain-specific terms, than to
find all of the domain-specific terms. We use an off-the-shelf
tool, GlossEx, that extracts words and noun phrases along
with their frequency and domain-specificity. This associated
data allows low-frequency, low-specificity terms to be filtered
out. For our analyst report corpus, we selected proper noun
phrases and common noun phrases with frequency ≥ 2 and
with an appropriate tool-specific domain-specificity thresh-
old. We obtained 1137 domain-specific terms from the Gart-
ner IT reports.

3http://opennlp.sourceforge.net/



5.3 Domain-Specific Types
Using the domain-specific seed terms, we discover a set of

relevant interesting types from LOD. Our algorithm to dis-
cover domain-specific types is outlined in Table 4. The first
step is to find a corresponding LOD entity for a domain-
specific term. The most precise and direct way to do this is
to encode the term directly as an LOD URI (i.e., by adding
the DBpedia URL prefix4) and check if it exists. This pro-
duced matching entities for 588 of the terms5.

Ideally it should be possible to simply look up the type(s)
of each of these entities and mark them as interesting. How-
ever, this does not work since a term can ultimately map to
different types with different senses. For example, “Java” is
a programming language and an island, and we may select
the incorrect LOD entity and hence sense. Even if there
is a single LOD entity for a term, it may not be the sense
that is relevant for the domain. For example, the term “Fair
Warning” is a software product, but there is only one type
sense in LOD, which is Category:MusicAlbum (pointing to
an album with the same name released by Van Halen).

To address this problem, we filter out uninteresting types
using simple statistical information. We score LOD types
based on the number of terms they match across all the doc-
uments in our corpus and filter out infrequent types (those
whose frequency is below a pre-determined threshold). One
issue here is the different kinds of type information in LOD –
YAGO types from DBpedia, Freebase types and Categories
that come from Wikipedia. We found that having separate
frequency thresholds (αY , αF , αC resp. in Table 4) for each
of the types produced better results.

Another issue we noticed with DBpedia is that several en-
tities do not have any values in their rdf:type field, but had
interesting type information in the skos:subject field. For
example, the term “NetBIOS” has no rdf:type, though its
skos:subject is mentioned as Category:Middleware. Hence,
we take SKOS subject values into account as well when com-
puting types for a seed term (step 4 of the algorithm).

To further improve coverage in step 4, we also consider ad-
ditional ‘strongly related’ types by looking at any associated
Freebase-DBpedia type mappings and super-types from the
type hierarchy.

Finally, note that filtering also removes several low fre-
quency types that are interesting, e.g., yago:XMLParsers,
yago:ApplicationLayerProtocols. To address this issue,
we consider low frequency types as interesting if they are
subsumed by any of the high frequency types. For exam-
ple, yago:XMLParsers is subsumed by yago:Software in the
Yago type hierarchy, and is thus considered relevant as well
(steps 6-8 of the algorithm).

We ran the type-discovery algorithm with 1137 seed terms.
We did two separate runs. First, we ran it taking informa-
tion from the original LOD, and setting appropriate type-
frequency thresholds (αY = 4, αF = 4, αC = 4) based on
manual inspection of highly frequent types in τp. This pro-
duced 170 interesting types. The second time we ran it after
improving the Freebase-DBpedia mappings, as described in
Section 2, and improving the type hierarchy, as described in

4Freebase naming convention, using guids etc, makes it dif-
ficult to generate a potential URL for a term
5Alternately, we could do a keyword search for the term
against LOD entity names and find closely-related matches
but this risks matching unrelated entities, and thus adding
a lot more noise

Input: Sdt : set of domain-specific seed terms,
threshold parameters αY , αF , αC

Output: τ set of domain-specific types from LOD

(1) initialize potential type list τp ← ∅
(2) for each domain-specific seed T ∈ Sdt

(3) encode T as a DBpedia URI U
(4) τp ← τp∪ types(U)

where types(U) =
values of prop. rdf:type for U ∪
values of prop. skos:subject for U ∪
‘equivalent’/‘super’ types obtained via mappings
and by looking at type hierarchy

(5) τ ← T ∈ τp if
(freq(T ) ≥ αY and T is a Yago Type) or
(freq(T ) ≥ αF and T is a Freebase Type) or
(freq(T ) ≥ αC and T is a Wiki Category)

(6) for each type X ∈ (τp − τ)
(7) if there exists a type Y ∈ τ s.t. LOD |= X v Y
(8) τ ← τ ∪ {X}

Table 4: Extraction of Domain-Specific Types

Section 3, again setting appropriate thresholds (αY = 12,
αF = 12, αC = 4) based on manual inspection. This pro-
duced 188 interesting types. Manually inspecting both sets
of outputs showed very high precision (> 90%) for each case.

5.4 Filtered Terms and Types
Once we have the set of domain-specific types, we re-

visit the entire population of corpus terms from Section 5.1.
We find terms in this population that belong to one of
the domain-specific types. This set is more comprehensive
than the initial seed set in 5.2. Specifically, we select the
terms from the population that are ‘closely related’ to enti-
ties in LOD which belong to at least one domain-specific
type. In order to find ‘closely related’ entities, we per-
form a keyword search for each term over a database, pop-
ulated with data from DBpedia and FreeBase, and indexed
using Lucene. We select matches with a relevance score
greater than 0.6. For example, searching for the term “Web-
Sphere” over the Lucene index produces entity matches such
as “IBM WebSphere”, whose corresponding rdf:type/skos:subject
value belonged to one of our domain-specific types. There-
fore, ‘WebSphere’ is selected as a domain-specific term.

We obtained two separate results at the end of this step
as well, first considering LOD information as-is and taking
the 170 interesting types found in the previous step. This
produced 896 type-labeled terms. Then, we repeated the
process taking the cleaned up version of LOD and the cor-
responding 188 interesting types found in the previous step.
This gave us 1403 type-labeled terms, a substantial increase
in the output (by approximately 500). A comparative eval-
uation of the precision/recall of the two outputs is discussed
in Section 5.6.

5.5 Improving Coverage using Statistical NER
Since LOD coverage is incomplete, the techniques described

above do not produce a complete domain-specific vocabu-
lary. From our gold standard, described in Section 5.1, we
expect to find around 3K domain-specific terms, and the
output of the previous step is still quite short. In order to
improve the coverage of our solution, we automatically build



an NER model for domain-specific types.
The previous step produced a large number of interesting

types (>170). These include YAGO types, Freebase types
and Wikipedia Categories, many of which are closely re-
lated, e.g., yago:ComputerCompanies, freebase:venture_

funded_company and Category:CompaniesEstablishedIn1888,
which are all conceptually subclasses of Company. Given
the large number of closely related types, it does not make
sense to build an NER model for each of the types. Instead
we decided to look only at top-level types in the output
(types that were not subsumed by any other). Further-
more, given the noise in the type-instance information in
LOD, we decided to restrict ourselves to Yago types that
have Wordnet sense ID’s attached to them (e.g. yago:

Company108058098), since they have a precise unambiguous
meaning and their instances are more accurately represented
in LOD. In our case, this yields five YAGO/Wordnet types:
yago:Company108058098, yago:Software106566077, yago:

ProgrammingLanguage106898352, yago:Format106636806 and
yago:WebSite106359193.

The process of building a statistical model to do NER is
inspired by techniques described in systems such as Snowball
[6] and PORE [7]. The basic methodology is the following –
start with a set of training seed tuples, where each tuple is
an <instance, type> pair; generate a set of ‘textual patterns’
(or features) from the context surrounding the instance in
a text corpus; and build a model to learn the correlation
between contextual patterns for an instance and its corre-
sponding type. We combine the best ideas from both Snow-
ball and PORE and make significant new additions (see the
Related Work (Section 6) for a detailed comparison).

We could not afford to train the model on the IT cor-
pus itself for two reasons: (i) lack of sufficient contextual
data (we only had 58 reports), (ii) lack of adequate train-
ing seed tuples (even if we took the most precise term-type
pairs generated in the previous section, it was not enough
data to build a robust model). However, Wikipedia, com-
bined with LOD, provides an excellent and viable alter-
native. This is because we can automatically obtain the
training seed tuples from DBpedia, without being restricted
to our domain-specific terms. We look for instances of the
YAGO/Wordnet types in DBpedia, and find the context for
these instances from the corresponding Wikipedia page6.
For our learning phase, we took either 1000 training seed
instances per type or as many instances as were present in
LOD (e.g., yago:ProgrammingLanguage106898352 had only
206 instances). This gave us a total of 4679 seed instances
across all five types.

A key differentiator in our solution is the kind of text
patterns we generate (by patterns here, we mean a sequence
of strings). For example, suppose we want to detect the
type Company. The following text pattern [X, acquired,
Y ], where X,Y are proper nouns, serves as a potentially
interesting pattern to infer that X is of type Company.
However, a more selective pattern is the following: [X ac-
quired <Company>]. Knowing that Y is of type Company,
makes a stronger case for X to be a Company. Adding type-
information to patterns produces more selective patterns.

To add precise type information, we exploit the struc-
ture of Wikipedia and DBpedia. In Wikipedia, each entity-

6DBpedia naming convention provides a straightforward
mapping to-and-from any DBpedia resource URL and the
corresponding Wikipedia page URL

Input: Sentence S containing training instance I,
entities with Wikipedia URLs WN1..WNk;
and complete Type-Outcome set for model OT
Output: Set CP of patterns (string sequences)
(1) Run S through OpenNLP POS tagger to get tagged

token sequence TK : [.., < word, POS >, ..]
(2) Remove tokens in TK where the word is an

adverb (RB), modifier (MD) or determiner (DT )
(3) Replace common nouns/verbs in TK with respective

word stems using WordNet stemmer
(4) for each occurrence of pair < I, POS(I) > in TK,

(where posi is position index of pair)
(5) SPANS ← ExtractSpans(TK, posi)
(6) for each [start-pos, end-pos] ∈ SPANS
(7) TKspan ← subsequence TK(start-pos, end-pos)
(8) CP ← CP ∪ word sequence in TKspan

(9) CP ← CP ∪ word sequence in TKspan replacing
proper nouns/pronouns with resp. POS tag

(10) CP ← CP ∪ word sequence in TKspan replacing
WN1..WNk with corresponding types and their resp.
super-types from LOD (provided that type is in OT )

(11) Remove adjectives (JJ) from TK
repeat (8)-(10) once

(Note: When generating patterns in steps (8)-(10),
we replace training instance I by tagged
variable ‘X:POS(I)’

Subroutine: ExtractSpans(TK, posi)
(1) SPANS ← ∅
(2) for each j, 0 ≤ j ≤ (posi − 1)
(3) if TK(j).POS = verb or noun
(4) SPANS ← SPANS ∪ [j, posi]
(5) for each j, (posi + 1) ≤ j ≤ length(TK)
(6) if TK(j).POS = verb or noun
(7) SPANS ← SPANS ∪ [posi, j]
(8) return SPANS

Table 5: Pattern Generation Algorithm

sense has a specific page, other Wikipedia entities men-
tioned on a page are typically hyperlinked to pages with
the correct sense. For example, the “Oracle Corporation”
page on Wikipedia has the sentence “Oracle announces bid
to buy BEA”. In this sentence, the word BEA is hyper-
linked to the ‘BEA Systems’ page on Wikipedia (as opposed
to Bea, a village in Spain). Thus, using the hyperlinked
Wikipedia URL as the key identifier for a particular entity
sense, and obtaining type-information for the correspond-
ing DBpedia URL, enables us to add precise type infor-
mation to patterns. For the example sentence above, and
the seed <Oracle, yago:Company108058098>, we generate
the following pattern: [X:NNP, announces, bid, to, buy,
<yago:Company108058098>] since “BEA Systems” has the
type <yago:Company108058098> (among others) in LOD,
while X here is a variable representing the seed instance
Oracle, and is tagged as a proper noun.

Moreover, not only do we substitute a named entity in
a pattern by all its corresponding types in LOD, we add
in super-type information, based on the type-hierarchy in
LOD. We only focus on the YAGO/Wordnet types in the
hierarchy which are the most precise. This generalization of
patterns further helps improve recall of the model. Besides



Scoring: Given type-outcomes T1..Tn, and patterns P1...Pm,
compute a score for each pattern-type pair,

SC(Pi, Tj) = (n(Pi ∩ Tj)/n(Pi)) ∗ log2(n(Pi ∩ Tj))...
(Cond. Prob, using freq. n ) X log(selectivity)

...(if n(Pi) > 1 and n(Pi ∩ Tj) > 0)
(0 otherwise)

Decision Making: Given a set of patterns IP1..IPo for an
unrecognized named entity I
(1) Compute confidence Conf(Ti) for each type Ti, 1 ≤ i ≤ n

Conf(Ti) =
∑

1≤j≤o SC(IPj , Ti)

(2) Normalize Conf(Ti) values into prob. dist.
∑
Pr(Ti) = 1

(3) Guess type Ti if Pr(Ti) > threshold (typically, .51)

Table 6: Scoring and Decision Making

Type Pattern
Company [<NNP>, be, acquire, by, X:NNP ]
Software [<Company>, release, version, of, X:NNP ]
ProgLang [<Software>, write, in, X:NNP ]
Format [encode, X:NNP ]
Website [X:NNP, forum]

Table 7: Sample High Scoring Patterns

using type information, we also use a stemmer/lemmatizer
(using a Java WordNet API7) to generalize patterns, and
a part-of-speech tagger to eliminate redundant words (e.g.,
determiners) and add POS information for proper nouns and
pronouns in patterns. Details of our pattern generation is
described in the algorithm in Table 5.

After generating text patterns, the next key step is to
score each pattern based on its selectivity (i.e., number of
correct term-types pairs recognized) and coverage (quality
of new term-type pairs detected). Assuming that the pat-
terns are all independent, we compute a score based on the
conditional probability of a pattern given a type from the
frequency measures of positive and negative cases observed
in the training data, and factor in selectivity based on fre-
quency of positive cases. Also, to ensure that noisy patterns
are not allowed in the model, we impose a pattern-frequency
cutoff of 2. Finally, when making a decision, we take the sum
of the pattern scores, normalize all type-outcome scores into
a probability distribution and guess a type if it’s normalized
probability is greater than a certain threshold (.51 in our
experiments). Details of our pattern scoring and decision-
making scheme are in Table 6. Examples of highly selective
patterns captured by our model are shown in Table 7.

Finally, we repeat the recognition phase. Newly recog-
nized term-type tuples are fed back into the system and used
to rescore patterns taking in the new contexts, and also to
generate new contexts for the remaining unrecognized terms
by adding in type information. This process repeats until
nothing changes. This feedback loop is effective, since we
produce several patterns with type information in them, and
these patterns are not applicable unless at least some terms
in the context already have types assigned. For example,
the sentence fragment “IBM acquired Telelogic” appears in
our text corpus; initially, we detect that the term “IBM” has
type Company, and feeding this information back to the sys-

7http://sourceforge.net/projects/jwordnet

Domain No Feedback With Feedback
Prec. Rec. F Prec. Rec. F

Wikipedia 71.1 41.5 52.4 69.5 42.5 52.8
IT Corpus 76.4 38.6 51.3 76.5 52.3 62.1

Table 8: Evaluating our NER model

tem helps the machine recognize “Telelogic” is a Company
as well (based on the pattern [<Company>, acquired, X ] for
Type(X):Company). Note that we have to be careful dur-
ing the feedback process since terms that have incorrectly
recognized types, when fed back to the system, may prop-
agate additional errors. To prevent this, we only feedback
terms whose types have been recognized with a high degree
of confidence (Pr(Ti) > 0.81).

5.5.1 Evaluation of our NER Model
We evaluated our NER separately on Wikipedia data and

the IT corpus. For the Wikipedia evaluation, we took our
initial set of 4679 seed instances from LOD, and randomly
selected 4179 instances for training and set aside the re-
maining 500 instances for evaluation. For evaluation on the
IT corpus, we manually generated a gold-standard of 159
<term, type> pairs, by randomly selecting a sample of 200
pairs from the output of Section 5.4, and then manually
fixing erroneous pairs. The results are shown in Table 8.

The table shows precision, recall and F-scores for our
model over each of the domains, with and without the feed-
back loop implemented. The results are encouraging. While
not near the performance of state-of-the-art NER’s (which
achieve F-scores in 90% range, e.g., [8]), there are several
key points to keep in mind.

First, typical NERs detect a pre-defined set of types and
are specially optimized for the types using a combination of
hand-crafted patterns/rules and/or a large amount of man-
ually annotated training data. We have taken a completely
automated approach for both recognizing domain-specific
types and generating training data and patterns. In this
respect, the quality issues in LOD adversely affects our re-
sults, and thus the more we can improve the quality of LOD
the better our results should be. Second, there is scope for
improvement using a more robust machine classifier based
on MaxEnt or SVM.

Finally, the performance of our model across domain cor-
pora is significant. The model, which is trained on Wikipedia
and LOD and applied to IT corpus, performs comparably
well without feedback, and substantially better with feed-
back (esp. recall). This indicates that the kind of patterns
we learn on Wikipedia, using information from LOD, can be
interesting and generic enough to be applicable across dif-
ferent domains. The performance improvement with feed-
back on the IT corpus was due to better uniformity in the
writing style, and thus incorporating text-patterns for recog-
nized terms in the feedback loop helped generate additional
interesting domain-specific patterns.

As a result of applying our NER model to the IT reports
generated 381 new term-type pairs, which was added to the
output of the previous step.

5.6 Evaluation of Complete Solution
The final output of our system is taken by aggregating the

result of the procedure described in Section 5.4 which looks
at LOD, and that generated by our NER model in Section



5.5. Since we did two experiments, first using the original
LOD, and later with the cleansed version of LOD, we have
two sets of results and we evaluated each separately.

For the original version of LOD, we found 1277 type-
labeled terms in all (896 from LOD and 381 from NER). We
evaluated the precision of both the terms and their types
by manually evaluating a 200 term sample. This gave us a
precision of 80.5%. We also computed recall by taking into
account our gold standard estimate and the precision, and
found that recall was 34.2%.

Taking the cleansed version of LOD, we found 1784 type-
labeled terms in all (1403 from LOD and 381 from NER).
The NER output was unchanged, since both experiments
produced the same set of top-level YAGO/Wordnet types8.
Using the same evaluation process, we found that precision
dropped a bit to 78.1%, but recall increased substantially
to 46.3%. This shows that our LOD cleansing improved our
vocabulary extraction solution, without sacrificing accuracy.

6. RELATED WORK
There are a number of attempts to define taxonomies from

categories in Wikipedia, and map the classes to Wordnet
(see [1], [9]), which address a different problem from in-
ferring hierarchies from a relatively flat type structure like
Freebase. Wu et al. [5] address the problem of creating a
class hierarchy from Wikipedia infoboxes. Although their
major focus is on detecting subsumption amongst these in-
fobox classes, one aspect of their work is to infer ranges for
infobox properties. For this, they examine what types of
instances are referenced by these properties. This is related
to what we do for type inference; however, they focus on in-
ferring ranges for individual properties, whereas we use the
domain and range information of all incident edges to infer
types for instances themselves.

Researchers have looked at extracting ontologies from text
(see Hearst [10], KnowItAll [11]), however these techniques
extract types appearing in the text itself, whereas we focus
on obtaining type-information from LOD instead.

On the topic of NER, research has mainly focused on rec-
ognizing a fixed set of generic types, and little or no work
has been done on recognizing a larger set of domain-specific
types (as is our scenario). Alternately, there has been a lot
of recent interest on relationship detection (e.g. Snowball
[6], PORE [7]), and type detection can be seen as a special
case of it (is-a relation). However, we differentiate ourselves
in several ways. Like Snowball, we build text-patterns to
represent the context, however, we obtain the appropriate
training seeds automatically from LOD. Our patterns cap-
ture long-distance dependencies by not being limited to a
fixed size context as in Snowball, and we add part-of-speech
information to improve pattern quality. Also, both Snow-
ball and PORE add type information to patterns, however
Snowball uses an off-the-shelf NER, which suffers from gran-
ularity and PORE adds type information by looking at tex-
tual information on the Wikipedia page (e.g., Categories),
which can be noisy and non-normative. As described in
Section 5.5, our patterns contain precise type information
(i.e. Yago Wordnet senses) from LOD for the precise-entity

8Given that we now produce cleaner type-instance informa-
tion from LOD, we plan to use it to build more NER models
for types besides YAGO/Wordnet. Due to time constraints,
we were unable to do so at the time of writing.

sense obtained by looking at Wikipedia URIs, and we gener-
alize types by looking at the Yago-Wordnet type hierarchy.
Finally, we have demonstrated that our patterns are gener-
alizable across domains, a point not addressed in previous
solutions.
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